第六章 近独立粒子的最概然分布 热力学统计物理.
热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l
l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l
l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N
第六章近独立粒子的最概然分布

近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。
而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。
热力学验证统计物理,而统计物理揭示了热力学的本质。
μ空间:设粒子的自由度为r 。
经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。
粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。
粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。
热力学统计 第六章 课件

全同粒子组成的系统就是由具有完全相同的内禀属性 (相同的质量、电荷、自旋等)的同类粒子组成的系统。
近独立粒子组成的系统,是指系统中粒子之间相互作 用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而 可以忽略粒子间的相互作用,将整个系统的能量表达为单 个粒子能量之和
3
不确定关系指出,粒子坐标的不确定值Δq和与之共
轭的动量的不确定值Δp满足ΔqΔp≈h。
如果用坐标q和动量p来描述粒子的运动状态,一个状 态必然对应于μ空间的一个体积,称之为一个相格。
对于自由度为1的粒子,相格大小为h。如果粒子自由 度为r,各自由度的坐标和动量的不确定值Δqi和Δpi分别 满足ΔqiΔpi≈h,相格的大小为 Δq1…Δqr Δp1 … Δpr≈hr
由此,前一式可理解为,将μ空间的体积Vdpxdpydpz除以 相格大小h3而得到的三维自由粒子在Vdpxdpydpz内的量子
态数。
对于自由粒子的动量,若采用球极坐标p、θ、φ来描 写,则有 px p sin cos , py p sin sin , pz p cos 动量空间体积元为p2sinθdpdθdφ。
§6.2 粒子运动状态的量子描述
微观粒子普遍具有波粒二象性。
德布罗意提出,能量为ε、动量为 p 的自由粒子联系 着圆频率为ω、波矢为 k 的平面波(德布罗意波)。
能量ε与圆频率ω,动量 p 与波矢 k 的关系为
, p k
此式称为德布罗意关系,适用于一切微观粒子。常量h和
ħ=h/2π都称为普朗克常量,数值为
经典描述 设粒子的自由度为r。 经典力学指出,粒子在任一时刻的力学运动状态由粒
子的r个广义坐标
q1,q2 ,…,qr 和与之共轭的r个广义动量 p1,p2,…,pr
热力学与物理统计第六章03

在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
p p
由于不确定关系, xp h 。
第六章 近独立粒子的最概然分布
自由粒子的量子描述 首先讨论一维自由粒子,设粒子处于长度为L的一维 容器中,那么粒子可能的运动状态为 粒子运动应该满足周期性边界条件,粒子的德布罗 意波波长满足 那么,波矢满足 动量为
第六章 近独立粒子的最概然分布
能量为
nx就是表征一维自由粒子的运动状态的量子数
考虑三维自由粒子,设粒子处在边长为L的容器内
2
第六章 近独立粒子的最概然分布
体积V=L3内,在ε到ε+dε能量范围内自由粒子的量子 态数
D(ε)单位能量间隔内可能的状态数,称为态密度
第六章 近独立粒子的最概然分布
一维线性谐振子的经典描述及其μ 空间 质量为m的粒子在弹性力F=-Ax的作用下,将沿x轴 在原点附近做简谐振动,称为线性谐振子。振动 的圆频率为 粒子运动状态有坐标x和与之共轭的动量p来描述
第六章 近独立粒子的最概然分布
