抛物线与特殊三角形

合集下载

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

抛物线与直线形由动点生成的特殊三角形问题

抛物线与直线形由动点生成的特殊三角形问题

抛物线与直线形(1)——由动点生成的特殊三角形问题知识纵横抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能够成某些特殊三角形,有以下常见的基本形式:(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

例题求解【例1】如图,抛物线y =ax2 -5ax - 4经过.'ABC的三个顶点,已知BC // x轴,点A在x轴上,点C在y轴上,且AC =BC •(1)求抛物线的对称轴;(2)写出代B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在■ PAB是等腰三角形?(龙岩市中考题)思路点拨对于(3)只需求出P点纵坐标,将问题转化为相关线段长。

解题的关键是分情况讨论并正确画图。

【例2】已知抛物线y = kx2 - 2kx _ 3k ,交x轴于A, B两点(A在B的左边),交y轴于C点,且y有最大值4.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.(包头市中考题)思路点拨对于(2),设P点坐标为(a,b ),寻找相似三角形,建立a、b的另一关系式,解联立而得到的方程组,可求出a、b的值。

【例3】抛物线y = —l(x-i f十3与y轴交于点A,顶点为B,对称轴BC与x轴交于点4C .(1)如图1 .求点A的坐标及线段0C的长;(2 )点P在抛物线上,直线PQ // BC交x轴于点Q,连接BQ .①若含45角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上•求直线BQ的函数解析式;②若含30角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.S 1 2 2(2011年绍兴市中考题) 思路点拨对于(2),解题的关键是求出CQ的长。

阿基米德三角形的性质

阿基米德三角形的性质

阿基米德三角形的性质切线方程:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=【概念】一、阿基米德三角形:抛物线(圆锥曲线)的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形(如图一SAB ∆即为阿基米德三角形).重要结论:抛物线与弦之间所围成区域的面积(图二中的阴影部分)为阿基米德三角形面积的三分之二.图(一) 图(二)阿基米德运用逼近的方法证明了这个结论. 【证明】:如图(三)SM 是SAB ∆中AB 边上的中线,则SM 平行于x 轴(下面的性质1证明会证到),过M '作抛物线的切线,分别交SA 、SB 于,A B '',则A AM ''∆、B BM ''∆也是阿基米德三角形,可知A C '是A AM ''∆中AM '边上的中线,且A C '平行于x 轴,可得点A '是SA 的中点,同理B '是SB 的中点,故M '是SM 的中点,则SA B S ''∆是M AB S '∆的12,由此可知:A A C S '''''∆是C M A S ''∆的12,B B D S '''''∆是D M B S ''∆的12,以此类推,图(二)中蓝色部分的面积是红色部分而知的12,累加至无穷尽处,便证得重要结论.【性质1】 阿基米德三角形底边上的中线平行于抛物线的轴. 【证明】:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q + 【性质2】若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线; 【证明】:设),(11y x A ,),(22y x B ,00(,)C x y 为抛物线内的定点,弦AB 的过定点C ,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,则设另一顶点(),Q x y '',满足11()y y p x x ''=+且22()y y p x x ''=+,故弦AB 所在的直线方程为()yy p x x ''=+,又由于弦AB 过抛物线内的定点00(,)C x y ,故00()y y p x x ''=+,即点Q 的轨迹方程为直线00()y y p x x =+ . 【性质3】 抛物线以C 点为中点的弦平行于Q 点的轨迹; 【证明】:由【性质2】的证明可知:点Q 的轨迹方程为直线00()y y p x x =+ .因为点C 为弦AB的中点,故Q 的轨迹方程为121222y y x x y p x ++⎛⎫=+ ⎪⎝⎭,斜率122p k y y =+;而弦AB 所在的直线方程为()yy p x x ''=+,由【性质1】的证明可知:122y y y +'=,122y y x p '=,故弦AB 所在的直线方程为121222y y y y y p x p ⎛⎫+=+ ⎪⎝⎭,斜率122p k y y =+,又因为直线AB 与Q 的轨迹方程不重合,故可知两者平行. 【性质4】 若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点(若直线l 方程为:0ax by c ++=,则定点的坐标为,c bp C aa ⎛⎫- ⎪⎝⎭;【证明】:任取直线l :0ax by c ++=上的一点()0,o Q x y ,则有000ax by c ++=,即00a cy x b b=--┅①,过点Q 作抛物线22y px =的两条切线,切点分别为,A B ,则又由【性质2】的证明可知:弦AB 所在的直线方程为00()y y p x x =+,把①式代入可得:()00ac x y p x x bb ⎛⎫--=+ ⎪⎝⎭,即0a c y p x px y b b ⎛⎫--=+ ⎪⎝⎭,令0a y p b --=且0c px y b +=,可得:弦AB 所在的直线过定点,c bp C aa ⎛⎫- ⎪⎝⎭.【性质5】 底边为a 的阿基米德三角形的面积最大值为pa 83;【证明】:AB a =,设Q 到AB 的距离为d ,由性质1知: 22212121212122()22444x x y y y y y y y y d QM p p p p++-≤=-=-=(直角边与斜边),设直线AB 的方程为 x my n =+,则a =所以2322121()428a a y y a d s ad p p-≤⇒≤⇒=≤. 【性质6】 若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p ;【证明】:由性质2,若底边过焦点,则00,02p x y ==,Q 点的轨迹方程是2px =-,即为准线;易验证1QA QB k k ⋅=-,即QA QB ⊥,故阿基米德三角形为直角三角形,且Q 为直角顶点。

