2017-2018学年人教版数学九年级上学期期末模拟试题(含解析)

合集下载

2017-2018学年九年级数学期末试卷及答案

2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

四川省成都市高新区统考 2017-2018学年九年级期末数学质量检测试题及答案

四川省成都市高新区统考 2017-2018学年九年级期末数学质量检测试题及答案

2017-2018学年四川省成都市高新区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)sin30° 的值为()A.B.C.D.2.(3分)下面的几何体中,俯视图为三角形的是()A.B.C.D.3.(3分)2017年10月18 日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕.据统计,在 10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量25.3亿,把数据 25.3 亿写成科学记数法正确的是()A.25.3×108B.2.53×108C.2.53×109D.25.3×109 4.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.5.(3分)下列各点中,在反比例函数y=﹣图象上的点是()A.(1,3)B.(3,1)C.(2,)D.(﹣,2)6.(3分)如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B. =C.△ADE∽△ABC D.S△ADE =S△ABC7.(3分)二次函数y=x2﹣2x+1与x轴的交点个数为()A.0 个B.1 个C.2 个D.3 个8.(3分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°9.(3分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是()A.3 B.2.5 C.2 D.110.(3分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.(3分)在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为m.12.(3分)抛物线y=x2+1向右平移一个单位后,得到的新抛物线的解析式为.13.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,连接AC、BC、AD、CD,若∠BAC=50°,则∠ADC的度数等于.14.(3分)双曲线y=与直线y=x交于A、B两点,且A(﹣2,m),则点B 的坐标是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(6分)(1)计算:|﹣1|﹣+2cos30°+()﹣2(2)解方程:(x﹣1)2+2x﹣2=0.16.(6分)已知关于 x的方程3x2+2x﹣m=0有两个不相等的实数根.(1)求 m 的取值范围;(2)若方程的一个根为﹣1,求方程的另一个根.17.(8分)如图,某地标性大厦离小伟家 60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求该大厦 DC 的高度.(可选用数据:sin 37°≈0.60,cos37°≈0.80,tan 37°≈0.75 )18.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.19.(10分)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A、B两点,与x轴相交于C点,且△BOC的面积是.(1)求反比例函数的表达式及点A的坐标;(2)点E为线段AB上一个动点,且直线OE将△AOB的面积分成1:2的两部分,求点E的坐标.20.(10分)如图所示,P是⊙O外一点,PA是⊙的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P=α,若tanɑ=,AQ=3,求AB的长.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.若2x+y=4,x﹣=1,则4x2﹣y2= .22.如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是.23.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C 分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.24.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.25.若实数 m、n 满足m+n=mn,且n≠0时,就称点 P(m,)为“完美点”,若反比例函数y=的图象上存在两个“完美点”A、B,且 AB=4,则 k的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3480元.问第一次降价后至少要售出该种商品多少件?27.(10分)在矩形ABCD边AD上有一个动点P,点P沿AD﹣﹣﹣DC﹣﹣﹣CA 运动,并且不与点A重合,连接BP,以BP为直角边作等腰直角三角形BPQ,AB=3,AD=2.(1)如图1所示,当点P在AD边上运动时,△BPQ的边PQ与DC交于点E,当△BPQ的面积最大时,BP=;若AP:AD=1:2时,BP:PE的值为;若AP:AD=1:n时,BP:PE的值为;(2)如图2所示,当点P在DC上运动且PQ∥AC时,请求出PC的长度;(3)如图3所示,当点P运动到CA的延长线上时,PQ与射线CD交于点F,请探究PF与QF有怎样的数量关系,并说明理由.28.