(浙江专用)2014届高考物理一轮复习课时作业第四章曲线运动万有引力与航天第四节万有引力天体的运动

合集下载

人教版高考物理一轮总复习课后习题 第四章 曲线运动 万有引力与航天 天体运动中的四类问题 (2)

人教版高考物理一轮总复习课后习题 第四章 曲线运动 万有引力与航天 天体运动中的四类问题 (2)

课时规范练14 天体运动中的四类问题基础对点练1.(卫星变轨问题)(广东适应性测试)12月17日,嫦娥五号成功返回地球,创造了我国到月球取土的伟大历史。

如图所示,嫦娥五号取土后,在P处由圆形轨道Ⅰ变轨到椭圆轨道Ⅱ,以便返回地球。

下列说法正确的是( )A.嫦娥五号在轨道Ⅰ和Ⅱ运行时均超重B.嫦娥五号在轨道Ⅰ和Ⅱ运行时机械能相等C.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时速率相等D.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时加速度大小相等2.(卫星变轨问题)嫦娥四号进行了人类历史上第一次月球背面着陆。

若嫦娥四号在月球附近轨道上运行的示意图如图所示,嫦娥四号先在圆轨道上做圆周运动,运动到A点时变轨为椭圆轨道,B点是近月点,则下列有关嫦娥四号的说法正确的是( )A.嫦娥四号的发射速度应大于地球的第二宇宙速度B.嫦娥四号要想从圆轨道进入椭圆轨道必须在A点加速C.嫦娥四号在椭圆轨道上运行的周期比圆轨道上运行的周期要长D.嫦娥四号运行至B点时的速率大于月球的第一宇宙速度的大小3.(环绕与变轨问题)7月23日,我国首个火星探测器天问一号发射升空,飞行2 000多秒后成功进入预定轨道,开启火星探测之旅,迈出了我国自主开展行星探测的第一步。

接近火星后天问一号探测器为软着陆做准备,首先进入椭圆轨道Ⅰ,其次进入圆轨道Ⅱ,最后进入椭圆着陆轨道Ⅲ,已知火星的半径为R,引力常量为G,下列说法正确的是( )A.天问一号探测器在轨道Ⅰ上的机械能小于在轨道Ⅱ上的机械能B.天问一号探测器在轨道Ⅲ上Q点的加速度小于在O点的加速度C.天问一号探测器在轨道上运动时,运行的周期TⅢ>TⅡ>TⅠD.已知天问一号探测器在轨道Ⅱ上运动的角速度和轨道半径,可以推知火星的密度4.(变轨问题及能量问题)在发射一颗质量为m 的人造地球同步卫星时,先将其发射到贴近地球表面运行的圆轨道Ⅰ上(离地面高度忽略不计),再通过一椭圆轨道Ⅱ变轨后到达距地面高为h 的预定圆轨道Ⅲ上。

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X ­ 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。

全程复习构想高考物理一轮复习 第四章 曲线运动 万有引力与航天 4 万有引力与航天课时作业 新人教版

全程复习构想高考物理一轮复习 第四章 曲线运动 万有引力与航天 4 万有引力与航天课时作业 新人教版

万有引力与航天一、选择题(1~7题只有一个选项符合题目要求,8~11题有多个选项符合题目要求) 1.设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视为半径为r 的圆.引力常量为G ,如此描述该行星运动的上述物理量满足( )A .GM =4π2r 3T 2B .GM =4π2r2T2C .GM =4π2r 2T3D .GM =4πr3T3解析:由G Mm r 2=mr ⎝ ⎛⎭⎪⎫2πT 2,可得GM =4π2r 3T 2,选项A 正确.答案:A2.(2015·福建卷)如图,假设两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,如此( )A.v 1v 2=r 2r 1 B.v 1v 2=r 1r 2C.v 1v 2=⎝ ⎛⎭⎪⎫r 2r 12D.v 1v 2=⎝ ⎛⎭⎪⎫r 1r22解析:此题考查万有引力定律和天体的运动,意在考查考生的分析推理能力.根据万有引力定律可得G Mm r 2=m v 2r,即v =GM r ,所以有v 1v 2=r 2r 1,所以A 项正确. 答案:A3.(2017·陕西安康二调)某行星的质量约为地球质量的12,半径约为地球半径的18,那么在此行星上的“第一宇宙速度〞与地球上的第一宇宙速度之比为( )A .2:1B .1:2C .1:4D .4:1解析:设地球质量为M ,地球半径为R ,由GMm R 2=m v 2R,可知地球上的第一宇宙速度v 地=GM R,同理,得行星上的第一宇宙速度v 行=G ·12M18·R =2GM R,所以v 行:v 地=2:1,如此A 正确,B 、C 、D 错误.答案:A4.(2017·湖北襄阳四校期中)在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期一样的匀速圆周运动.如此如下说法不正确的答案是( )A .两颗星有一样的角速度B .两颗星的旋转半径与质量成反比C .两颗星的加速度与质量成反比D .两颗星的线速度与质量成正比解析:双星运动的角速度一样,选项A 说法正确;由F =m 1ω2r 1=m 2ω2r 2,可得m 1r 1=m 2r 2,即两颗星的旋转半径与质量成反比,选项B 说法正确;F =m 1a 1=m 2a 2,可知两颗星的加速度与质量成反比,选项C 说法正确;F =m 1v 21r 1=m 2v 22r 2,故可知两颗星的线速度与质量不是成正比关系,选项D 说法错误,应当选D.答案:D5.(2017·广东省四校联考)如下列图,卫星P 绕地球做匀速圆周运动,卫星轨道平面与地球赤道平面在同一平面内,地球相对卫星P 的张角为θ,假设3颗卫星P 在同一轨道适当位置,信号可以覆盖地球的全部赤道外表,如下说法正确的答案是( )A .张角θ≤60°B .张角θ越大,卫星运行的线速度越小C .张角θ越大,每颗卫星的信号覆盖地球的外表积越大D .假设地球半径为R ,如此卫星离地面的高度为R 〔1sin θ-1〕 解析:假设3颗卫星P 在同一轨道适当位置,信号恰可以覆盖地球的全部赤道外表,由题图中几何关系可知,3颗卫星等分一个圆周,即地球相对3颗卫星的张角θ都为60°,选项A 正确;由题图中几何关系可知,张角θ越大,卫星离地面越近,卫星的信号覆盖地球的外表积越小,根据G Mm r 2=mv 2r可知,卫星运行的线速度越大,选项BC 错误;由题图中几何关系可得:卫星离地面的高度h =R 〔1sinθ2-1〕,选项D 错误.答案:A6.(2015·海南单科)假设在某行星和地球上相对于各自的水平地面附近一样的高度处、以一样的速率平抛一物体,它们在水平方向运动的距离之比为27.该行星质量约为地球的7倍,地球的半径为R .由此可知,该行星的半径约为( )A.12RB.72R C .2R D.72R 解析:由平抛运动规律知,在行星和地球上相对于各自的水平地面附近一样的高度处、以一样的速率平抛一物体,它们经历的时间之比即为在水平方向运动的距离之比,所以t 1t 2=27;竖直方向上物体做自由落体运动,重力加速度分别为g 1和g 2,因此g 1g 2=2h /t 212h /t 22=t 22t 21=74.设行星和地球的质量分别为7M 和M ,行星的半径为r ,如此有G7Mmr2=mg 1①G MmR2=mg 2② 解得r =2R因此A 、B 、D 错,C 对. 答案:C7.(2017·山西四校三联)2014年3月8日凌晨马航客机失联后,西安卫星测控中心紧急调动海洋、风云、高分、遥感4个型号近10颗卫星,为地面搜救提供技术支持.特别是“高分一号〞突破了空间分辨率、多光谱与大覆盖面积相结合的大量关键技术.如图为“高分一号〞与北斗导航系统中的两颗卫星在空中某一面内运动的示意图.北斗导航系统中两颗卫星“G 1〞和“G 3〞以与“高分一号〞均可认为绕地心O 做匀速圆周运动.卫星“G 1〞和“G 3〞的轨道半径均为r ,某时刻两颗卫星分别位于轨道上的A 、B 两位置,“高分一号〞在C 位置.假设卫星均顺时针运行,地球外表处的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力.如此以下说法正确的答案是( )A .卫星“G 1〞和“G 3〞的加速度大小相等,均为R 2rgB .卫星“G 1〞由位置A 运动到位置B 所需的时间为2πr3Rr gC .如果调动“高分一号〞卫星到达卫星“G 3〞所在的轨道,必须对其减速D .“高分一号〞是低轨道卫星,其所在高度处有稀薄气体,运行一段时间后,高度会降低,速度增大,机械能会减小解析:由G Mm R 2=mg ,G Mm r 2mg ′,得g ′=R 2r 2g ,A 错;由G Mm R 2=mg ,G Mm ′r 2=m ′⎝ ⎛⎭⎪⎫2πT 2r 得T=2πrkr g ,如此卫星“G 1〞由位置A 运动到位置B 所需时间为t =T 6=πr 3R rg,B 错;假设想使“高分一号〞到达卫星“G 3〞所在轨道,必须对其加速,使之做离心运动到达“G 3〞所在轨道,C 错;稀薄气体对“高分一号〞有阻力,做负功,所以“高分一号〞机械能减小,在引力作用下,高度降低,速度增大,D 正确.答案:D8.(2017·山东模拟)卫星 在抢险救灾中能发挥重要作用,第一代、第二代海事卫星只使用静止轨道卫星,不能覆盖地球上的高纬度地区,第三代海事卫星采用同步和中轨道卫星结合的方案,它由4颗同步卫星与12颗中轨道卫星构成,中轨道卫星高度为10 354 km ,分布在几个轨道平面上(与赤道平面有一定的夹角).在这个高度上,卫星沿轨道旋转一周的时间为四分之一天,如下说法中正确的答案是( )A .中轨道卫星的线速度小于同步卫星的线速度B .中轨道卫星的线速度大于同步卫星的线速度C .在中轨道卫星经过地面某点的正上方的一天后,该卫星还在地面该点的正上方D .如果某一时刻中轨道卫星、同步卫星与地球的球心在同一直线上,那么经过6小时它们仍在同一直线上解析:由题意知,中轨道卫星的周期为14天,小于同步卫星的周期,故中轨道卫星的轨道半径小于同步卫星的轨道半径,所以,其线速度大于同步卫星的线速度,选项B 正确,A 错误;中轨道卫星的周期T 1=6 h ,其经过地面某点的正上方的一天后,仍在该点,选项C 正确;如果某一时刻中轨道卫星、同步卫星与地球的球心在同一直线上,经过6小时,中轨道卫星绕地球运转一周,回到原来位置,而同步卫星绕地心转过的角度为π2,应当选项D 错误.答案:BC9.宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,假设它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1m 2=R 2R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 2解析:对m 1有:Gm 1m 2R 1+R 22=m 1R 14π2T 2,解得m 2=4π2R 1R 1+R 22GT 2,同理可得m 1=4π2R 2R 1+R 22GT 2,故两者质量不相等,应当选项A 错误;将两者质量相加得m 1+m 2=4π2R 1+R 23GT 2,应当选项B 正确;m 1m 2=R 2R 1,应当选项C 正确;两者质量之和为4π2R 1+R 23GT 2,如此不可能其中一个的质量为4π2R 1+R 23GT 2,应当选项D 错误.答案:BC10.(2017·黑龙江大庆实验中学月考)随着世界航空事业的开展,深太空探测已逐渐成为各国关注的热点.假设深太空中有一颗外星球,质量是地球质量的3倍,半径是地球半径。