通常情况下,为了形象的描述粒子的运动状态,用 这2r个变量为直角坐标,建立一个2r维空间,我们 成为μ空间。粒子在某一时刻的运动状态与μ空间 中的一个点相对应。当粒子的运动状态随时间变化 时,粒子在μ空间的代表点发生相应的移动,描画 出一条轨迹。
第六章 近独立粒子的最概然分布
第六章 近独立粒子的最概然分布
热力学统计物理 第6章

p , kT
-
kT
所以上述平衡条件相当于
p1 p2 ,
1 2
(力学平衡条件) (相平衡条件) 四、由微正则分布求热力学函数的方法 1 先计算Ω 2 再求 —积分 { 经典的 量子的—求和(三种系统)
S k ln ( E , N ,V ) S 1 得E , 3 由 E N ,V T p ln ( N , E ,V ) S 由 k k V N ,E T V N ,E 得 p( N ,V , T , E ) 再将 E ( N ,V , T ) 代入,即得状态方程 p( N ,V , T )
E2 1 E1
两边除以 Ω1(E1) Ω2(E2),
得
2(E2) 1 1(E1) 1 1(E1) E1 2(E2) E2
ln 1 ( E1 ) E1
ln ( E ) 令 1 2 N ,V E 这是两子系统通过热接触(交换能量)达到平衡时需要满足 的条件(热平衡条件):两子系统的β 相等。
( 0 ) ( E1,E2 ) 1 ( E1 ) 2 ( E2 ) ( 0) ( E1 , E ( 0) E1 ) 1 ( E1 ) 2 ( E ( 0) E1 )
A1
A2
即孤立系的Ω( 0) 取决于能量在两个子系统之间的分配。
总Ω( 0 ) 随能量E1 的变化而变化,故子系统 A1 必有一能量 值 E1 E 时,系统总微观状态数 Ω( 0) 有极大值. 1
d
微正则系综理论的热力学公式
三、熵与微观状态数Ω的关系
考虑由两个子系统 A1 和 A2 组成的复合孤立系统。
第六章_近独立粒子的最概然分布

2017年3月24日星期五
第六章 近独立粒子的最概然分布
4.本章的知识结构体系:
力学描述 系统微观 经典描述 粒子运 几何描述 态的描述 动状态 定域系 系统运动状 的描述 量子描述 量子态 玻色系 态的描述 非定域系 费米系 分布 定域系 最概然 等概率 与微 玻色 分布 原理 观态 费米系 关系
由力学知,粒子的运动状态是由能量来度量的。对近 独立粒子而言,粒子的能量仅与粒子本身状态有关而与其 它粒子的运动状态无关。 因此,近独立粒子系统的能量不包含粒子间的相互作 用能部分,而只是各粒子的动能之和。
2017年3月24日星期五 第六章 近独立粒子的最概然分布
一、粒子微观运动状态的经典描述
1.粒子运动状态的经典描述:
2017年3月24日星期五
第六章 近独立粒子的最概然分布
任何统计理论要涉及解决以下三个问题:
①研究对象是什么——引入何种假设、模型,如何描 述其研究对象的运动状态(力学、几何); ②如何求出概率分布——这是核心; ③如何求出热力学量的统计表达式。 本章为7、8两章作准备,研究解决前两个问题。
2.本章研究的系统:
2017年3月24日星期五 第六章 近独立粒子的最概然分布
第六章 近独立粒子的最概然分布
1.统计物理的基本观点和方法:
基本观点:
①宏观物体是由大量微观粒子组成的。 ②物质的宏观热性质是大量微观粒子运动的集体表现, 宏观物理量是相应微观量的统计平均值。(例:温度)
方法:
深入到微观,从单个粒子的力学规律以及粒子间的相互 作用出发,对大量粒子组成的体系运用概率统计的方法。
就组成系统的各个微观粒子而言,它们是遵 守力学运动规律的。如果粒子遵守经典力学的运 动规律,对粒子运动的描述称为经典描述;如果 粒子遵守量子力学运动规律,对粒子运动状态的 描述就称为量子描述。本节先讨论粒子运动的经 典描述。
第六章:近独立粒子的最概然分布 热力学统计物理汪志诚
新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m
V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间
热力学与统计物理教案:第六章 近独立粒子的最概然分布
为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述
第章--近独立粒子的最概然分布PPT课件
.