(12分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,4),对称轴是x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连接OA、OB、OD、BD.(1)求该二次函数的解析式;(2)求点B的坐标和坐标平面内使△EOD∽△COB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF 沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?参考答案与解析一、选择题1.【解答】解:sin30°=,故选:A.2.【解答】解:俯视图为三角形的是.故选:C.3.【解答】解:将25.3亿用科学记数法表示为:2.53×109.故选:C.4.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: =.故选:C.5.【解答】解:∵y=﹣,∴xy=﹣3,A、∵1×3=3≠﹣3,∴点(1,3)不在反比例函数y=﹣图象上,故本选项错误;B、∵3×1=3≠﹣3,∴点(3,1)不在反比例函数y=﹣图象上,故本选项错误;C、∵2×=3≠﹣3,∴点(2,)不在反比例函数y=﹣图象上,故本选项错误;D、∵﹣×2=﹣3,∴点(﹣,2)在反比例函数y=﹣图象上,故本选项正确.故选:D.6.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE∽△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE =S△ABC,D结论错误,故选:D.7.【解答】解:令y=0,则x2﹣2x+1=0,△=b2﹣4ac=(﹣2)2﹣4×1×1=4﹣4=0,所以,二次函数与x轴有1个交点.故选:B.8.【解答】解:连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.故选:C.9.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.10.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,=×OD×CD∴S△OCD=t2(0≤t≤3),即S=t2(0≤t≤3)故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.【解答】解:设旗杆高度为x米,由题意得, =,解得x=13.故答案为13.12.【解答】解:函数y=x2+1向右平移1个单位,得:y=(x﹣1)2+1;故答案为:y=(x﹣1)2+113.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故答案为:40°14.【解答】解:将A(﹣2,m)代入y=x,得m=×(﹣2)=﹣1,即A(﹣2,﹣1).将A点坐标代入y=,得k=﹣2×(﹣1)=2,反比例函数的解析式为y=.解方程组,得,,则B(2,1).故答案为(2,1).三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=﹣1﹣3+2×+4=2﹣;(2)因式分解,得(x﹣1)(x﹣1+2)=0,于是,得x﹣1=0或x+1=0,解得x1=1,x2=﹣1.16.【解答】解:(1)∵关于 x的方程3x2+2x﹣m=0有两个不相等的实数根,∴△=22﹣4×3×(﹣m)>0,解得:m>﹣,即 m 的取值范围是m>﹣;(2)设方程的另一个根为a,根据根与系数的关系得:a+(﹣1)=﹣,解得:a=﹣,即方程的另一个根为﹣.17.【解答】解:过点A作AE⊥CD于E,∵AB⊥BC,DC⊥BC,∴四边形ABCE是矩形,∵BC=60米,∴AE=BC=60米,∴在Rt△AEC中,EC=AE•tan∠EAC=60×tan37°≈45.2(米),在Rt△ADE中,∵∠D AE=45°,∴DE=AE=60(米),∴BC=DE+CE=60+45.2=105.2(米).答:该大厦的高度约为105.2米.18.【解答】解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.19.【解答】解:(1)过点B作BD⊥x轴于点D,如图所示.令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.∵△BOC的面积是,∴OC•BD=×5•BD=,解得:BD=1.结合题意可知点B的纵坐标为1,当y=1时,有1=﹣x+5,解得:x=4,∴点B的坐标为(4,1),∴k=4×1=4,即反比例函数的解析式为y=;解方程组,得,,∴点A的坐标为(1,4);(2)如图,过点E作EF⊥x轴于点F,过点A作AG⊥x轴于点G,则BD∥EF∥AG.∵点A的坐标为(1,4),点B的坐标为(4,1),∴G(1,0),D(4,0),∴GD=3.∵点E为线段AB上一个动点,∴可设E(x,﹣x+5).∵直线OE将△AOB的面积分成1:2的两部分,∴=或=2,.∴=或=.∵BD∥EF∥AG,∴=,∴GF=•GD=×3=1或GF=•GD=×3=2,∴OF=OG+GF=1+1=2或OF=OG+GF=1+2=3,∴x=2或x=3,∴﹣x+5=3或﹣x+5=2,∴点E的坐标为(2,3)或(3,2).20.【解答】(1)证明:在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PA是⊙的切线,A是切点,∴∠PAO=90°,∴∠PBO=90°,∴PB是⊙O的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO=360°,∴∠APB+∠AOB=180°.