高斯平面直角坐标系与大地坐标系

合集下载

高斯平面直角坐标

高斯平面直角坐标

高斯平面直角坐标系大地坐标系是大地测量的基本坐标系。

常用于大地问题的细算,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。

所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。

椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。

测量上常以投影变形不影响工程要求为条件选择投影方法。

地图投影有等角投影、等面积投影和任意投影三种。

其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。

这是地形图的基本要求。

正形投影有两个基本条件:①保角条件,即投影后角度大小不变。

②长度变形固定性,即长度投影后会变形,但是在一点上各个方向的微分线段变形比m是个常数k:式中:ds—投影后的长度,dS—球面上的长度。

1.高斯投影的概念高斯是德国杰出的数学家、测量学家。

他提出的横椭圆柱投影是一种正形投影。

它是将一个横椭圆柱套在地球椭球体上,如下图所示:椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。

此子午线称中央子午线。

然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S点母线割开,并展成平面,即成为高斯投影平面。

在此平面上:①中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。

离开中央子午线越远,变形越大。

②投影后赤道是一条直线,赤道与中央子午线保持正交。

③离开赤道的纬线是弧线,凸向赤道。

高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。

为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。

这种方法称为分带投影。

投影带宽度是以相邻两个子午线的经差来划分。

有6°带、3°带等不同投影方法。

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。

这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。

地面点的高程和国家高程基准(1)绝对高程。

地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。

过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。

后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。

国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。

它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。

在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。

(2)相对高程。

地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。

在图l—5中,地面点A和B的相对高程分别为H'A 和H'B 。

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式空间大地坐标系和平面直角坐标系是两种不同的坐标系统,用于描述地球上的点的位置。

在进行空间大地坐标系与平面直角坐标系之间的转换时,需要考虑到地球的椭球体形状和投影方式。

下面将详细介绍空间大地坐标系与平面直角坐标系的转换方法。

1.空间大地坐标系经度:经度是指地球上特定点与本初子午线之间的角度差,用度、分、秒的形式表示。

纬度:纬度是指地球上特定点距离赤道的角度,用度、分、秒的形式表示。

大地高:大地高是指地球表面特定点到参考椭球体上其中一参考面的高度差,可分为正高和负高。

2.平面直角坐标系平面直角坐标系是以地球上一些基准点为原点建立的二维坐标系。

在平面直角坐标系下,点的位置通常用东方向坐标值X和北方向坐标值Y来表示。

3.空间大地坐标系到平面直角坐标系的转换公式3.1平面直角投影平面直角投影是将地球表面上的点投影到一个水平的平面上。

其转换公式为:X = k₀ + R * cosL * sin(λ - λ₀)Y = k₀ + R * (cosφ₀ * sinL - sinφ₀ * cosL * cos(λ - λ₀))其中,X和Y为平面直角坐标系下的坐标值,L为参考点与待转换点的经度差,λ为待转换点的经度,φ₀为参考点的纬度,λ₀为参考点的经度,k₀为常数,R为参考点到地心的距离。

3.2高斯投影高斯投影是将地球上的点投影到一个平面上,使得该平面上的距离尽可能与大地距离一致。

其转换公式为:X = X₀ + N * cosB * (λ - L₀)Y = Y₀ + N * (tanB * cos(λ - L₀) - sinB * (B - B₀))其中,X和Y为平面直角坐标系下的坐标值,X₀和Y₀为参考点的平面坐标,N为法向子午线长度,B为待转换点的纬度,λ为待转换点的经度,L₀为参考点的经度,B₀为参考点的纬度。

4.平面直角坐标系到空间大地坐标系的转换公式平面直角坐标系到空间大地坐标系的转换公式为空间大地坐标系到平面直角坐标系的逆运算,可以通过解方程组或迭代法来进行计算。

空间大地坐标系及平面直角坐标系转换公式

空间大地坐标系及平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。

人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。

在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。

某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。

空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。

投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。

在我XX 用的是高斯-克吕格投影也称为高斯投影。

UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。

高斯投影是一种横轴、椭圆柱面、等角投影。

从几何意义上讲,是一种横轴椭圆柱正切投影。

如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切〔此子午线称为中央子午线或轴子午线〕,椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。

高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。

将中央子午线东西各一定经差〔一般为6度或3度〕X 围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如以下图2-5右侧所示。

浅析几种常用坐标系和坐标转换

浅析几种常用坐标系和坐标转换

浅析⼏种常⽤坐标系和坐标转换⼀般来讲,GPS直接提供的坐标(B,L,H)是1984年世界⼤地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为⼤地⾼即是到WGS-84椭球⾯的⾼度。

⽽在实际应⽤中,我国地图采⽤的是1954北京坐标系或者1980西安坐标系下的⾼斯投影坐标(x,y,),不过也有⼀些电⼦地图采⽤1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),⾼程⼀般为海拔⾼度h。

GPS的测量结果与我国的54系或80系坐标相差⼏⼗⽶⾄⼀百多⽶,随区域不同,差别也不同,经粗落统计,我国西部相差70⽶左右,东北部140⽶左右,南部75⽶左右,中部45⽶左右。

现就上述⼏种坐标系进⾏简单介绍,供⼤家参阅,并提供各坐标系的基本参数,以便⼤家在使⽤过程中⾃定义坐标系。

1、1984世界⼤地坐标系WGS-84坐标系是美国国防部研制确定的⼤地坐标系,是⼀种协议地球坐标系。

WGS-84坐标系的定义是:原点是地球的质⼼,空间直⾓坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)⽅向,即国际协议原点CIO,它由IAU和IUGG共同推荐。