等腰直角三角形存在性问题

等腰直角三角形存在性问题

等腰直角三角形存在性问题一、复习回顾二次函数存在性问题中等腰三角形的存在性、直角三角形存在性问题,等腰三角形的存在性问题有两种思路:①两圆一线确定点的位置,结合图形特点解决问题;②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解;直角三角形的存在性问题有两种思路:①两线一圆构图,“改斜归正”转化横平竖直线段长,②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解。

二、特殊三角形之等腰直角三角形存在性问题如图,抛物线y=x2-2x-3与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,点P是抛物线上一动点,点Q在直线x=-3上,是否存在以点P为顶点的等腰直角三角形△PBQ,若存在,求出点P的横坐标,若不存在说明理由。

解法分析:通过读题,不难求得A、B、C三点坐标,点P、Q是两个动点,位置不确定,如何确定它们的位置是解决问题的一个难点。

此时不妨通过草图分析,大体分两种情况:①直角顶点在BQ下方,②直角点P在BQ上方,结合上辑课讲到的直角三角形存在性问题的处理思路,容易考虑使用“改斜归正”的处理办法结合等腰直角三角形的特点构造一线三等角全等模型,从而顺利转化线段长建立等量。

三、练习1.(本小题25分)如图,抛物线y=x2-4x+3交x轴于A,C两点(点A在点C的右侧),交y 轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为()A.(-1,4) 或(1/2,5/2)B. (-1,3)或(1,2)C. (-1,4)或(1,2)D. (-1,4),(1,2)或(5,-2)2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线l,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为() A.(1,4/3)或(3/2,1) B.(-1/3,4/3)或(-1/2,1) C.(1,0)或(-1/3,0)或(1/2,0) D.(1,0)或(-1/3,0)或(4/3,0)3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为()A. -4B. -3C. -3或-4D. -4或44.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线y=-x2-3x+4于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为()A. (-2,2)B. (-2,6)C. (-3,4)或(-2,6)D. (-3,1)或(-2,2)5.如图,抛物线y=-x2+4x经过A(4,0),B(1,3)两点,点C与点B关于抛物线的对称轴对称,过点B作直线BH△x轴于点H,点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形时,若存在,求出点M坐标,若不存在说明理由。