又∵∠AOQ+∠AOB=180°,∴∠AOQ=∠APB.∵OA=OB,∴∠ABQ=∠BAO=∠AOQ.∵△PAO≌△PBO,∴∠OPQ=∠OPB=∠APB,∴∠ABQ=∠OPQ.又∵∠AQB=∠OQP,∴△QAB∽△QOP,∴=,即AQ•PQ=BQ•OQ.(3)解:设AB与PO交于点E,则AE⊥PO,如图所示.∵∠AOQ=∠APB,∴tan∠AOQ=.在Rt△OAQ中,∠OAQ=90°,tan∠AOQ=,AQ=3,∴AO=4,OQ==5,∴BQ=BO+OQ=9.∵AQ•PQ=BQ•OQ,∴PQ=15,∴PA=PQ﹣AQ=12,∴PO==4.由面积法可知:AE==,∴AB=2AE=.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.22.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×2=2,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为2.故答案为2.23.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.24.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴MN=EF=cm,故答案为:.25.【解答】解:∵m+n=mn且n≠0,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,设点A、B坐标分别为(x1,y1),(x2,y2),令=x﹣1化简得x2﹣x﹣k=0,∵AB=4,∴|x1﹣x2|=2,由韦达定理x1+x2=1,x1x2=﹣k,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,∴1+4k=8,解得:k=,此时x2﹣x﹣k=0的△>0,∴k=;故答案为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3480,解得:m≥30.答:为使两次降价销售的总利润不少于3480元.第一次降价后至少要售出该种商品30件.27.【解答】解(1)∵当点P移动到点D处时,BP>BA>BC,此时BP=BD==(最大)∵△BPQ是等腰直角三角形∴△BPQ的面积=BP2=×()2=即P点运动到D点的时,△BPQ有面积的最大值.如图1,当AP:AD=1:2时,AP=PD=AD=1,由△ABP∽△DPE,∴BP:PE=AB:PD=3:1此时,AB:PD=3:1═3,当AP:AD=1:n时,AP=AD×=,∴PD=AD﹣AP=2﹣=,由△ABP∽△DPE,∴BP:PE=AB:PD=3: =3n:2(n﹣1),故答案为:,3:1,3n:2(n﹣1).(2)如图2,当PQ∥AC时,∵∠BPQ=90°,∴PB⊥PQ,∴PB⊥AC,∴∠CAB+∠ABP=90°,∠ABP+∠CBP=90°,∴∠CAB=∠CBP,∵∠ABC=∠BCP=90°,∴△ABC∽△BCP,∴=,∴=,∴PC=.(3)如图3,当点P运动到CA的延长线上时,过P作PG⊥CB于G,作PH⊥CD 于H,则∠PGB=∠PHF=90°,∠HPG=90°∵等腰直角三角形BPQ中,∠FPB=90°∴∠GPB=∠HPF∴△GPB∽△HPF∴=①∵PG∥AB,PH∥AD∴==,即==②由①②可得, =,∴PF:QF=2:1.28.【解答】解:(1)∵y=ax2+bx(a≠0)的图象经过点A(1,4),且对称轴是直线x=﹣1.5,∴,解得:,∴二次函数的解析式为y=x2+3x;(2)如图1,∵点A(1,4),线段AD平行于x轴,∴D的纵坐标为4,∴4=x2+3x,∴x1=﹣4,x2=1,∴D(﹣4,4).设直线AC的解析式为y=kx+b,由题意,得,解得:,∴y=2x+2;当2x+2=x2+3x时,解得:x1=﹣2,x2=1(舍去).∴y=﹣2.∴B(﹣2,﹣2).∴DO=4,BO=2,BD=2,OA=.∴DO2=32,BO2=8,BD2=40,∴DO2+BO2=BD2,∴△BDO为直角三角形.∵△EOD∽△AOB,∴∠EOD=∠AOB,=2,∴∠AOB﹣∠AOD=∠EOD﹣∠AOD,∴∠BOD=∠AOE=90°.即把△AOB绕着O点顺时针旋转90°,OB落在OD上B′,OA落在OE上A1∴A1(4,﹣1),∴E(8,﹣2).作△AOB关于x轴的对称图形,所得点E的坐标为(2,﹣8).∴当点E的坐标是(8,﹣2)或(2,﹣8)时,△EOD∽△AOB;(3)由(2)知DO=4,BO=2,BD=2,∠BOD=90°.若翻折后,点B落在FD的左下方,连接B′P与BD交于点H,连接B′D,如图2.S△HFP =S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,∴DH=HF,B′H=PH,∴在平行四边形B′FPD中,PD=B′F=BF=BD=;若翻折后,点B,D重合,S△HFP =S△BDP,不合题意,舍去.若翻折后,点B落在OD的右上方,连接B′F交OD于点H,连接B′D,如图3,S△HFP =S△BDP=S△BPF=S△DPF=S△B′PF=S△DHF=S△B′HP∴B′P=BP,B′F=BF,DH=HP,B′H=HF,∴四边形DFPB′是平行四边形,∴B′P=DF=BF,∴B′P=BP=B′F=BF,∴四边形B′FBP是菱形,∴FD=B′P=BP=BD=,根据勾股定理,得OP2+OB2=BP2,∴(4﹣PD)2+(2)2=()2,解得P D=3,PD=5>4(舍去),综上所述,PD=或PD=3时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的.。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)