浙江高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解学案

浙江高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解学案

第一节曲线运动运动的合成与分解[高考导航]12.宇宙c7797航行13.经典a力学的局限性实验:研1717究平抛运动平抛运动和圆周运动是高考考查的重点,命题频繁,万有引力与宇宙航行基本为必考内容。

着重考查的内容有:(1)平抛运动的规律及有约束条件的平抛运动;(2)圆周运动的运动学和动力学分析;(3)天体质量、密度的计算;(4)卫星运动的各物理量间的比较。

第一节曲线运动运动的合成与分解一、曲线运动答案:□1切线□2方向□3变速□4不在同一条直线上□5不在同一条直线上【基础练1】如图,乒乓球从斜面上滚下,以一定的速度沿直线运动。

在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将保持原有的速度继续前进B.乒乓球将偏离原有的运动路径,但不进入纸筒C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒解析:选B。

当乒乓球经过筒口时,对着球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动;故一定不会进入纸筒,要提前吹才会进入纸筒,故A、C、D错误,B正确。

二、运动的合成与分解答案:□1实际□2平行四边形【基础练2】如图所示,这是工厂中的行车示意图,行车在水平向右匀速运动,同时悬挂工件的悬线保持在竖直方向,且工件匀速上升,则工件运动的速度( )A.大小和方向均不变B.大小不变,方向改变C.大小改变,方向不变D.大小和方向均改变解析:选A。