3
二. 几个例子 1. 自由粒子 自由度:r=3
μ空间维数:6
广义坐标:q1 x, q2 y, q3 z
广义动量: p1 px mx, p2 py my, p3 pz mz,
动能:
1 2m
( px2
p
2 y
pz2 )
相迹:以一维为例
px
(6.1.3)
.
x
4
Lx
2. 一维线性谐振子 one dimension linear harmonic oscillator
(6.2.4)
能级非简并
What about 3D?
3. 转子
Degenerate !
量子理论要求角动量平方和角动量z分量是量子化的
M 2 l(l 1)2 ,
l 0,1,2
M z m,
m l,l 1,,l 1,l
自由度为2,等于量子数个数:l, m
转子能量:
E M 2 l(l 1)2
2I
质量: m
电荷: e
自旋角动量量子数:1/2
自旋磁矩:
自旋角动量:S
e
Sm
沿z方向加外磁场B,角动量S在z方向上有两个独立分量
Sz ms
自旋磁矩和势能为
z
e m
ms
e 2m
B
ms
1 2
E
eB m
ms
e 2m
B
描述自旋状态只要一个量子数 ms .
12
2. 线性谐振子
n
(n
1 ), 2
n 0,1,2
代表点的轨道是如下椭圆:
p2 2m
x2 2
1
.
m2
5
第六章近独立粒子的最概然分布教案
热力学与统计物理课程教案第六章 近独立粒子的最概然分布6.1 粒子运动状态的经典描述首先介绍如何描述粒子的运动状态。
这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。
粒子的运动状态是指它的力学运动状态。
如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。
1、粒子运动状态经典描述的两种方法设粒子的自由度为r 。
经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。
粒子能量ε是其广义坐标和广义动量的函数:()r r p p p q q q εε,,,;,,,2121 =如果存在外场,ε还是描述外场参量的函数。
为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。
粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。
当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。
2、下面介绍统计物理中用到的几个例子(1)、自由粒子:自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。
粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为:⋅⋅⋅===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:()22221z y x p p p m ε++=, 对应的μ空间是6维的。
(2)线性谐振子对于自由度为1的线性谐振子,在任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为⋅=x m p x ,它的能量是其动能和势能之和:2222221222x m m p x A m p ωε+=+= 以x 和p 为直角坐标,可构成二维的μ空间,振子在任一时刻运动状态由μ空间中的一点表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d = dq1 dq2 … dqr · dp1 dp2 …dpr
5
二
经典描述方法例子
px
x
L
1 自由粒子
不受外力作用的粒子(如理想气体 O 分子、金属自由电子等),其能量 p2 2m ① 1D自由粒子: 限制在长L范围内 (线状材料等); 互相正交的 x、px 轴构成2D的μ空间。 相轨道“——”等能面是一条直线.
1 m 2 x 2 2m 2 p2 x
2 2 px m 2 2 px x2 1 x 2 2 2m 2 a b
两个半轴长度
a 2m
b
2 m 2
px
x
12
即相空间中的等能面为椭圆。其面积为
a 2m
b 2 m 2
S ab
p
o
2
1 2 3r多能量为 /2p 0,
自由度 r =1(曲线上运动) : x 和 px 描述其状态; r = 3(3D空间中运动): x, y, z 和 px , py , pz 描述状态。
若粒子有内部运动, 则 r 更大。如双原子分子, φ, p , pφ
一般地,设粒子的自由度为 r , 其力学运动状态由粒子 的 r 个广义坐标 q1、q2、…qr 和相应的 r 个广义动量 p1、 p2、… pr 共 2r 个量的值确定。粒子能量ε: ε=ε( q1、q2、…qr ,p1、p2、…pr ) 。 总之,微观粒子运动状态的经典描述是采用粒子的坐 标和动量共同描述的方法。
4 dxdydz dp x dp y dpz V ( 2m )3 / 2 3 等能面(在动量子空间中)是半径为的 2m 球面。
p
7
p m x
2 线性谐振子
质量为 m 的粒子在力 f = -kx 作用下的一维简谐振动 (如双原子分子; 晶体中格点上的原子、离子等)。 自由度为 1, 某时刻粒子状态为(x, px)。μ空间为二 维。若给定振子的能量ε, 运动轨迹由如下方程确定:
p 1 2 p 2 2I sin
2
其中转动惯量
I mr 2
14
两体或多体绕质心的转动也可看成一个转子
z
A
Lz J z
y
p mv r sin mr 2 sin 2
x
p m v r mr 2
x
能量不同椭圆也不相同。
13
3 转子
质量为 m 的质点绕O点转动 (设半径不变), 1 2 2 2 转动能量 m( x y z ) m 2 (r , , ) 描述质点的位置
x r sin cos , y r sin sin , z r cos .