太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)

太原市2017~2018学年第一学期九年级期末考试数学试卷说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置1.一元二次方程x 2+4x=0的一根为x=0,另一根为A.x=2B.x=-2C.x=4D.x=-4 【答案】D 【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13 B 16 C 19 D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23 B 49 C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是x 的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于x 轴对称 B.与原四边形关于原点位似,相似比为1:2 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为2:1 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x 满足的方程是A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=1 【答案】A【解析】(1+10%)(1-x)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四【解析】当k>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随X 的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随X 的增大而增大;两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形.∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________ 【答案】35【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴512AM AD =即352DM DA -= 同理可得35DN DB -=∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA=即352MN -=35MN =-14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】1:4【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+化简得4m n =∴袋中红、白两种颜色小球的数量比应为m:n=1:4 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,136) 【解析】如图,作AD ⊥x 轴,垂足为D ,CE ⊥x 轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由k 字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴1366,6,666B m n y =-===- ∴B(0,136) 三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0; 解:移项得:x 2-8x=-1 配方得:x 2-8x+42=-1+42 即(x-4)2=15直接开平方得4x -=∴原方程的根为1244x x ==DE(2)x(x-2)+x-2=0解:提取公因式(x-2)得(x-2)(x+1)=0 ∴原方程的根为122,1x x ==-17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,x 个月还清,且y 是x 的反比例函数,其图象如图所示(1)求y 与x 的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与x 之间的函数关系式为ky x= (k ≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k=解得k=60∴y 与x 之间的函数关系式为60y x= (x>0)(2)90;∵王叔叔每月偿还贷款本金y 万元,x 个月还清∴贷款金额xy=60万元 ∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元根据题意,得y=0.2,x=300由图,y ≤2000的图像位于Ⅱ区域即x ≥3000.2∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下:由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解:设这种商品的涨价x元,根据题意,得(40-30+x )(600-10x )=10000即(10+x )(60-x )=1000 ()()106070(205070,20501000)x x ++-=+=⨯= 解得x 1=10,x 2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元 答:售价应定为50元. 22.(本题12分)综合与实践: 问题情境:如图1,矩形ABCD 中,BD 为对角线,ADk AB= ,且k>1.将△ABD 以B 为旋转中心,按顺时针方向旋转,得到△FBE(点D 的对应点为点E,点A 的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含k 的式子表示); 【答案】(1)△DBE;21:1k +【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF 相似比为21BD k AB += 数学思考:(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时k 的值为______GEFD CBA B【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 603AD AB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证:CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBC OD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GEOGDA BF(4)当k=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A:当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或 【解析】如图B:当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上4m3m3m3mF DCG2m3m3mEFDC 4m3m5m3mEDACBG(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明:过点A 作AE ⊥x 轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得22AE BE +=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(k ≠0)的表达式. 【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B ’恰好落在反比例函数ky x=(k ≠0)的图象上,求m 的值,并直接写出此时S 的值【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B:若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交x 轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO2122A MN ABO S A H A H S AH AH '''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴22A H '=∴AA’=AH -A’H=4- 2即m=4- 2(4)如图3,连接BC,交AO 于点D,点P 是反比例函数ky x= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下:P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0);PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由【答案】存在,点Q 的坐标如下()()()12344,22664,10,5,(262,64)Q Q Q Q ----【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=kx ,P 2(m ,n )∴n=mk 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x =与12y x =联立解得262666x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩∴((2426,6,26,6P P --222260262Q A P O x x x x =+-=-+=,2246064Q A P O y y y y =+-==∴()22664Q 同理4(262,64)Q -- 设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --。