工件同时参与了水平向右的匀速运动和竖直方向的匀速运动,水平和竖直方向的速度都不变,根据矢量合成的平行四边形法则,合速度大小和方向均不变。

考点一物体做曲线运动的条件及轨迹分析1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方向不共线。

2.曲线运动的类型(1)匀变速曲线运动:合力(加速度)恒定不变。

2014届一轮复习第4章曲线运动_万有引力与航天

2014届一轮复习第4章曲线运动_万有引力与航天

必修2 第四章 曲线运动 万有引力与航天第 1 课时 曲线运动 质点在平面内的运动基础知识归纳1.曲线运动(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的 切线 方向.(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是 变速 运动,一定存在加速度.(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向 不在同一直线 上.①如果这个合外力的大小和方向都是恒定的,即所受的合外力为恒力,物体就做 匀变速曲线 运动,如平抛运动.②如果这个合外力大小恒定,方向始终与速度方向垂直,物体就做 匀速圆周 运动.③做曲线运动的物体,其轨迹向合外力所指一方弯曲,即合外力总是指向曲线的内侧.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向.说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将 增大 ,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将 减小 .2.运动的合成与分解(1)合运动与分运动的特征①等时性:合运动和分运动是 同时 发生的,所用时间相等.②等效性:合运动跟几个分运动共同叠加的效果 相同 .③独立性:一个物体同时参与几个分运动,各个分运动 独立 进行,互不影响.(2)已知分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,遵循 平行四边形 定则.①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和.②不在同一直线上,按照平行四边形定则合成(如图所示).③两个分运动垂直时,x 合=22y x x x +,v 合=22y x v v +,a 合=22y x a a + (3)已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解.重点难点突破一、怎样确定物体的运动轨迹1.同一直线上的两个分运动(不含速率相等,方向相反的情形)的合成,其合运动一定是直线运动.2.不在同一直线上的两分运动的合成.(1)若两分运动为匀速运动,其合运动一定是匀速运动.(2)若两分运动为初速度为零的匀变速直线运动,其合运动一定是初速度为零的匀变速直线运动.(3)若两分运动中,一个做匀速运动,另一个做匀变速直线运动,其合运动一定是匀变速曲线运动(如平抛运动).(4)若两分运动均为初速度不为零的匀加(减)速直线运动,其合运动不一定是匀加(减)速直线运动,如图甲、图乙所示.图甲情形为匀变速曲线运动;图乙情形为匀变速直线运动(匀减速情形图未画出),此时有2121a a v v =. 二、船过河问题的分析与求解方法1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中船的运动),船的实际运动是这两种运动的合运动.2.对船过河的分析与讨论.设河宽为d ,船在静水中速度为v 船,水的流速为v 水.(1)船过河的最短时间如图所示,设船头斜向上游与河岸成任意夹角θ,这时船速在垂直河岸方向的速度分量为v 1=v 船sin θ,则过河时间为t =θsin 1船v d v d =,可以看出,d 、v 船一定时,t 随sin θ增大而减小.当θ=90°时,即船头与河岸垂直时,过河时间最短t min =船v d ,到达对岸时船沿水流方向的位移x =v 水t min =船水v v d . (2)船过河的最短位移①v 船>v 水如上图所示,设船头斜指向上游,与河岸夹角为θ.当船的合速度垂直于河岸时,此情形下过河位移最短,且最短位移为河宽d .此时有v 船cos θ=v 水,即θ=arccos 船水v v . ②v 船<v 水如图所示,无论船向哪一个方向开,船不可能垂直于河岸过河.设船头与河岸成θ角,合速度v 合与河岸成α角.可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据cos θ=水船v v ,船头与河岸的夹角应为θ=arccos 水船v v ,船沿河漂下的最短距离为x min =(船水v v -cos θ) θsin 船v d .此情形下船过河的最短位移x =d v v d 船水=θ cos . 三、如何分解用绳(或杆)连接物体的速度1.一个速度矢量按矢量运算法则分解为两个速度,若与实际情况不符,则所得分速度毫无物理意义,所以速度分解的一个基本原则就是按实际效果进行分解.通常先虚拟合运动(即实际运动)的一个位移,看看这个位移产生了什么效果,从中找到两个分速度的方向,最后利用平行四边形画出合速度和分速度的关系图,由几何关系得出它们的关系.2.由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.典例精析1.曲线运动的动力学问题【例1】光滑平面上一运动质点以速度v 通过原点O ,v 与x 轴正方向成α角(如图所示),与此同时对质点加上沿x 轴正方向的恒力F x 和沿y 轴正方向的恒力F y ,则( )A.因为有F x ,质点一定做曲线运动B.如果F y >F x ,质点向y 轴一侧做曲线运动C.质点不可能做直线运动D.如果F x >F y cot α,质点向x 轴一侧做曲线运动【解析】当F x 与F y 的合力F 与v 共线时质点做直线运动,F 与v 不共线时做曲线运动,所以A 、C 错;因α大小未知,故B 错,当F x >F y cot α时,F 指向v 与x 之间,因此D 对.【答案】D【思维提升】(1)物体做直线还是曲线运动看合外力F 与速度v 是否共线.(2)物体做曲线运动时必偏向合外力F 一方,即合外力必指向曲线的内侧.【拓展1】如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M 点运动到N 点时,其速度方向恰好改变了90°,则物体在M 点到N 点的运动过程中,物体的动能将( C )A.不断增大B.不断减小C.先减小后增大D.先增大后减小【解析】水平恒力方向必介于v M 与v N 之间且指向曲线的内侧,因此恒力先做负功后做正功,动能先减小后增大,C 对.2.小船过河模型【例2】小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.(1)若船在静水中的速度为v 2=5 m/s ,求:①欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(2)若船在静水中的速度v 2=1.5 m/s ,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】(1)若v 2=5 m/s①欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示,合速度为倾斜方向,垂直分速度为v 2=5 m/st =51802==⊥v d v d s =36 s v 合=2221v v +=525 m/s s =v 合t =905 m②欲使船渡河航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一角度α.垂直河岸过河这就要求v ∥=0,所以船头应向上游偏转一定角度,如图所示,由v 2sinα=v 1得α=30°所以当船头向上游偏30°时航程最短. s =d =180 mt =324s 32518030 cos 2==︒=⊥v d v d s (2)若v 2=1.5 m/s与(1)中②不同,因为船速小于水速,所以船一定向下游漂移,设合速度方向与河岸下游方向夹角为α,则航程s =αsin d ,欲使航程最短,需α最大,如图所示,由出发点A 作出v 1矢量,以v 1矢量末端为圆心,v 2大小为半径作圆,A 点与圆周上某点的连线即为合速度方向,欲使v 合与水平方向夹角最大,应使v 合与圆相切,即v 合⊥v 2.sin α=535.25.112==v v 解得α=37° t =2.118037 cos 2=︒=⊥v d v d s =150 s v 合=v 1cos 37°=2 m/s s =v 合•t =300 m 【思维提升】(1)解决这类问题的关键是:首先要弄清楚合速度与分速度,然后正确画出速度的合成与分解的平行四边形图示,最后依据不同类型的极值对应的情景和条件进行求解.(2)运动分解的基本方法:按实际运动效果分解.【拓展2】在民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭速度为v 2,跑道离固定目标的最近距离为d ,则( BC )A.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为12v dv B.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为22221v v v d + C.箭射到靶的最短时间为2v d D.只要击中侧向的固定目标,箭在空中运动的合速度的大小为v =2221v v +易错门诊3.绳(杆)连物体模型【例3】如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.在某一时刻卡车的速度为v ,绳AO 段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?【错解】将绳的速度按右图所示的方法分解,则v 1即为船的水平速度v 1=v •cos θ【错因】上述错误的原因是没有弄清船的运动情况.船的实际运动是水平向左运动,每一时刻船上各点都有相同的水平速度,而AO 绳上各点的运动比较复杂.以连接船上的A 点来说,它有沿绳的速度v ,也有与v 垂直的法向速度v n ,即转动分速度,A 点的合速度v A 即为两个分速度的矢量和v A =θcos v 【正解】小船的运动为平动,而绳AO 上各点的运动是平动加转动.以连接船上的A点为研究对象,如图所示,A 的平动速度为v ,转动速度为v n ,合速度v A 即与船的平动速度相同.则由图可以看出v A =θcos v 【思维提升】本题中不易理解绳上各点的运动,关键是要弄清合运动就是船的实际运动,只有实际位移、实际加速度、实际速度才可分解,即实际位移、实际加速度、实际速度在平行四边形的对角线上.第 2 课时 抛体运动的规律及其应用基础知识归纳 1.平抛运动(1)定义:将一物体水平抛出,物体只在 重力 作用下的运动.(2)性质:加速度为g 的匀变速 曲线 运动,运动过程中水平速度 不变 ,只是竖直速度不断 增大 ,合速度大小、方向时刻 改变 . (3)研究方法:将平抛运动分解为水平方向的 匀速直线 运动和竖直方向的 自由落体运动,分别研究两个分运动的规律,必要时再用运动合成方法进行合成.(4)规律:设平抛运动的初速度为v 0,建立坐标系如图.速度、位移: 水平方向:v x =v 0,x =v 0t 竖直方向:v y =gt ,y =21gt 2 合速度大小(t 秒末的速度): vt=22yx v v + 方向:tan φ=00v gt v v y = 合位移大小(t 秒末的位移):s =22y x +方向:tan θ=00222/v gt t v gt x y == 所以tan φ=2tan θ 运动时间:由y =21gt 2得t = 2 g y (t 由下落高度y 决定). 轨迹方程:y = 2 220x v g(在未知时间情况下应用方便).可独立研究竖直分运动:a.连续相等时间内竖直位移之比为1∶3∶5∶…∶(2n -1)(n =1,2,3…)b.连续相等时间内竖直位移之差为Δy =gt 2一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2.斜抛运动(1)将物体斜向上射出,在 重力 作用下,物体做曲线运动,它的运动轨迹是 抛物线 ,这种运动叫做“斜抛运动”.(2)性质:加速度为g 的 匀变速曲线 运动.根据运动独立性原理,可以把斜抛运动看成是水平方向的 匀速直线 运动和竖直方向的 上抛 运动的合运动来处理.取水平方向和竖直向上的方向为x 轴和y 轴,则这两个方向的初速度分别是:v 0x =v 0cos θ,v 0y =v 0sin θ.重点难点突破一、平抛物体运动中的速度变化水平方向分速度保持v x =v 0,竖直方向,加速度恒为g ,速度v y =gt ,从抛出点看,每隔Δt 时间的速度的矢量关系如图所示.这一矢量关系有两个特点:1.任意时刻v 的速度水平分量均等于初速度v 0;2.任意相等时间间隔Δt 内的速度改变量均竖直向下,且Δv =Δv y =g Δt .二、类平抛运动平抛运动的规律虽然是在地球表面的重力场中得到的,但同样适用于月球表面和其他行星表面的平抛运动.也适用于物体以初速度v 0运动时,同时受到垂直于初速度方向,大小、方向均不变的力F 作用的情况.