1
统计物理: 关于热现象的微观理论。
研究对象: 大量微观粒子组成的宏观物质系统。 (微观粒子:如分子、原子、自由电子、光子等) 统计物理认为: 宏观性质是大量微观粒子运动的集体表现。 宏观物理量是相应微观物理量的统计平均值。 经典统计: 粒子满足经典力学规律 (运动状态的经典描述) 量子统计: 粒子满足量子力学规律 (运动状态的量子描述) 在一定条件下,经典统计是一个极好的近似。
广义动量pθ和pφ是转子角动量的两个分量。 pφ是沿Z轴的分量, Pθ是沿变轴的分量,这个变轴垂直于Z轴和OA所在的平面。
L Li ri pi
i i
由于位矢r垂直于角动量L,质点的运动是在垂直于L的平面内运动。
15
两体或多体绕质心的转动也可看成一个转子
z
y
x
1 2 1 2 (p 2 p ) 2I sin 角动量沿Z轴,质点在X,Y平面上,平面转子:
3. 可以分辨:经典全同粒子可以分辨。 具有完全相同属性(质量、电荷、自旋等)的同类粒子 称为全同粒子。 4. 能量是连续的:按照经典力学的观点,在允许的能 量范围内,粒子的能量可取任何值。
3
一 μ空间(相空间) :粒子位置和动量构成的空间 经典力学: 确定一个粒子的运动状态用 r 和 p。
4
用单粒子的广义坐标和广义动量 q1, q2 , …qr, p1, p2 , …pr 为直角坐标构成2r 维空间, 称为粒子相空间 (即μ空间).
例如:单原子分子 r =3 ,μ空间是6维。 刚性双原子分子 r = 5,μ空间是10维的。
粒子在某时刻的力学运动状态(q1、…pr )可用μ空间中 的一个点表示,称为粒子运动状态的代表点。 (1)代表点: 粒子的一个微观运动状态, (2)相轨道: 粒子状态的变化, 代表点在 μ空间中的移动。 (3)N 粒子系统, 需N个代表点描述系统的一个微观状态. (4)体积元:各轴上截取dq1 , dq2 , …, dqr , dp1 , dp2 , …, dpr , 则围成μ空间中的体积元:
本章内容: 经典描述; 量子描述; 三种分布函数及相 应的微观状态数。
2
§6.1 粒子运动状态的经典描述
遵守经典力学运动规律的粒子,称为经典粒子。 1. 具有“颗粒性”:有一定的质量、电荷等性质。
、 ,可 2. 轨道运动:满足牛顿定律. 给定初时刻的 r p 确定其运动轨迹 (确定性描述)。经典粒子可以被“跟踪”。
r
1 m(r 2 r 2 2 r 2 sin 2 2 ) 2 1 考虑 r 不变: m(r 2 2 r 2 sin 2 2 ) 2 r mr 2 p m v r m r 与 , 共轭的动量
pφ mvφ r sin θ mr 2 sin 2 θ φ
② 3D自由粒子:r = 3 , 设粒子处于体积 V 中。状态由 x、 y、z、px、py、pz 确定,μ空间是 6 维的。 粒子能量 ε= ( px2 + py2 + pz2 ) / 2m 2 2 动量子空间的半径 p p2 p p x y z 2m
6
相空间的体积(动量小于p时)