抛物线阿基米德三角形结论证明

抛物线阿基米德三角形结论证明

抛物线阿基米德三角形结论证明1. 概述抛物线作为古代数学中的重要研究对象,其性质和结论一直以来都备受学者们的关注。

其中,抛物线上的阿基米德三角形结论一直是一个备受研究的课题。

本文旨在对抛物线上的阿基米德三角形结论进行证明,并探讨其中的数学内涵。

2. 抛物线的性质2.1 抛物线的定义抛物线是平面上的一种曲线,其定义可以与焦点和直线上一点的距离比例为常数通联起来。

一般来说,抛物线是指平面上一点到定直线和定点的距离比例为常数的轨迹。

2.2 抛物线的方程一般情况下,抛物线可以用一般二次方程的形式表示为y=ax^2+bx+c。

其中,a、b、c为常数,且a不等于0。

3. 阿基米德三角形的性质3.1 阿基米德三角形的定义阿基米德三角形是指一个锐角三角形,其三边长度成等比数列。

3.2 抛物线上的阿基米德三角形研究发现,在抛物线上,可以构建多个满足阿基米德三角形定义的三角形。

4. 抛物线上的阿基米德三角形结论证明4.1 抛物线的焦点性质我们需要利用抛物线的定义和性质证明其焦点的特殊性质。

根据抛物线的定义和焦点的几何性质,我们可以得出抛物线上的任意一点到焦点的距离和到定直线的距离之比是一个定值。

4.2 阿基米德三角形在抛物线上的构造进而,我们可以利用抛物线的焦点性质,构造出满足阿基米德三角形定义的三角形。

具体来说,我们可以选择抛物线上的三个或多个点,然后利用这些点到焦点和定直线的距离比例的性质,构造出符合阿基米德三角形定义的三角形。

4.3 阿基米德三角形的等比性质我们需要证明抛物线上构造出的三角形是等比数列。

在这一步中,我们需要运用一些几何和代数方法,通过计算抛物线上构造出的三角形的边长,并证明其边长满足等比数列的条件。

5. 结论通过以上的证明和分析,我们可以得出抛物线上的阿基米德三角形确实存在,并且构造出的三角形满足阿基米德三角形的定义和等比性质。

这一结论不仅对于抛物线的研究具有重要意义,同时也有助于深化对阿基米德三角形的理解,为数学研究提供了新的思路和方法。

专题9二次函数的抛物线与特殊三角形的存在性问题(原卷版)

专题9二次函数的抛物线与特殊三角形的存在性问题(原卷版)

专题9 二次函数的抛物线与特殊三角形的存在性问题(原卷版)类型一 抛物线与等腰三角形1.(2023•钦州一模)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图①,抛物线C 1:y =﹣x 2+2x +3与抛物线C 2:y =ax 2﹣2ax +c 组成一个开口向下的“月牙线”,抛物线C 1与抛物线C 2与x 轴有相同的交点M ,N (点M 在点N 左侧),与y 轴的交点分别为点A ,B (0,1).(1)求出点M ,N 的坐标和抛物线C 2的解析式;(2)点P 是x 轴上方抛物线C 1上的点,过点P 作PQ ⊥x 轴于点E ,交抛物线C 2于点Q ,试证明:PQ QE 的值为定值,并求出该定值;(3)如图②,点D 是点B 关于抛物线对称轴的对称点,连接AD ,在x 轴上是否存在点F ,使得△ADF 是以AD 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.2.(2021秋•重庆期末)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y 轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.3.(2023秋•宁陵县期中)如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由.类型一抛物线与直角三角形4.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.5.(怀化中考)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在抛物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.6.(2023•于洪区二模)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=ax2+bx+4经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使DE=2PE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.类型三抛物线与等腰直角三角形7.(2021•罗湖区校级模拟)如图一,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连接PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;在四边形AOPE面积最大时,在线段OE上取点M,在y轴上取点N,当PM+MN+√22AN取最小值时,求出此时N点的坐标.(3)如图二,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.8.(2013•大连)如图,抛物线y=−45x2+245x﹣4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.。