例如带电粒子在电场中的偏转运动、物体在斜面上的运动以及带电粒子在复合场中的运动等等.解决此类问题要正确理解合运动与分运动的关系.三、平抛运动规律的应用平抛运动可看做水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.物体在任意时刻的速度和位移都是两个分运动对应时刻的速度和位移的矢量和.解决与平抛运动有关的问题时,应充分注意到两个分运动具有独立性和等时性的特点,并且注意与其他知识的结合.典例精析1.平抛运动规律的应用【例1】(2009•广东)为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷炸弹并击中目标.求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力).【解析】设飞行的水平距离为s ,在竖直方向上H =21gt 2 解得飞行时间为t =g H 2 则飞行的水平距离为s =v 0t =v 0g H 2 设击中目标时的速度为v ,飞行过程中,由机械能守恒得mgH +2021mv =21mv 2解得击中目标时的速度为v =202v gH +【思维提升】解平抛运动问题一定要抓住水平与竖直两个方向分运动的独立性与等时性,有时还要灵活运用机械能守恒定律、动能定理、动量定理等方法求解.【拓展1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图).若已知闪光时间间隔为t =0.1 s ,则小球运动中初速度大小为多少?小球经B 点时的竖直分速度大小多大?(g 取10 m/s 2,每小格边长均为L =5cm).【解析】由于小球在水平方向做匀速直线运动,可以根据小球位臵的水平位移和闪光时间算出水平速度,即抛出的初速度.小球在竖直方向做自由落体运动,根据匀变速直线运动规律即可算出竖直分速度.因A 、B (或B 、C )两位臵的水平间距和时间间隔分别为x AB =2L =(2×5) cm =10 cm =0.1 m t AB =Δt =0.1 s所以,小球抛出的初速度为v 0=ABAB t x =1 m/s 设小球运动至B 点时的竖直分速度为v By 、运动至C 点时的竖直分速度为v Cy ,B 、C 间竖直位移为y BC ,B 、C 间运动时间为t B C .根据竖直方向上自由落体运动的公式得BC B C gy v v y y 222=- 即(v By +gt BC )2-BC B gy v y22= v By =BCBC BC t gt y 222- 式中y BC =5L =0.25 m t BC =Δt =0.1 s 代入上式得B 点的竖直分速度大小为v By =2 m/s 2.平抛运动与斜面结合的问题【例2】如图所示,在倾角为θ的斜面上A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为( ) A.g v θ sin 20 B. g v θ tan 20 C. g v θ sin 0 D. gv θ tan 0 【解析】设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =21gt 2 如图所示,由几何关系可知 tan θ=002221v gt t v gt x y == 所以小球的运动时间t =g v θ tan 20 【答案】B【思维提升】上面是从常规的分运动方法来研究斜面上的平抛运动,还可以变换一个角度去研究.如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的竖直上抛运动.小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得t =gv g v g v y y θθθ tan 2 cos sin 22000== 采用这种观点,还可以很容易算出小球从斜面上抛出后的运动过程中离斜面的最大距离、从抛出到离斜面最大的时间、斜面上的射程等问题.【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A 点平抛并落到斜面上的B 点,试证明物体落在B 点的速度与斜面的夹角为定值.【证明】作图,设初速度为v 0,到B 点竖直方向速度为v y ,设合速度与竖直方向的夹角为α,物体经时间t 落到斜面上,则tan α=yx gt t v gt v v v y x 2200===α为定值,所以β=(2π-θ)-α也为定值,即速度方向与斜面的夹角与平抛初速度无关,只与斜面的倾角有关.3.类平抛运动【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L 为10 m ,一小球从斜面顶端以10 m/s 的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x ;(2)小球到达斜面底端时的速度大小(g 取10 m/s 2).【解析】(1)在斜面上小球沿v 0方向做匀速运动,垂直v 0方向做初速度为零的匀加速运动,加速度a =g sin 30° x =v 0t① L =21g sin 30°t 2 ② 由②式解得t =︒30 sin 2g L ③ 由①③式解得x =v 0︒30 sin 2g L =105.010102⨯⨯ m =20 m (2)设小球运动到斜面底端时的速度为v ,由动能定理得mgL sin 30°=21mv 2-2021mv v =101010220⨯+=+gL v m/s ≈14.1 m/s 【思维提升】物体做类平抛运动,其受力特点和运动特点类似于平抛运动,因此解决的方法可类比平抛运动——采用运动的合成与分解.关键的问题要注意:(1)满足条件:受恒力作用且与初速度的方向垂直.(2)确定两个分运动的速度方向和位移方向,分别列式求解.易错门诊【例4】如图所示,一高度为h =0.2 m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5 m/s 的速度在水平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10 m/s 2).【错解】小球沿斜面运动,则θ sin h =v 0t +21g sin θ•t 2,可求得落地的时间t . 【错因】小球应在A 点离开平面做平抛运动,而不是沿斜面下滑.【正解】落地点与A 点的水平距离x =v 0t =v 0102.0252⨯⨯=g h m =1 m 斜面底宽l =h cot θ=0.2×3m =0.35 m因为x >l ,所以小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间.所以t =102.022⨯=gh s =0.2 s 【思维提升】正确解答本题的前提是熟知平抛运动的条件与平抛运动的规律.第 3 课时 描述圆周运动的物理量 匀速圆周运动基础知识归纳1.描述圆周运动的物理量(1)线速度:是描述质点绕圆周 运动快慢 的物理量,某点线速度的方向即为该点 切线 方向,其大小的定义式为 tl v ∆∆=. (2)角速度:是描述质点绕圆心 运动快慢 的物理量,其定义式为ω=t∆∆θ,国际单位为 rad/s . (3)周期和频率:周期和频率都是描述圆周 运动快慢 的物理量,用周期和频率计算线速度的公式为 π2π2 rf T r v ==,用周期和频率计算角速度的公式为 π2π2 f T==ω.(4)向心加速度:是描述质点线速度方向变化快慢的物理量,向心加速度的方向指向圆心,其大小的定义式为 2rv a =或 a =r ω2 . (5)向心力:向心力是物体做圆周运动时受到的总指向圆心的力,其作用效果是使物体获得向心加速度(由此而得名),其效果只改变线速度的 方向 ,而不改变线速度的 大小 ,其大小可表示为2rv m F = 或 F =m ω2r ,方向时刻与运动的方向 垂直 ,它是根据效果命名的力. 说明:向心力,可以是几个力的合力,也可以是某个力的一个分力;既可能是重力、弹力、摩擦力,也可能是电场力、磁场力或其他性质的力.如果物体做匀速圆周运动,则所受合力一定全部用来提供向心力.2.匀速圆周运动(1)定义:做圆周运动的物体,在相同的时间内通过的弧长都 相等 .在相同的时间内物体与圆心的连线转过的角度都 相等 .(2)特点:在匀速圆周运动中,线速度的大小 不变 ,线速度的方向时刻 改变 .所以匀速圆周运动是一种 变速 运动.做匀速圆周运动的物体向心力就是由物体受到的 合外力 提供的.3.离心运动(1)定义:做匀速圆周运动的物体,当其所受向心力突然 消失 或 力不足以 提供向心力时而产生的物体逐渐远离圆心的运动,叫离心运动.(2)特点:①当合F =mr ω2的情况,即物体所受合外力等于所需向心力时,物体做圆周运动.②当合F <mr ω2的情况,即物体所受合外力小于所需向心力时,物体沿曲线逐渐远离圆心做离心运动.了解离心现象的特点,不要以为离心运动就是沿半径方向远离圆心的运动.③当合F >mr ω2的情况,即物体所受合外力大于所需向心力时,表现为向心运动的趋势.重点难点突破一、描述匀速圆周运动的物理量之间的关系共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等.二、关于离心运动的问题物体做离心运动的轨迹可能为直线或曲线.半径不变时物体做圆周运动所需的向心力是与角速度的平方(或线速度的平方)成正比的.若物体的角速度增加了,而向心力没有相应地增大,物体到圆心的距离就不能维持不变,而要逐渐增大使物体沿螺线远离圆心.若物体所受的向心力突然消失,将沿着切线方向远离圆心而去.三、圆周运动中向心力的来源分析向心力可以是重力、弹力、摩擦力等各种力,也可以是某些力的合力,或某力的分力.它是按力的作用效果来命名的.分析物体做圆周运动的动力学问题,应首先明确向心力的来源.需要指出的是:物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和).典例精析1.圆周运动各量之间的关系【例1】(2009•上海)小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内踏脚板转动的圈数为N ,那么踏脚板转动的角速度ω= ;要推算自行车的骑行速度,还需要测量的物理量有 ;自行车骑行速度的计算公式v = .【解析】根据角速度的定义式得ω=tN t π2=θ;要求自行车的骑行速度,还要知道自行车后轮的半径R ,牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R ;由v 1=ωr 1=v 2=ω2r 2,又ω2=ω后,而v =ω后R ,以上各式联立解得v =2121π2tr Nr R R r r =ω 【答案】t N π2;牙盘的齿轮数m 、飞轮的齿轮数n 、自行车后轮的半径R (牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R );nm R ω或2πR nt mN (2πR t r N r 21或21r r R ω) 【思维提升】在分析传动问题时,要抓住不等量和相等量的关系.同一个转轮上的角速度相同,而线速度跟该点到转轴的距离成正比.【拓展1】如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 3∶3∶4 ,角速度之比是 3∶2∶2 ,向心加速度之比是 9∶6∶8 ,周期之比是 2∶3∶3 .【解析】由于A 、B 轮由不打滑的皮带相连,故v A =v B又由于v =ωr ,则235.111===r r r r A B B A ωω 由于B 、C 两轮固定在一起 所以ωB =ωC由v =ωr 知4325.111===r r r r v v C B C B 所以有ωA ∶ωB ∶ωC =3∶2∶2 v A ∶v B ∶v C =3∶3∶4 由于v A =v B ,依a =rv 2得23==A B B A r r a a 由于ωB =ωC ,依a =ω2r 得43==C B C B r r a a a A ∶a B ∶a C =9∶6∶8 再由T =ωπ2知T A ∶T B ∶T C =31∶21∶21=2∶3∶3 2.离心运动问题【例2】物体做离心运动时,运动轨迹( )A.一定是直线B.一定是曲线C.可能是直线,也可能是曲线D.可能是圆【解析】一个做匀速圆周运动的物体,当它所受的向心力突然消失时,物体将沿切线方向做直线运动,当它所受向心力逐渐减小时,则提供的向心力比所需要的向心力小,物体做圆周运动的轨道半径会越来越大,物体的运动轨迹是曲线. 【答案】C【思维提升】理解离心运动的特点是解决本题的前提.【拓展2】质量为M =1 000 kg 的汽车,在半径为R =25 m 的水平圆形路面转弯,汽车所受的静摩擦力提供转弯的向心力,静摩擦力的最大值为重力的0.4倍.为了避免汽车发生离心运动酿成事故,试求汽车安全行驶的速度范围.(取g =10 m/s 2)【解析】汽车所受的静摩擦力提供向心力,为了保证汽车行驶安全,根据牛顿第二定律,依题意有kMg ≥M Rv 2,代入数据可求得v ≤10 m/s 易错门诊3.圆周运动的向心力问题【例3】如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动.【错解】当A 将要沿盘向外滑时,A 所受的最大静摩擦力F m ′指向圆心,则F m ′=m 2m ωr ①由于最大静摩擦力是压力的μ倍,即 F m ′=μF N =μmg②。