X轴指向BIH定义的零度⼦午⾯和CTP⾚道的交点,Y轴和Z,X轴构成右⼿坐标系。

WGS-84椭球采⽤国际⼤地测量与地球物理联合会第17届⼤会测量常数推荐值,采⽤的两个常⽤基本⼏何参数:长半轴a=6378137m;扁率f=1:298.2572235632、1954北京坐标系1954北京坐标系是将我国⼤地控制⽹与前苏联1942年普尔科沃⼤地坐标系相联结后建⽴的我国过渡性⼤地坐标系。

属于参⼼⼤地坐标系,采⽤了前苏联的克拉索夫斯基椭球体。

其长半轴 a=6378245,扁率 f=1/298.3。

1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。

3、1980西安坐标系1978年,我国决定建⽴新的国家⼤地坐标系统,并且在新的⼤地坐标系统中进⾏全国天⽂⼤地⽹的整体平差,这个坐标系统定名为1980年西安坐标系。

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。

这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。

地面点的高程和国家高程基准(1)绝对高程。

地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。

过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。

后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。

国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。

它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。

在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。

(2)相对高程。

地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。

在图l—5中,地面点A和B的相对高程分别为H'A 和H'B。

(3)高差。

地面上任意两点的高程(绝对高程或相对高程)之差称为高差。

高斯投影高斯坐标系与大地坐标系的关系

高斯投影高斯坐标系与大地坐标系的关系

2021/3/7
4
6.3 高斯—克吕格投影
Gauss — Kruger projection
一、高斯-克吕格投影概念 高斯投影三条件 正形条件 中央子午线投影为一直线 中央子午线投影后长度不变
2021/3/7
x F1(B, L)
y
F2
(B,
L)
5
6.3 高斯—克吕格投影
Gauss — Kruger projection
南:北纬 3º52′(南海南沙群岛的曾母暗沙) 北:3北、纬分5带3º的10方′(法黑龙江漠河镇以北的黑龙江江心)
六度带:自零子午线起向东划分,每隔6º为一带
2021/3/7
7
6.3 高斯—克吕格投影
Gauss — Kruger projection
3、分带的方法
三度带:在六度带基础上,其奇数带中央子午线
16
一、高斯投影正算公式 n1ddm 0 q,n21 2d dm 1q,n31 3ddm 2 q,n41 4ddm 3 q,
引m 1 入高斯d d投0 n q,影m2条件1 2 一d d :1 n q 正,m 形3 条 件1 3d d2 n q,m41 4d d3 n q,
xm0m1lm2l2m3l3m4l4..... yn0n1ln2l2n3l3n4l4......
n L0 /3
计算任意经度所在投影带的带号公式
计算任意经度所在投影带的带号公式
n2021L/3//76的整数 ( 1商有余数时) n(L1.5)/3的整数 ( 1商有余 9 数时
6.3 高斯—克吕格投影
Gauss — Kruger projection
二、高斯投影的分带(belt dispartion )

大地坐标与平面坐标之间的区别与转换

大地坐标与平面坐标之间的区别与转换

南方CASS和南方平差易可以计算,正反算,坐标换带下面收集的文章总结,相互转换需根据文章计算方法:1.大地坐标系:WGS84(世界坐标系)坐标以经纬度显示,GPS测得2.平面直角坐标系:高斯投影平面直角坐标系:北京54全国80,平面坐标以数字显示,由WGS84坐标系根据椭球参数转换而得。

北京54和全国80坐标系之间可以相互转换3.全站仪放样测得坐标属于平面直角坐标;GPS测得坐标属于大地坐标,高程是海拔高程。

4.同一个坐标系之间的转换高斯投影坐标系中坐标换带的计算见以下文章,比如80坐标系的6度带坐标,要换带计算为80坐标系的3度带,需要平面坐标先转换为大地坐标后根据经纬度调整再转换为另一度带坐标5.全站仪采用极坐标放样原理:把坐标输入全站仪,全站仪自动转换成方位角和距离,根据后视基准边的夹角和距离来放样。

具体参考WORD直角坐标与极坐标的区别和转换例题:高斯坐标和北京54,西安80坐标有什么区别,举例说一下,行吗?举个例子,野外采集GPS数据,数据是用大地坐标表示的,也就是用经纬度和高程表示。

而采集的数据要在地图上显示出来,就需要将经纬度转化为平面坐标,也就是通常说的x,y 坐标。

因为我国地形图一般采用高斯投影,所以通常转化成高斯平面坐标显示到地图上。

而在经纬度向平面坐标转化的过程中,需要用到椭球参数,因此要考虑所选的坐标系,我国常用的坐标系有北京54,西安80,WGS-84坐标系,不同的坐标系对应的椭球体是不一样的,这里你可能会不明白根椭球体有啥关系,是这样的,我们所说的地理数据都是为了描述大地水准面上的某一个点,而大地水准面是不规则的,我们用一个规定的椭球面去拟合这个水准面,用椭球面上的点来近似表示地球上的点。

每个国家地理情况不同,采用的椭球体也不尽相同。

北京54坐标系采用的是克拉索夫斯基(Krassovsky)椭球体,而西安80采用的是IAG 75地球椭球体WGS84坐标与北京54坐标转换(转)2007-09-20 12:03转自GIS中的坐标系定义与转换戴勤奋1. 椭球体、基准面及地图投影GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档