抛物线上动点p的三角形面积-定义说明解析

抛物线上动点p的三角形面积-概述说明以及解释1.引言1.1 概述在数学中,抛物线是一种具有特定形状的曲线,其形状类似于开口向上的U形。

它是由一个定点和一条直线(称为准线或直线段)确定的曲线,其中定点被称为焦点,准线表示为直线段AB。

抛物线是一种非常重要的曲线,广泛应用于物理学、工程学等领域。

本文将围绕着抛物线上的动点P展开讨论。

在抛物线上,动点P具有自由运动的能力,并且可以在曲线上任意选择不同的位置。

我们将重点研究动点P所形成的三角形的面积,并探究如何计算这个面积。

通过研究动点P在抛物线上的运动以及三角形的面积计算方法,我们可以深入理解抛物线曲线的几何特征,并且可以应用这些知识解决实际问题。

同时,对抛物线上动点P的三角形面积的意义和应用也将在文章中进行探讨。

最后,在总结部分我们将对本文的内容进行总结,并展望未来对抛物线相关问题的研究方向。

本文旨在提供一个清晰的抛物线上动点P三角形面积的计算方法,并希望读者通过阅读本文能够对抛物线的几何特性有更深入的了解。

【1.2 文章结构】本文将分为以下几个部分来探讨抛物线上动点P的三角形面积的计算方法。

每个部分的内容如下:(1)引言:在引言部分,我们将概述本文的主题和研究对象,并介绍文章的结构和目的。

同时,我们也将对抛物线的定义和性质进行简要介绍。

(2)正文:在正文部分,我们将分为三个小节来详细阐述抛物线上动点P的三角形面积的计算方法。

首先,我们会介绍抛物线的定义和性质,包括其数学表达和几何特征。

然后,我们会讨论动点P在抛物线上的运动规律,这一部分将包括动点P在不同位置的情况下的三角形面积的变化规律。

最后,我们将介绍具体的计算方法,包括利用向量、坐标和参数方程等不同的方法来计算动点P的三角形面积。

(3)结论:在结论部分,我们将对前面的研究结果进行总结,并探讨抛物线上动点P的三角形面积的一些意义和应用。

同时,我们也会展望未来可能的研究方向和可进一步发展的领域。

通过以上的安排,我们旨在全面而系统地介绍抛物线上动点P的三角形面积的计算方法,并探讨其应用的可能性,为相关领域的研究和实践提供一定的参考和指导。

二次函数专题—抛物线的内接特殊三角形

《二次函数》专题训练(三)——抛物线的内接特殊三角形主备:鄢自红授课:鄢自红□自学导读【学习目标】(1)掌握二次函数图象内接特殊三角形的性质,并利用性质求解析式和参数的值。

(2)通过规律的推导和运用,提高类比推理和综合解题能力。

【重、难点】规律的推导和运用【读书思考】基础知识回顾:(1)抛物线顶点坐标公式:(_____, _________),简记为___________.(2)若抛物线与x轴有两个交点A(x1,0), B(x2,0),AB=___________=________.(3)韦达定理:若ax2+bx+c=0(a≠0)有两实根x1,x2,则_________________________.□典题解析(一)抛物线与x轴两个交点和顶点确定的三角形例1.已知,二次函数y=x2+kx+1与x轴的两个交点A、B都在原点右侧,顶点为M。

当△ABM是等腰直角三角形时,(1)求k值。

(2)求判别式△.解析:先画出函数大致图象,再利用等腰三角形性质,结合直角三角形的性质求解。

问题1:例1中,如果把y=x2+kx+1换成y=ax2+bx+c,△ABM是等腰直角三角形时,△值不变吗?规律1:练习1(变式). 已知抛物线y=x2—bx (b≠0)的顶点为M,与直线y=—2两交点分别为A、B,且△ABM为等腰直角三角形,则b=_______。

问题2:前面的问题中当△ABM为等边三角形时,y=ax2+bx+c的判别式△又是多少?导学设计教学重难点与抛物线内接特殊三角形有关的定值的推导和运用.教具准备多媒体.导学流程一、导入新课,揭示目标(2分钟) 情景导入:师生对照课件解读学习目标.二、新课导学基础知识回顾:(2分钟)(课件出示题目,点学生回答)自主探究完成例1(4分钟)(学生演板)追问拓展、合作探究:(3分钟)如果把y=x2+kx+1换成y=ax2+bx+c,△ABM是等腰直角三角形时,△还是4吗?规律小结(2分钟):当y=ax2+bx+c(a≠0)与x轴交于A、B 两点,C是顶点,当△ABM为等腰直角三角形,则△=b2-4ac=4.练习1点拨:实质是把抛物线与y=0的交点变成了与y=-2的,但要注意△是方程x2-bx=-2的,而不是x2-bx=0的.自主探究问2(5分钟)1、先自主探究问题2,展示探究的结果.2、并利用探究的结论完成例2,利用例2检查学习效果。