高三物理一轮复习作业:第四章 曲线运动 万有引力与航天 专题强化五 Word版含答案

高三物理一轮复习作业:第四章 曲线运动 万有引力与航天 专题强化五 Word版含答案

专题强化五 地球同步卫星 双星或多星模型专题解读1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球(中心)相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.2.学好本专题有助于学生加深万有引力定律的灵活应用,加深力和运动关系的理解. 3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.命题点一 地球同步卫星1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星. 2.“七个一定”的特点:(1)轨道平面一定:轨道平面与赤道平面共面. (2)周期一定:与地球自转周期相同,即T =24h. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:由G Mm (R +h )2=m 4π2T 2(R +h )得地球同步卫星离地面的高度h =3.6×107m. (5)速率一定:v =GMR +h=3.1×103m/s. (6)向心加速度一定:由G Mm (R +h )2=ma 得a =GM (R +h )2=g h =0.23m/s 2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.例1 (2016·全国Ⅰ卷·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1h B .4hC .8hD .16h答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律r 3T 2=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫星周期最小时,由数学几何关系可作出它们间的位置关系如图所示.卫星的轨道半径为r =Rsin30°=2R由r 31T 21=r 32T 22得(6.6R )3242=(2R )3T 22. 解得T 2≈4h.解决同步卫星问题的“四点”注意1.基本关系:要抓住:G Mm r 2=ma =m v 2r =mrω2=m 4π2T 2r .2.重要手段:构建物理模型,绘制草图辅助分析. 3.物理规律:(1)不快不慢:具有特定的运行线速度、角速度和周期. (2)不高不低:具有特定的位置高度和轨道半径.(3)不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上. 4.重要条件:(1)地球的公转周期为1年,其自转周期为1天(24小时),地球的表面半径约为6.4×103km ,表面重力加速度g 约为9.8m/s 2.(2)月球的公转周期约27.3天,在一般估算中常取27天.(3)人造地球卫星的运行半径最小为r =6.4×103km ,运行周期最小为T =84.8min ,运行速度最大为v =7.9km/s.1.(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”.如图1所示,1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440km ,远地点高度约为2060km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )图1A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3答案 D解析 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.2.(2014·天津·3)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大答案 A解析 地球的自转周期变大,则地球同步卫星的公转周期变大.由GMm (R +h )2=m 4π2T 2(R +h ),得h =3GMT 24π2-R ,T 变大,h 变大,A 正确.由GMm r 2=ma ,得a =GMr 2,r 增大,a 减小,B 错误.由GMm r 2=m v 2r,得v =GMr,r 增大,v 减小,C 错误. 由ω=2πT可知,角速度减小,D 错误.3.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( ) A.a 1a 2=r R B.a 1a 2=(r R )2 C.v 1v 2=r R D.v 1v 2=R r答案 AD解析 设地球的质量为M ,同步卫星的质量为m 1,在地球表面绕地球做匀速圆周运动的物体的质量为m 2,根据向心加速度和角速度的关系有a 1=ω12r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R ,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm 2R 2=m 2v 22R ,解得v 1v 2=Rr ,选项D 正确.命题点二 双星或多星模型 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图2所示.图2(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图3甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).图3(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O 做匀速圆周运动(如图丁所示).例2(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图4为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:图4(1)A星体所受合力大小F A;(2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .答案 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解析 (1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA方向如图所示则合力大小为F A =F BA ·cos30°+F CA ·cos30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a 2方向如图所示, 由余弦定理得合力为: F B =F 2AB +F 2CB -2F AB ·F CB ·cos120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm.4.(2013·山东理综·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2kT D.n kT 答案 B解析 设两恒星的质量分别为m 1、m 2,距离为L , 双星靠彼此的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时 T ′=2πn 3L 3Gk (m 1+m 2)=n 3k·T 故选项B 正确.5.银河系的恒星中大约四分之一是双星.如图5所示,某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O 做匀速圆周运动.由天文观察测得它们的运动周期为T ,若已知S 1和S 2的距离为r ,引力常量为G ,求两星的总质量M .图5答案 4π2r 3GT 2解析 设星体S 1、S 2的质量分别为m 1、m 2,运动的轨道半径分别为R 1、R 2,则运动的角速度为ω=2πT根据万有引力定律和向心力公式有G m 1m 2r 2=m 1ω2R 1=m 2ω2R 2 又R 1+R 2=r联立解得两星的总质量为M =m 1+m 2=ω2r 2R 2G +ω2r 2R 1G =ω2r 3G =4π2r 3GT2.一、近地卫星、同步卫星和赤道上随地球自转的物体的比较如图6所示,a 为近地卫星,半径为r 1;b 为同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3.图6二、卫星追及相遇问题典例 (多选)如图7,三个质点a 、b 、c 的质量分别为m 1、m 2、M (M 远大于m 1及m 2),在c 的万有引力作用下,a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图7A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次 答案 AD解析 根据开普勒第三定律:周期的平方与半径的三次方成正比,则周期之比为1∶8,A 对;设图示位置夹角为θ<π2,b 转动一周(圆心角为2π)的时间为t =T b ,则a 、b 相距最远时:2πT a T b -2πT b T b =(π-θ)+n ·2π(n =0,1,2,3,…),可知n <6.75,n 可取7个值;a 、b 相距最近时:2πT a T b -2πT b T b =(2π-θ)+m ·2π(m =0,1,2,3,…),可知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,D 对.点评 某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上,由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置在同一直线上,实际上内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻,而本题中a 、b 、c 三个质点初始位置不在一条直线上,故在列式时要注意初始角度差.题组1 同步卫星1.(多选)据报道,北斗卫星导航系统利用其定位、导航等功能加入到马航MH370失联客机搜救工作,为指挥中心调度部署人力、物力提供决策依据,保证了搜救船只准确抵达相关海域,帮助搜救船只规划搜救航线,避免搜救出现遗漏海域,目前北斗卫星导航定位系统由高度均约为36000km 的5颗静止轨道卫星和5颗倾斜地球同步轨道卫星以及高度约为21500km 的4颗中轨道卫星组网运行,下列说法正确的是( ) A .中轨道卫星的周期比同步卫星的周期大 B .所有卫星均位于以地心为中心的圆形轨道上 C .同步卫星和中轨道卫星的线速度均小于第一宇宙速度D .赤道上随地球自转的物体的向心加速度比同步卫星的向心加速度大 答案 BC解析 由开普勒第三定律可知,轨道半径较小的中轨道卫星的周期比同步卫星的周期小,A 项错;由题意知,北斗导航系统的卫星轨道高度一定,因此卫星均位于以地心为中心的圆形轨道上,B 项正确;第一宇宙速度是卫星绕地球的最大运行速度,C 项正确;赤道上物体与同步卫星的角速度相同,由a =ω2r 可知,同步卫星的向心加速度较大,D 项错. 2.如图1所示,轨道Ⅰ是近地气象卫星轨道,轨道Ⅱ是地球同步卫星轨道,设卫星在轨道Ⅰ和轨道Ⅱ上都绕地心做匀速圆周运动,运行的速度大小分别是v 1和v 2,加速度大小分别是a 1和a 2,则( )图1A .v 1>v 2 a 1<a 2B .v 1>v 2 a 1>a 2C .v 1<v 2 a 1<a 2D .v 1<v 2 a 1>a 2 答案 B解析 根据G Mmr 2=m v 2r=ma ,可知v =GM r ,a =GMr2,所以v 1>v 2,a 1>a 2.选项B 正确. 3.设地球的质量为M ,半径为R ,自转周期为T ,引力常量为G .“神舟九号”绕地球运行时离地面的高度为h ,则“神舟九号”与“同步卫星”各自所在轨道处的重力加速度的比值为( )A.(2π)43(R +h )2(GMT 2)23B.(GM )23(R +h )2(2πT )43C.(GMT 2)23(2π)43(R +h )2D.(2πT )43(GM )23(R +h )2答案 C解析 设“神舟九号”与“同步卫星”各自所在轨道处的重力加速度分别为g 神九、g 同步,则m 神九g 神九=G Mm 神九(R +h )2,m 同步g 同步=G Mm 同步r 2同步=4π2m 同步r 同步T 2,联立可得g 神九g 同步=(GMT 2)23(2π)43(R +h )2,故C 正确.4.“神舟八号”飞船绕地球做匀速圆周运动时,飞行轨道在地球表面的投影如图2所示,图中标明了飞船相继飞临赤道上空所对应的地面的经度.设“神舟八号”飞船绕地球飞行的轨道半径为r 1,地球同步卫星飞行轨道半径为r 2.则r 13∶r 23等于( )图2A .1∶24B .1∶156C .1∶210D .1∶256答案 D解析 从图象中可以看出,飞船每运行一周,地球自转22.5°,故飞船的周期为T 1=22.5°360°×24h =1.5h ,同步卫星的周期为24h ,由开普勒第三定律可得r 31r 32=T 21T 22=(1.524)2=1256,故选D.题组2 双星、多星模型5.(多选)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图3所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )图3A .每颗星做圆周运动的线速度为Gm RB .每颗星做圆周运动的角速度为3GmR 3 C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 答案 ABC解析 由图可知,每颗星做匀速圆周运动的半径r =R 2cos30°=33R .由牛顿第二定律得Gm 2R 2·2cos30°=m v 2r =mω2r =m 4π2T 2r =ma ,可解得v =GmR,ω=3GmR 3,T =2πR 33Gm,a =3GmR 2,故A 、B 、C 均正确,D 错误. 6.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图4所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L =2×105m ,太阳质量M =2×1030kg ,引力常量G =6.67×10-11N·m 2/kg 2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )图4A .102HzB .104HzC .106HzD .108Hz答案 A解析 A 、B 的周期相同,角速度相等,靠相互之间的引力提供向心力,有G M A M B L 2=M A r A 4π2T 2① G M A M B L 2=M B r B 4π2T2②有M A r A =M B r B ,r A +r B =L , 解得r A =M B M A +M B L =3629+36L =3665L .由①得T =4π2L 3×3665GM B ,则f =1T=GM B 4π2L 3×3665=6.67×10-11×36×2×10304×10×(2×105)3×3665Hz ≈1.6×102Hz. 7.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动. (1)计算出该双星系统的运动周期T ;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度. 答案 (1)πL2LGM (2)3(N -1)M 2πL 3解析 (1)双星均绕它们连线的中点做圆周运动,万有引力提供向心力,则G M 2L 2=M ⎝⎛⎭⎫2πT 2·L 2,解得T =πL2LGM. (2)N >1,根据观测结果,星体的运动周期为T 观测=1NT <T ,这是由于双星系统内(类似一个球体)均匀分布的暗物质引起的,均匀分布在双星系统内的暗物质对双星系统的作用与一个质点(质点的质量等于球内暗物质的总质量M ′且位于中点O 处)的作用等效,考虑暗物质作用后双星系统的运动周期,即 G M 2L 2+G MM ′(L 2)2=M ⎝⎛⎭⎫2πT 观测2·L 2,代入T=πL 2LGM并整理得M′=N-14M.故所求的暗物质密度为ρ=M′4 3π(L2)3=3(N-1)M2πL3.。

浙江高考物理一轮复习第四章曲线运动万有引力与航天素养提升课四天体运动的热点问题学案

素养提升课(四) 天体运动的热点问题题型一 卫星运行规律及特点1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。

(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星。

(3)其他轨道:除以上两种轨道外的卫星轨道,且轨道平面一定通过地球的球心。

2.地球同步卫星的特点3.卫星的各物理量随轨道半径变化的规律4.解决天体圆周运动问题的两条思路(1)在中心天体表面或附近做圆周运动而又不考虑中心天体自转影响时,万有引力等于重力,即G MmR2=mg ,整理得GM =gR 2,称为黄金代换。

(g 表示天体表面的重力加速度)(2)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=m v 2r =mrω2=m 4π2r T2=ma n 。

(2021·1月浙江选考)嫦娥五号探测器是我国首个实施月面采样返回的航天器,由轨道器、返回器、着陆器和上升器等多个部分组成。

为等待月面采集的样品,轨道器与返回器的组合体环月做圆周运动。

已知引力常量G =6.67×1011N·m 2/kg 2,地球质量m 1=6.0×1024kg ,月球质量m 2=7.3×1022kg ,月地距离r 1=3.8×105km ,月球半径r 2=1.7×103km 。

当轨道器与返回器的组合体在月球表面上方约200 km 处做环月匀速圆周运动时,其环绕速度约为( )A .16 m/sB .1.1×102m/s C .1.6×103m/s D .1.4×104m/s[答案] C(2020·7月浙江选考)火星探测任务“天问一号”的标识如图所示。

若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )A .轨道周长之比为2∶3B .线速度大小之比为3∶ 2C .角速度大小之比为22∶3 3D .向心加速度大小之比为9∶4[解析] 火星与地球轨道周长之比等于公转轨道半径之比,A 错误;火星和地球绕太阳做匀速圆周运动,万有引力提供向心力,由G Mm r 2=ma =m v 2r =mω2r ,解得a =GM r 2,v =GMr,ω=GMr 3,所以火星与地球线速度大小之比为2∶3,B 错误;角速度大小之比为22∶33,C 正确;向心加速度大小之比为4∶9,D 错误。