最新九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)含答案

2023年九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)1.如图,直线y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣43x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求点B的坐标和抛物线的解析式;(2)在运动过程中,若点P为线段MN的中点,求m的值;(3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;2.如图△,已知抛物线y=ax2﹣4amx+3am2(a、m为参数,且a>0,m>0)与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求点B的坐标(结果可以含参数m);(2)连接CA、CB,若C(0,3m),求tan△ACB的值;(3)如图△,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.3.如图,已知二次函数的图象经过点A (4,4)、B (5,0)和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.4.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B .(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.△当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹.并直接写出直线CD 的解析式;△点()(),0P m n m >是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR ∆.在△的条件下,记PQR ∆与COD ∆的公共部分的面积为S .求S 关于m 的函数关系式,并求S 的最大值.5.已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C作CB△x 轴交抛物线于点B,过点B作直线l△x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣1时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出求a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.6.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且△DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.7.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y 轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围.8.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.9.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN△x 轴于点N ,交抛物线于点M ,当△BCM 面积最大时,求△BPN 的周长. (3)在(2)的条件下,当△BCM 面积最大时,在抛物线的对称轴上是否存在点Q ,使△CNQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.10.如图1,抛物线243y x x =++与x 轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 抛物线的顶点.(1)求直线BD 的解析式;(2)抛物线对称轴交x 轴于点E ,P 为直线BD 上方的抛物线上一动点,过点P 作PF BD ⊥于点F ,当线段PF 的长最大时,连接PE ,过点E 作射线EM ,且EM EP ⊥,点G 为射线EM 上一动点(点G 不与点E 重合),连接PG ,H 为PG 中点,连接AH ,求AH 的最小值;(3)如图2,平移抛物线,使抛物线的顶点D 在射线BD 上移动,点B ,D 平移后的对应点分别为点'B ,'D ,y 轴上有一动点M ,连接'MB ,'MD ,''MB D ∆是否能为等腰直角三角形?若能,请求出所有符合条件的M 点的坐标;若不能,请说明理由.11.如图1,抛物线()230y ax bx a =++≠与x 轴交于()1,0A -、()30B ,两点,与y 轴交于点C ,顶点为点M .(1)求这条抛物线的解析式及直线BM 的解析式;(2)P 段BM 上一动点(点P 不与点B 、M 重合),过点P 向x 轴引垂线,垂足为Q ,设OQ 的长为t ,四边形PQAC 的面积为S .求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在线段BM 上是否存在点N ,使NMC ∆为等腰三角形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图,已知抛物线与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C(0,3).(1)该抛物线的对称轴是直线___________, (2)求抛物线的解析式;(3)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:13.在平面直角坐标系中,将二次函数()20y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.14.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.△是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;△若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.15.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且△MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.16.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.17.已知:直线122y x =+与y 轴交于A ,与x 轴交于D ,抛物线y =12x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)点P 是直线AE 上一动点,当△PBC 周长最小时,求点P 坐标; (3)动点Q 在x 轴上移动,当△QAE 是直角三角形时,求点Q 的坐标;(4)在y 轴上是否存在一点M ,使得点M 到C 点的距离与到直线AD 的距离恰好相等?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D 为抛物线的顶点,连接DA 、DB ,试判断△ABD 的形状,并说明理由; (3)设P 为对称轴上一动点,要使PC ﹣PB 的值最大,求出P 点的坐标.19.如图,抛物线2y ax bx c =++ 经过点()2,5A -,与x 轴相交于()1,0B -,()3,0C 两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将BCD ∆沿沿直线BD 翻折得到BC D '∆,若点D '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当CPQ ∆为等边三角形时,求直线BP 的函数表达式.20.如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到Rt COD ∆,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. △若2PMN S ∆=,求k 的值;△证明:无论k 为何值,PMN ∆恒为直角三角形;△当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.参考答案:1.(1)B (0,2),抛物线解析式为y=﹣43x 2+103x+2;(2)m 的值为12;(3)当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0). 2.(1)B (3m ,0);(2)tan△ACB =12;(3)点P 的坐标是:)或). 3.(1)y =﹣x 2+5x ;(2)当点P 在直线OA 的上方时,线段PC 的最大值是4;(3)存在,P 的坐标是(4,2﹣)或(6,﹣6)或(5,0). 4.(1)()21154y x =--+;(2);4y x =-+;△S 27448x x =-+-;S 的最大值为47.5.(1)5;(2)a =﹣1(3)m =3n 2+2 6.(1)y =﹣x 2+3x +4;(2)P (﹣25,6625);(3)点M 的坐标为(32,298)或(32,﹣58)或(32,52)或(32,32).7.(1)y=x 2-5x+4, A(1,0);(2)(6,10)或(2,-2);m <6或 3m <28.(1)y =﹣x 2+4x ﹣3;(2)在y 轴上存在点M ,点M 的坐标为(0,3),(0,3-或(0,3-,(3)P (4,﹣3).9.(1)y =﹣x 2+2x+3 (2)310.(1)43y x =-+(2(3)(0,,,.11.(1)2y x 2x 3=-++,26y x =-+;(2)四边形ACPQ S 29322t t =-++,t 的取值范围是13t <<;(3)716,55N ⎛⎫⎪⎝⎭或14N ⎛ ⎝⎭或()2,2N 12.(1)1x = (2)2y x 2x 3=-++;(3)存在,⎝⎭或(2.3)13.(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3.14.(1)211384y x x =--+;(2)△存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;△点3,02M ⎛⎫⎪⎝⎭15.(1)y=-23x 2-43x+2;(2)S 的最大值为174;(3)存在,点N或)或)或).16.(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 17.(1)215222y x x =-+;(2)P (1213,3213);(3)Q 点坐标为(1,0)或(172,0);(4)存在;M 点坐标为M (0,﹣8).18.(1)抛物线的函数表达式为y =x 2﹣4x +3;(2)△ADB 是等腰直角三角形;理由见解析;(3)P (2,﹣3).19.(1)223y x x =--;(2)点'C 坐标为(点D 的坐标为⎛ ⎝⎭;(3)直线BP 的函数表达式为y =y x =20.(1)2y x 2x 3=-++,()1,4P ;(2)△k =±△2241y x x =-++.。

专题训练(三) 二次函数中的存在性问题

专题训练(三)二次函数中的存在性问题▶类型一构造特殊三角形1.如图1,抛物线y=-x2+2x+3与y轴交于点C,点D 的坐标为(0,1),P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.图12.如图2,直线y=-√3x+n交x轴于点A,交y轴于点C(0,3√3),抛物线y=23x2+bx+c经过点A,交y轴于点B(0,-2).P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连结PB,设点P的横坐标为m.(1)求抛物线的表达式;(2)当△BDP为等腰直角三角形时,求线段PD的长.图2▶类型二构造特殊四边形3.如图3,抛物线y=-x2+2x+3与y轴交于点C,A为x轴上方的抛物线上任意一点,过点A作x轴的垂线交x轴于点B,设点A的横坐标为m,当四边形ABOC为平行四边形时,m的值为.图34.如图4,在平面直角坐标系中,抛物线y=ax2-43x+2(a≠0)过点B(1,0).(1)求抛物线的函数表达式;(2)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(3)以AC为边在第二象限画正方形ACPQ,求P,Q 两点的坐标.图45.如图5,在平面直角坐标系中,已知抛物线L:y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的函数表达式和顶点D的坐标;(2)将抛物线L沿B,D所在的直线平移,平移后点B 的对应点为点B',点C的对应点为点C',点D的对应点为点D',当四边形BB'C'C是菱形时,求此时平移后的抛物线的表达式.图5▶类型三构造相等的角或特殊度数的角6.[2020·绍兴柯桥区期末]如图3-ZT-6,直线y=-x+3与x轴、y轴分别交于B,C两点,抛物线y=-x2+bx+c 经过B,C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的函数表达式.(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的点E的坐标.(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.图6专题训练(三)教师详解详析1.(1+√2,2)或(1-√2,2)[解析] ∵△PCD 是以CD 为底的等腰三角形, ∴点P 在线段CD 的垂直平分线上.如图,作CD 的垂直平分线l 交抛物线于点P 1,P 2,交y 轴于点E ,则E 为线段CD 的中点.∵抛物线y=-x 2+2x+3与y 轴交于点C , ∴C (0,3).而D (0,1), ∴点E 的坐标为(0,2), ∴点P 的纵坐标为2.在y=-x 2+2x+3中,令y=2,可得-x 2+2x+3=2,解得x=1±√2,∴点P 的坐标为(1+√2,2)或(1-√2,2).2.解:(1)∵直线y=-√3x+n 交y 轴于点C (0,3√3), ∴n=3√3,∴y=-√3x+3√3. 令y=0,得x=3, ∴A (3,0).∵抛物线y=23x 2+bx+c 经过点A ,交y 轴于点B (0,-2).∴c=-2,6+3b-2=0, ∴b=-43,∴抛物线的表达式为y=23x 2-43x-2.(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴Pm ,23m 2-43m-2. ∵PD ⊥x 轴,BD ⊥PD , ∴点D 的坐标为(m ,-2), ∴BD=|m|,PD=23m 2-43m-2+2.当△BDP 为等腰直角三角形时,PD=BD , ∴|m|=23m 2-43m , m 2=23m 2-43m 2,解得m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12.3.2 [解析] 当x=0时,y=3, ∴点C 的坐标为(0,3),则OC=3.∵点A 的横坐标为m ,且点A 在抛物线上, ∴点A 的坐标为(m ,-m 2+2m+3).当四边形ABOC 是平行四边形时,AB=3,当AB=3时,-m 2+2m+3=3,解得m 1=0(舍去),m 2=2,∴m=2. 4.