(浙江选考)高考物理大一轮复习 第四章 曲线运动 万有引力与航天 第3讲 圆周运动学案-人教版高三全

答案 C
解析 汽车在水平面上做匀速圆周运动,合外力时刻指向圆心,拐弯时靠静摩擦力提供向心力,因此排除A、B、D选项,所以选择C.
命题点三 竖直面内的圆周运动问题
绳、杆模型涉及的临界问题
绳模型
杆模型
常见类型
均是没有支撑的小球
均是有支撑的小球
过最高点的临界条件
由mg=m 得v临=
由小球恰能做圆周运动得v临=0
命题点二 水平面内的圆周运动
解决圆周运动问题的主要步骤:
1.审清题意,确定研究对象,明确物体做圆周运动的平面是至关重要的一环;
2.分析物体的运动情况,轨道平面、圆心位置、半径大小以及物体的线速度是否变化;
3.分析物体的受力情况,画出受力分析图,确定向心力的来源;
4.根据牛顿运动定律及向心力公式列方程.
(4)当v> 时,FN+mg=m ,FN指向圆心并随v的增大而增大
模型1 轻绳模型
例3 如图7所示,一质量为m=0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在竖直平面内做圆周运动.g取10 m/s2,求:
图7
(1)小球要做完整的圆周运动,在最高点的速度至少为多大?
(2)当小球在最高点的速度为4 m/s时,轻绳拉力多大?
例1 如图1所示,有一皮带传动装置,A、B、C三点到各自转轴的距离分别为RA、RB、RC,已知RB=RC= ,若在传动过程中,皮带不打滑,则( )
图1
A.A点与C点的角速度大小相等
B.A点与B点的线速度大小相等
C.A点与C点的角速度大小之比为2∶1
D.B点与C点的向心加速度大小之比为1∶4
答案 D
解析 同一根皮带连接的传动轮边缘的点,线速度相等;同轴转动的点,角速度相等.因此vA=vC,ωA=ωB,根据关系式v=ωR,可得ωARA=ωCRC,又RB=RC= ,所以ωA= ,vB= ,故选项A、B、C错误;根据ωA=ωB,ωA= ,可得ωB= ,由关系式a=ω2R,可得aB= ,即B点与C点的向心加速度大小之比为1∶4,故选项D正确.

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第1讲 曲线运动 运动的合成与分解学生用书

第1讲曲线运动运动的合成与分解一、曲线运动1.速度的方向:质点在某一点的速度,沿曲线在这一点的________.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是________运动.3.运动的条件:二、运动的合成与分解1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动即________,物体的实际运动即________.2.运动的合成:已知________________,包括位移、速度和加速度的合成.3.运动的分解:已知________________,解题时应按实际效果分解或正交分解.4.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循________________.,生活情境右图为建筑工地塔吊示意图,在驾驶工人的操作下,小车A可在起重臂上左右移动,同时又可使重物上下移动,若起重臂不转动,则(1)小车A向左匀速运动,同时拉重物的绳子匀速缩短,则重物相对地面为直线运动.( )(2)小车A向左匀加速运动,同时拉重物的绳子匀速缩短,则重物相对地面为曲线运动.( )(3)小车A向左运动的速度v1,重物B向上运动的速度v2,则重物B对地速度为v=√v12+v22.( )(4)做曲线运动的物体.其速度时刻变化,所以物体所受合力一定不为零.( )(5)两个互成角度的初速度均为零的匀加速直线运动的合运动一定是直线运动.( )考点一物体做曲线运动的条件及轨迹分析1.合力方向与轨迹的关系无力不拐弯,拐弯必有力.曲线运动的轨迹始终夹在合力方向与速度方向之间,而且向合力的方向弯曲,或者说合力的方向总是指向轨迹的“凹”侧.2.合力方向与速率变化的关系跟进训练1.[人教版必修2P6演示实验改编]在演示“做曲线运动的条件”的实验中,有一个在水平桌面上向右做直线运动的小钢球,第一次在其速度方向上放置条形磁铁,第二次在其速度方向上的一侧放置条形磁铁,如图所示,虚线表示小球的运动轨迹.观察实验现象,以下叙述正确的是( )A.第一次实验中,小钢球的运动是匀变速直线运动B.第二次实验中,小钢球的运动类似平抛运动,其轨迹是一条抛物线C.该实验说明做曲线运动物体的速度方向沿轨迹的切线方向D.该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上2.(多选)一个质点在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时的速度方向与x轴平行,则恒力F的方向可能沿图示中( )A.F1的方向 B.F2的方向C.F3的方向 D.F4的方向3.春节期间人们放飞孔明灯表达对新年的祝福.如图所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动.孔明灯的运动轨迹可能为图乙中的( )A.直线OA B.曲线OBC.曲线OC D.曲线OD考点二运动的合成与分解运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.跟进训练4.如图所示,乒乓球从斜面上滚下,它以一定的速度做直线运动,在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着乒乓球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将偏离原有的运动路径,但不能进入纸筒B.乒乓球将保持原有的速度方向继续前进C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒5.2020年3月3日消息,国网武汉供电公司每天用无人机对火神山医院周边线路进行巡检,一次最长要飞130分钟,它们是火神山医院的电力“保护神”.如图所示,甲、乙两图分别是某一无人机在相互垂直的x方向和y方向运动的v­t图象.在0~2 s内,以下判断正确的是( )A.无人机的加速度大小为10 m/s2,做匀变速直线运动B.无人机的加速度大小为10 m/s2,做匀变速曲线运动C.无人机的加速度大小为14 m/s2,做匀变速直线运动D.无人机的加速度大小为14 m/s2,做匀变速曲线运动6.[2022·广东深圳模拟]我国五代战机“歼­20”再次闪亮登场.表演中,战机先水平向右,再沿曲线ab向上(如图所示),最后沿陡斜线直入云霄.设飞行路径在同一竖直面内,飞行速率不变,则沿ab段曲线飞行时,战机( )A.所受合外力大小为零B.所受合外力方向竖直向上C.竖直方向的分速度逐渐增大D.水平方向的分速度不变考点三小船渡河模型和关联速度模型素养提升角度1小船渡河问题1.合运动与分运动合运动→船的实际运动v合→平行四边形对角线分运动→船相对静水的运动v船水流的运动v水→平行四边形两邻边.两类问题、三种情景例1.如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各x(m/s)(x的单位为m),让小船船头垂点到较近河岸的距离为x,v水与x的关系为v水=3400直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是( ) A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s角度2关联速度问题例2. 如图所示,一辆货车利用跨过光滑定滑轮的轻质缆绳提升一箱货物,已知货箱的质量为m0,货物的质量为m,货车以速度v向左做匀速直线运动,在将货物提升到图示的位置时,下列说法正确的是( )A.货箱向上运动的速度大于vB.缆绳中的拉力F T等于(m0+m)gC.货箱向上运动的速度等于v cos θD.货物对货箱底部的压力等于mg[思维方法]绳(杆)关联问题的解题技巧(1)先确定合速度的方向(物体实际运动方向).(2)分析合运动所产生的实际效果;一方面使绳(杆)伸缩;另一方面使绳(杆)转动.(3)确定两个分速度的方向:沿绳(杆)方向的分速度和垂直绳(杆)方向的分速度,而沿绳(杆)方向的分速度大小相同.跟进训练7.如图所示,小球a、b用一细直棒相连,a球置于水平地面,b球靠在竖直墙面上,释放后b球沿竖直墙面下滑,当滑至细直棒与水平面成θ角时,两小球的速度大小之比为( )A.v av b =sin θ B.v av b=cos θC.v av b =tan θ D.v av b=1tanθ8.如图所示,一船夫以摇船载客为生往返于河的两岸.若该船夫摇船从河岸A点以v1的速度用最短的时间到对岸B点.第二次该船以v2的速度从同一地点以最短的路程过河到对岸B点,船轨迹恰好与第一次船轨迹重合.假设河水速度保持不变,则该船两次过河所用的时间之比是 ( )A.v1∶v2 B.v2∶v1C.v:12v22D.v22 v12第1讲曲线运动运动的合成与分解必备知识·自主排查一、1.切线方向2.变速二、1.分运动合运动2.分运动求合运动3.合运动求分运动4.平行四边形定则生活情境(1)√(2)√(3)√(4)√(5)√关键能力·分层突破1.解析:本题考查曲线运动的轨迹问题.第一次实验中,小钢球受到沿着速度方向的吸引力作用,做直线运动,并且随着距离的减小吸引力变大,加速度变大,则小钢球的运动是非匀变速直线运动,选项A错误;第二次实验中,小钢球所受的磁铁的吸引力方向总是指向磁铁,方向与大小均改变,是变力,故小钢球的运动不是类似平抛运动,其轨迹也不是一条抛物线,选项B错误;该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上,但是不能说明做曲线运动物体的速度方向沿轨迹的切线方向,故选项C错误,D正确.答案:D2.解析:曲线运动受到的合力总是指向曲线凹的一侧,但和速度永远不可能达到平行的方向,所以合力可能沿着F3的方向、F4的方向,不可能沿着F1的方向或F2的方向,C、D 正确,A、B错误.答案:CD3.解析:孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,则合外力沿Oy方向,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知运动轨迹可能为曲线OD,故D正确.答案:D4.解析:当乒乓球经过筒口时,对着乒乓球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动,故一定不会进入纸筒,要提前吹气才会进入纸筒,故A正确,B、C、D错误.答案:A5.解析:在0~2 s内,由速度-时间图象可知,x方向初速度为v0x=0,加速度为a x =6 m/s2,y方向初速度为v0y=0,加速度为a y=8 m/s2,根据平行四边形定则可以得到合初速度为v=0,合加速度为a=10 m/s2,而且二者方向在同一直线上,可知合运动为匀变速直线运动,故A正确,B、C、D错误.答案:A6.解析:战机在同一竖直面内做曲线运动,且运动速率不变,由于速度方向是变化的,则速度是变化的,故战机的加速度不为零,根据牛顿第二定律可知,战机所受的合力不为零,故A错误;战机在同一竖直平面内做匀速率曲线运动,所受合力与速度方向垂直,由于速度方向时刻在变化,则合外力的方向也时刻在变化,故B错误;由以上分析可知,战机所受合力始终都与速度方向垂直,斜向左上方,对合力和速度进行分解,竖直方向上做加速运动,水平方向上做减速运动,即竖直分速度增大,水平分速度减小,所以选项C正确,D错误.答案:C例1 解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度与加速度不共线,小船的合运动是曲线运动,选项A错误;当小船运动到河中间时,东西方向上的分速度最大,v水=3 m/s,此时小船的合速度最大,最大值v m=5 m/s,选项B正确;小船在距南岸200 m处的速度等于在距北岸200 m处的速度,选项C错误;小船的渡河时间t=dv船=8004s=200 s,选项D错误.答案:B例2 解析:将货车的速度进行正交分解,如图所示.由于绳子不可伸长,货箱和货物整体向上运动的速度和货车速度沿着绳子方向的分量相等,有v1=v cos θ,故选项C正确;由于θ不断减小,v1不断增大,故货箱和货物整体向上做加速运动,加速度向上,故选项A错误;拉力大于(m0+m)g,故选项B错误;货箱和货物整体向上做加速运动,加速度向上,属于超重,故箱中的物体对箱底的压力大于mg,故选项D错误.答案:C7.解析:如图所示,将a球速度分解成沿着杆与垂直于杆方向,同时b球速度也是分解成沿着杆与垂直于杆两方向.对于a球v=v acos θ,对于b球v=v bsin θ,由于同一杆,则有v acosθ=v bsin θ,所以v av b=tan θ,故选C.答案:C8.解析:由题意可知,船夫两次驾船的轨迹重合,知合速度方向相同,第一次船的静水速度垂直于河岸,第二次船的静水速度与合速度垂直,如图所示.船两次过河的合位移相等,则渡河时间之比等于船两次过河的合速度之反比,则t1 t2=v2合v1合=v2tanθv1sinθ=v2v1cos θ,而cos θ=v2v1可得t1t2=v22v12,故D项正确.答案:D。

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第四节 万有引力与航天课时作业

万有引力与航天时间:45分钟一、单项选择题 1.如图所示,P 、Q 为质量相同的两质点,分别置于地球表面的不同纬度上,如果把地球看成一个均匀球体,P 、Q 两质点随地球自转做匀速圆周运动,则下列说法正确的是( )A .P 、Q 所受地球引力大小相等B .P 、Q 做圆周运动的向心力大小相等C .P 、Q 做圆周运动的线速度大小相等D .P 所受地球引力大于Q 所受地球引力解析:计算均匀球体与质点间的万有引力时,r 为球心到质点的距离,因为P 、Q 到地球球心的距离相同,根据F =GMmr 2知,P 、Q 所受地球引力大小相等,P 、Q 随地球自转,角速度相同,但轨道半径不同,所以线速度大小不同,根据F n =mRω2,P 、Q 做圆周运动的向心力大小不同.A 正确,B 、C 、D 错误.答案:A2.(2013·福建高考)设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r3T 2B .GM =4π2r2T2C .GM =4π2r2T3D .GM =4πr3T2解析:设行星质量为m ,根据G Mm r 2=m 4π2T 2r 得GM =4π2r3T2,A 正确.答案:A3.(2016·湖州质检)a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图所示.下列说法中正确的是( )A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞的危险解析:由G Mm r 2=m v 2r =mrω2=mr 4π2T2=ma ,可知B 、C 错误,A 正确;v a =v c ,T a =T c ,所以a 、c 不会相撞,D 错误.答案:A4.(2016·莆田质检)美国宇航局宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于( )A .3.3×103m/s B .7.9×103m/s C .1.2×104 m/sD .1.9×104m/s解析:由该行星的密度和地球相当可得M 1R 31=M 2R 32,地球第一宇宙速度v 1=GM 1R 1≈7.9 km/s,该行星的第一宇宙速度v 2=GM 2R 2,联立解得v 2=2.4v 1=1.9×104m/s ,D 正确. 答案:D5.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC.⎝⎛⎭⎪⎫R -d R 2D.⎝⎛⎭⎪⎫R R -d 2解析:根据万有引力与重力相等可得,在地面处有Gm ·43πR 3ρR 2=mg ,在矿井底部有Gm·43πR-d3ρR-d2=mg′,所以g′g=R-dR=1-dR,A正确.答案:A二、多项选择题6.(2014·广东高考)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是( )A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度解析:由GMmr2=mv2r=mr⎝⎛⎭⎪⎫2πT2得v=GMr,T=2πr3GM,可知,轨道半径越大,线速度越小,周期越大,A正确,B错误;若测得周期和轨道半径,由GMmr2=mr⎝⎛⎭⎪⎫2πT2可知,可以测得星球的质量,但由于星球的半径未知,因此不能求得星球的平均密度,D错误;若测得张角θ,可求得星球半径R与轨道半径r的比值为Rr=sinθ2,由GMmr2=mr⎝⎛⎭⎪⎫2πT2和ρ=M43πR3得,ρ=3πGT2⎝⎛⎭⎪⎫rR3=3πGT2sin3θ2,C正确.答案:AC7.(2016·荆门质检)同重力场作用下的物体具有重力势能一样,万有引力场作用下的物体同样具有引力势能.若取无穷远处引力势能为零,物体距星球球心距离为r时的引力势能为E p=-Gm0mr(G为引力常量),设宇宙中有一个半径为R的星球,宇航员在该星球上以初速度v0竖直向上抛出一个质量为m的物体,不计空气阻力,经t s后物体落回手中,则( ) A.在该星球表面上以2v0Rt的初速度水平抛出一个物体,物体将不再落回星球表面B.在该星球表面上以2v0Rt的初速度水平抛出一个物体,物体将不再落回星球表面C .在该星球表面上以 2v 0Rt的初速度竖直抛出一个物体,物体将不再落回星球表面D .在该星球表面上以2v 0Rt的初速度竖直抛出一个物体,物体将不再落回星球表面 解析:设该星球表面附近的重力加速度为g ′,物体做竖直上抛运动有v 0=g ′t2,在星球表面有mg ′=G m 0m R 2,设绕星球表面做圆周运动的卫星的速度大小为v 1,则m v 21R =G m 0m R2,联立解得v 1=2v 0Rt,A 正确;2v 0Rt>2v 0Rt,B 正确;从星球表面竖直抛出物体至无穷远速度为零的过程,有12mv 22+E p =0,即12mv 22=G m 0mR,解得v 2=2v 0Rt,C 错误,D 正确. 答案:ABD8.如图所示,在“嫦娥”探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月做圆周运动,则( )A .飞船在轨道Ⅲ的运行速率大于g 0RB .飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率C .飞船在轨道Ⅰ上的重力加速度小于在轨道Ⅱ上B 处重力加速度D .飞船在轨道Ⅰ、Ⅲ上运行的周期之比为41解析:飞船在轨道Ⅲ上运行时的速率设为v ,由mg 0=m v 2R 得v =g 0R ,A 错误;设飞船在轨道Ⅰ、Ⅲ上的运行速率分别为v 1、v 3,由GmM4R2=m v 214R 和G mM R 2=m v 23R ,解得v 1=GM4R和v 3=GMR,可见v 3>v 1,设轨道Ⅱ上的B 点速度为v B ,飞船在B 点由轨道Ⅲ变轨到轨道Ⅱ为离心运动,则G mM R 2<m v 2BR ,即v B >GM R ,则v B >v 3>v 1,B 正确;由mg =G mM r 2得g =GMr2,又r A >r B ,则g A <g B ,C 正确;由GmM 4R2=m ⎝⎛⎭⎪⎫2πT 12×4R 和G mM R 2=m ⎝ ⎛⎭⎪⎫2πT 32R ,解得T 1T 3=81,D 错误.答案:BC 三、计算题9.(2016·九江模拟)宇航员到了某星球后做了如下实验:如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角2θ.当圆锥和球一起以周期T 匀速转动时,球恰好对锥面无压力.已知星球的半径为R ,万有引力常量为G .求:(1)细线拉力的大小;(2)该星球表面的重力加速度的大小; (3)该星球的第一宇宙速度的大小; (4)该星球的密度.解析:(1)小球做圆周运动,向心力F T sin θ=m4π2T 2r ①半径r =L sin θ② 解得细线拉力大小F T =m4π2T 2L .③(2)对小球受力分析可知F T cos θ=mg 星④解得该星球表面的重力加速度 g 星=4π2T2L cos θ.⑤(3)星球的第一宇宙速度即为该星球的近“地”卫星的环绕速度v ,设近“地”卫星的质量为m ′,根据向心力公式有m ′g 星=m ′v 2R⑥联立⑤⑥解得v =2πTRL cos θ.(4)设星球的质量为M ,则mg 星=GMm R 2⑦M =ρ·43πR 3⑧联立⑤⑦⑧解得星球的密度ρ=3πL cos θGRT2. 答案:(1)m4π2T 2L (2)4π2T2L cos θ(3)2πT RL cos θ (4)3πL cos θGRT210.兴趣小组成员合作完成了下面的两个实验:①当飞船停留在距X 星球一定高度的P 点时,正对着X 星球发射一个激光脉冲,经时间t 1后收到反射回来的信号,此时观察X 星球的视角为θ,如图所示.②当飞船在X 星球表面着陆后,把一个弹射器固定在星球表面上,竖直向上弹射一个小球,经测定小球从弹射到落回的时间为t 2.已知用上述弹射器在地球上做同样实验时,小球在空中运动的时间为t ,又已知地球表面重力加速度为g ,引力常量为G ,光速为c ,地球和X 星球的自转以及它们对物体的大气阻力均可不计,试根据以上信息,求:(1)X 星球的半径R ; (2)X 星球的质量M ; (3)X 星球的第一宇宙速度v ; (4)在X 星球发射的卫星的最小周期T . 解析:(1)由题图可知(R +12ct 1)sin θ=R ,得R =ct 1sin θ21-sin θ(2)在X 星球上以v 0竖直上抛:t 2=2v 0g ′在地球上以v 0竖直上抛:t =2v 0g故g ′=t t 2g ,又由G Mm R2=mg ′,所以M =R 2g ′G =gtc 2t 21sin 2θ4Gt 21-sin θ2.(3)在X 星球表面有mg ′=m v 2R,可得v =Rg ′=gctt 1sin θ2t 21-sin θ.(4)当卫星速度达到第一宇宙速度时,有最小周期T ,T =2πRv=π2ct 1t 2sin θgt 1-sin θ.答案:(1)ct 1sin θ21-sin θ (2)gtc 2t 21sin 2θ4Gt 21-sin θ2(3)gctt 1sin θ2t 21-sin θ (4)π2ct 1t 2sin θgt 1-sin θ11.(2015·安徽理综)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一种情况).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T . 解析:(1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA ,方向如图所示.则合力大小为F A =23G m 2a2.(2)同上,B 星体所受A 、C 星体引力大小分别为F AB =G m A m B r 2=G 2m 2a2F CB =G m C m B r 2=G m 2a 2,方向如图所示.由F Bx =F AB cos60°+F CB =2G m 2a 2F By =F AB sin60°=3G m 2a 2可得F B =F 2Bx +F 2By=7G m 2a2. (3)通过分析可知,圆心O 在中垂线AD 的中点,R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2 (或:由对称性可知OB =OC =R C , cos ∠OBD =F Bx F B =DB OB =12aR C)可得R C =74a . (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m ⎝ ⎛⎭⎪⎫2πT 2R C可得T =πa 3Gm. 答案:(1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业13 万有引力天体的运动
一、不定项选择题
1.(2012·四川广元中学月考)据报道,美国宇航局发射的“勇气”号和“机遇”号孪生双子火星探测器在2004年1月4日和1月25日相继带着地球人的问候在火星着陆。