解:(1)将B (1,0)代入y=ax 2-43x+2,得a-43+2=0,∴a=-23,∴抛物线的函数表达式为y=-23x 2-43x+2.(2)当y=0时,-23x 2-43x+2=0,解得x 1=1,x 2=-3. 当x=0时,y=2,∴抛物线与y 轴的交点C 的坐标为(0,2),与x 轴的另一交点A 的坐标为(-3,0).(3)如图,过点P ,Q 分别作PH ⊥y 轴,QG ⊥x 轴,垂足分别为H ,G.∵四边形ACPQ 是正方形,∴易证△AOC ≌△QGA ≌△CHP , ∴AO=QG=CH=3,OC=GA=HP=2, ∴P (-2,5),Q (-5,3).5.解:(1)把A (-3,0)和B (1,0)代入抛物线L :y=ax 2+bx+3,得{9a -3b +3=0,a +b +3=0,解得{a =-1,b =-2,即抛物线L :y=-x 2-2x+3,化为顶点式为y=-(x+1)2+4,故顶点D 的坐标为(-1,4). (2)∵B (1,0),D (-1,4),由待定系数法可得直线BD 的表达式为y=-2x+2. 设平移后点B 的对应点B'的坐标为(x ,-2x+2), 则BB'2=(x-1)2+(-2x+2-0)2=5(x-1)2.∵抛物线L :y=-x 2-2x+3,∴点C 的坐标为(0,3),∴BC 2=12+32=10, ∴5(x-1)2=10,解得x 1=√2+1,x 2=-√2+1.∴点B'的坐标为(√2+1,-2√2)或(-√2+1,2√2).当点B'的坐标为(√2+1,-2√2),即点B 向右平移√2个单位,再向下平移2√2个单位,可得点B',∴抛物线L :y=-x 2-2x+3=-(x+1)2+4向右平移√2个单位,再向下平移2√2个单位,可得y=-(x+1-√2)2+4-2√2.当点B'的坐标为(-√2+1,2√2),即点B 向左平移√2个单位,再向上平移2√2个单位,可得点B',∴抛物线L :y=-x 2-2x+3=-(x+1)2+4向左平移√2个单位,再向上平移2√2个单位,可得y=-(x+1+√2)2+4+2√2.综上所述,当四边形BB'C'C 是菱形时,此时平移后的抛物线的表达式为y=-(x+1-√2)2+4-2√2或y=-(x+1+√2)2+4+2√2.6.解:(1)直线y=-x+3与x 轴、y 轴分别交于B ,C 两点,则点B ,C 的坐标分别为(3,0),(0,3). 将点B ,C 的坐标代入y=-x 2+bx+c ,得 {-9+3b +c =0,c =3,解得{b =2,c =3,故抛物线的函数表达式为y=-x 2+2x+3.(2)如图①,作点C 关于x 轴的对称点C',连结C'D 交x 轴于点E ,此时EC+ED 的值最小,则△EDC 的周长最小.抛物线的顶点D 的坐标为(1,4),点C'(0,-3).用待定系数法可求得直线C'D 的表达式为y=7x-3. 当y=0时,x=37,故点E 的坐标为37,0.(3)存在.①当点P 在x 轴上方时,如图②, ∵OB=OC=3,∠BOC=90°, ∴∠OCB=45°=∠APB. 令y=0,则-x 2+2x+3=0, 解得x 1=-1,x 2=3, ∴A (-1,0),∴AB=4.过点B 作BH ⊥AP 于点H ,设PH=BH=a , 则PB=P A=√2a.由勾股定理得AB 2=AH 2+BH 2, 即16=(√2a-a )2+a 2, 解得a 2=8+4√2,则PB 2=2a 2=16+8√2. ②当点P 在x 轴下方时, 同理可得PB 2=16+8√2.综上可得,PB 2的值为16+8√2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线与特殊三角形
抛物线与三角形的结合是抛物线与平面几何生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊的三角形,有以下常见的形式:
(1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形。

这类问题把抛物线的性质和平面几何的性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。

题型一、抛物线与等腰三角形 [例1].如图,已知抛物线2
y ax bx c =++经过()1,0A -,()3,0B ,()0,3C 三
点,直线l 是抛物线的对称轴。