假设火星和地球绕太阳的运动可以近似看做同一平面内同方向的匀速圆周运动,已知火星的轨道半径r1=2.4×1011 m,地球的轨道半径r2=1.5×1011 m,如图所示,从图示的火星与地球相距最近的时刻开始计时,估算火星再次与地球相距最近需要的时间为( )
A.1.4年B.4年C.2.0年D.1年
2.天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的5倍,质量是地球的25倍。

已知某一近地卫星绕地球运动的周期约为 1.4小时,引力常量G=6.67×10-11 N·m2/kg2,由此估算该行星的平均密度最接近( )
A.2.0×103 kg/m3B.6.0×103 kg/m3
C.1.0×104 kg/m3D.3.0×104 kg/m3
3.(2012·浙江金华十校期末)某同学阅读了“火星的现在、地球的未来”一文,摘录了以下资料:①根据目前被科学界普遍接受的宇宙大爆炸学说可知,万有引力常量在极其缓慢地减小;②火星位于地球绕太阳轨道的外侧;③由于火星与地球的自转周期几乎相同,自转轴与公转轨道平面的倾角也几乎相同,所以火星上也有四季变化。

根据该同学摘录的资料和有关天体运动规律,可推断( )
A.太阳对地球的引力在缓慢增加
B.太阳对地球的引力在缓慢减小
C.火星上平均每个季节持续的时间大于3个月
D.火星上平均每个季节持续的时间等于3个月
4.(2012·江苏昆山模拟)身高为2 m的宇航员,用背越式跳高,在地球上能跳2 m,在另一星球上能跳5 m,若只考虑重力因素影响,地球表面重力加速度为g,则该星球表面重力加速度约为( )
A.5
2
g B.
2
5
g C.
1
5
g D.
1
4
g
5.(2012·江西红色六校高三上学期联考试卷)我国于2011年9月29日成功发射“天宫一号”目标飞行器和神舟八号飞船,实施首次空间飞行器无人交会对接试验,预计要与神舟八号、神舟九号、神舟十号完成对接任务,为我国在2020年建立独立的空间站打下基础,如图所示是“天宫一号”“神舟八号”“神舟九号”“神舟十号”对接的模拟示意图,假设“天宫一号”在圆形轨道上运动。

以下说法正确的是( )
A.要完成对接任务,神舟飞船需要制动减速
B.要完成对接任务,神舟飞船需要点火加速
C.“天宫一号”内的实验仪器不受引力的作用
D.对接完成后“天宫一号”的速度大于第一宇宙速度
5.如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件不能求出( )
A.水星和金星绕太阳运动的周期之比
B.水星和金星到太阳的距离之比
C.水星和金星的密度之比
D.水星和金星绕太阳运动的向心加速度大小之比
6.(2012·浙江宁波期末)1798年英国物理学家卡文迪许测出万有引力常量G,因此卡文迪许被人们称为能称出地球质量的人,若已知万有引力常量为G,地球表面处的重力加速度为g,地球半径为R,地球上一个昼夜的时间为T1(地球自转周期),一年的时间为T2(地球公转的周期),地球中心到月球中心的距离为L1,地球中心到太阳中心的距离为L2。

你能计算出
( )
A .地球的质量m 地=gR 2G
B .太阳的质量m 太=4π2L 32GT 22
C .月球的质量m 月=4π2L 31
GT 21 D .可求月球、地球及太阳的密度
7.(2012·云南部分名校联考)宇宙中存在一些离其他恒星较远的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用。

已观测到稳定的三星系统存在的一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道做匀速圆周运动。

关于这种三星系统,下列说法正确的是( )
A .任意两颗星之间的万有引力都比它们做匀速圆周运动的向心力大
B .三颗星做匀速圆周运动的周期一定都相等
C .三颗星的质量可以不相等
D .三颗星之间的距离与它们的质量大小无关
二、非选择题
8.质量为m 的物体放在地球赤道上随地球自转,物体对地面的压力大小为F N ,已知地球的半径为R ,自转周期为T ,引力常量为G ,某同学根据以上信息求得地球的质量M ,他的求解过程如下:G Mm R 2=,M =,则:
(1)请判断该同学的计算过程和结果是否正确。

(2)若你认为正确,请说明理由;若你认为不正确,请写出正确的解答。

参考答案
1.C 解析:已知地球的公转周期T 地=1年,设火星的公转周期为T 火,根据开普勒第三定律有T 2地r 32=T 2火r 31;设经过t 年火星再次与地球相距最近,那么应满足关系式t T 地-t T 火
=1,联立以上两式,并代入数据,可解得t ≈2.0年。

2.D 解析:由近地卫星的万有引力提供向心力可知G Mm R 2=m 4π2T 2R ,M =43
πR 3·ρ,联立可得:ρ=3πGT 2,解得地球的密度ρ1≈5.6×103 kg/m 3,故ρ2=25M 5V
=5ρ1≈3.0×104 kg/m 3,选项D 正确。

3.BC 解析:根据资料①显示,万有引力常量G 在极其缓慢地减小,那么太阳对地球的引力大小F =G M 日m 地r 2
也在缓慢减小,所以选项A 错误,B 正确;根据资料②可知,火星公转的轨道半径大于地球公转的轨道半径,再由开普勒第三定律可知,火星的公转周期大于地球的公转周期;根据资料③可知,火星与地球的自转周期几乎相同,说明火星上也有昼夜更替,并且火星上的一天几乎等于地球上的一天,又火星的自转轴与公转轨道平面的倾角也几乎与地球上相同,这说明火星公转一周相当于“一个火星年”,并且也有四季变化,因为火星的公转周期大于地球的公转周期,所以“一个火星年”大于地球上一年,火星上平均每个季节持续的时间大于3个月,选项C 正确,D 错误。

本题选BC 。

4.D 解析:设运动员起跳的初速度大小均是v ,另一星球表面的重力加速度大小为g ′,根据题意,该运动员在地球上起跳时其重心上升的高度h 1=1 m ,在另一星球表面起跳
时其重心上升的高度h 2=4 m ,根据h 1=v 2/2g ,h 2=v 2/2g ′,可求得g ′=14
g 。

本题选D 。

5.B 解析:要完成对接任务,神舟飞船需要与“天宫一号”处在同一轨道上,所以神舟飞船需要从运行半径较低的轨道变到高轨道,即需要点火加速使飞船做离心运动,选项A 错误,B 正确;“天宫一号”处于完全失重状态,飞行器内的一切靠重力才能工作的实验仪器都不能使用,选项C 错误;第一宇宙速度是地球卫星的最大运行速度,所以对接完成后“天宫一号”的速度仍然小于第一宇宙速度,选项D 错误。

5.C 解析:由θ=ωt =2πT t 可知,T 1T 2=θ2θ1
,故能够求出水星和金星的周期之比;由开普勒第三定律得r 31r 32=T 21T 22=θ22θ21,能够求出水星和金星到太阳的距离之比;由a =ω2r ,得a 1a 2
=ω21r 1ω22r 2=T 22r 1T 21r 2,能够求出水星和金星的加速度之比;由G Mm r 2=m ω2r ,得G M r 2=ω2
r ,金星或水星做圆周运动的参量与其质量无关,不能求出水星和金星的密度之比,选项C 符合题意。

6.AB 解析:在地球表面,物体的重力近似等于其万有引力,所以有mg =G m 地m R 2
,可求得:m 地=gR 2G
,所以选项A 正确;太阳对地球的万有引力提供其绕太阳公转时的向心力,所以有G m 太m 地L 22
=m 地L 2,可求得:m 太=,选项B 正确;已知地球半径,还可以求出地球的密度,但根据题中条件,无法求出月球的质量及其密度和太阳的密度,所以选项C 、D 错误。

7.B 解析:如图所示,任意一个星球所受其他两个星球的万有引力的合力(F >F 1或F >F 2)提供其做匀速圆周运动的向心力,选项A 错误;稳定的三星系统中的三颗星做匀速圆周运动的周期相等,选项B 正确;设三个星球的质量分别为m 1、m 2、m 3,三角形的边长为L ,星球的轨道半径为R ,周期为T ,
对m 1有,①
对m 2有,②
对m 3有,③
联立以上三式,可得m1=m2=m3,选项C错误;从以上三式可知,L与质量m有关,选项D错误。

8.答案:(1)不正确
(2)M=
解析:(1)不正确。

(2)因为在地球赤道上的物体受到的作用力有两个:万有引力和地面对物体的作用力F N,物体所受的合力为-F N;而在=mR中漏了F N,故不正确。

正确的解法为:根据
解得:M=。

相关文档
最新文档