(1)求抛物线的解析式;
(2)设点P 是直线l 上的一个动点,当PAC ∆的周长最小时,求点P 坐标;
(3)在直线l 上是否存在点M ,
使
M
A
C ∆为等腰三角形?若存在,求出点M 的坐标,若不存在,请说明理由。

B
A
解:(1)因为抛物线2
y ax
bx c =++经过()1,0A -,()3,0B ,()0,3C 三点,
所以09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得1
23a b c =-⎧⎪=⎨⎪=⎩,故所求为2
23y x x =-++。

(2)如图1,由(1)知抛物线为2
23y x x =-++,其对称轴为2121
x =-=-⨯。

,因为点,A B 关于l 对称,所以连BC 交l 于点P ,则点P 即为所求的点。

连PA ,则PA PB =,PA PC
PB PC BC +=+=为最小,此时PAC ∆的周长最小。

设直线BC 为y kx b =+,则330b k b =⎧⎨+=⎩,解得13
k b =-⎧⎨=⎩,
所以直线BC 为3y
x =-+。

由13x y x =⎧⎨=-+⎩,解得1
2
x y =⎧⎨=⎩,故所求点为()1,2P 。

(3)解法1:存在。

依题意知1,3OA OC =
=。


Rt AOC ∆
中,有AC ==
=

1当AC AM ==2,以A 为圆心,AC 长为半径作A e 交l 于
点1M ,2M ,连1AM ,2AM ,设l 与x 轴交于点D ,则1OD =, 所以
11
2
AD OA OD =+=
+=。

x
在1
Rt ADM ∆
中,有1DM
===由垂径定
理知
2
1DM DM ==
所以点(11,M ,(2
M 。


2当CA CM ==如图3,以C 为圆心,CA 为半径作C e 交l 于3M ,4M 。

因为
OA OD =,OC
AD ⊥,所以CD CA ==所以3CM CD =,
即点3M 与点D 重合,所以点()3
1,0M 。

又因为04
90ADM ∠=,所以4AM 是
C
e 的直径,
即4,,A C M 三点共线,不能构成三角形。

x
x
○3当MA MC =时,此时点M 在AC 的垂直平分线上,作AC 的垂直平分线交
l 于5M ,交AC 于E ,交y
轴于F 。

如图4,则122CE
AC =
=,且CEF COA ∆∆:,
所以CE CF
CO CA
=
,
即23CF = 所以53CF
=
,43OF OC CF =-=,即点40,3F ⎛⎫
⎪⎝⎭。

过点E 作EG OA ⊥于G ,则EG OC P ,所以AEG ACO ∆∆:,
所以12EG AE CO AC ==,所以13
22
EG CO ==。

过点E 作EH OC ⊥于H ,同理1122EH OA ==,所以13,22E ⎛⎫- ⎪⎝⎭。

设直线EF 为43y kx =+,则143232k -+=,解得1
3
k =-。

所以直线EF 为14
33
y
x =-+。

当1x =时,1y =,所以点
()51,1M 。

综上满足条件的点为(1
1,M ,(2
M ,()31,0M ,()5
1,1M。

解法2:设点()1,M t ,如图5,
DM t
=,2AD =,在Rt ADM ∆
中,有
x
22224AM DM AD t =+=+;过点C 作CE l ⊥于E ,则1CE =,
3DE OC ==,3EM DE DM t =-=-。

在Rt CEM ∆中,有()2
2
2
2
2
31610CM EM CE t t t =+=-+=-+;
Rt AOC ∆中,有22221310AC OA OC =+=+=。


1当AM AC =时,有24
10t +=,解得
t =,此时
点(
1M ,
(21,M ;

2当CM AC =时,有261010t t -+=,解得0t =或6t =。

因为当6t =时,点,,A C M 共线,不能构成三角形。

所以此时点()31,0M ;

3当AM CM =时,有226104t t t -+=+,解得1t =
,此时点()41,1M 。

综上,满足条件的点为(1M ,(21,M ,()31,0M ,()41,1M 。

【小结】点的坐标是综合题的立足点(求解析式),又是综合题的制高点(求满足条件的点的坐标或存在性的探究)。

求点的坐标一般历经两个关键步骤:(1)定位;(2)计算。

本题的解法1是运用交轨定位,包括圆与直线相交、直线与直线相交;计算涉及运用勾股定理和相似比建立方程。

解法2是假设定位,设出点的坐标,利用平面几何性性中的相等关系,建立相应的方程进行计算。

两种方法均体现了数形结合、分类讨论的思想方法。

图5
E D M。

相关文档
最新文档