安庆市2017-2018年度第一学期期末教学质量调研检测九年级数学试题

安庆市2017-2018年度第一学期期末教学质量调研检测九年级数学试题

安庆市2017-2018年度第一学期期末教学质量调研检测九年级数学试题命题: 江潮 审题:何承全 叶青林时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,共40分。

1. 如图,在直角△ABC 中,∠C =90°,若AB =5,AC =4,则cosA 的值为 A . 35 B . 45C . 34D . 432. 抛物线3)2(2+-=x y 的顶点坐标是 第1题图A .(2,3) B.(-2,3) C.(2,-3) D.(-2,-3) 3、 若2:3:=b a ,且ac b =2,则c b :等于A. 4:3B. 3:2C. 2:3D. 3:44、 若△ABC 的每条边长增加各自的10%得△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变 5、下列函数中,当x >0时,y 随x 的增大而减小的是 A.x y = B.xy 1=C.x y 1-=D.2x y =6、 如图:四边形ABCD 内接于圆O, AB ∥CD, AB 为直径,DO 平分∠ADC,则∠DAO 的度数是A. 90°B.80°C. 70°D. 60°第7题图 7. 如图,二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为A .6 B.4 C.3 D.1图 1 CB A8、 如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知HD=4,BD =5,则OA 的长度为A.627 B .615C .625D .329、 足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:t0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线2t =; ③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m .其中正确结论的个数是A .1B .2C .3D .4 10、已知二次函数的图象如图所示,则正比例函数cx y =与反比例函数xacb y 42-=在同一坐标系中的大致图象是A .B .C .D .)0(2≠++=a c bx axy 第8题图二、填空题(本大题共4小题,每小题5分,满分20分)11、如图,DE ∥BC , AD ∶ DB= 2 ∶ 3 ,则ΔADE 与ΔABC 的面积之比为 。

2017-2018学年福建省泉州市九年级(上)期末数学试卷(解析版)1

2017-2018学年福建省泉州市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上相应题目的答题区域内作答)1.下列根式是最简二次根式的是( )A .B .C .D .2.下列事件中是必然发生的事件是( )A .任意画一个三角形,其内角和是180°B .某种彩票中奖率是1%,则买这种彩票100张一定会中奖C .掷一枚硬币,正面朝上D .投掷一枚质地均匀的骰子,掷得的点数是奇数3.用配方法解方程:x 2﹣4x+2=0,下列配方正确的是( )A .(x ﹣2)2=2B .(x+2)2=2C .(x ﹣2)2=﹣2D .(x ﹣2)2=64.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A .1B .C .D .5.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,某家快递公司,今年5月份与7月份完成投递的快递总件数分别为8.5万件和10万件,设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .8.5(1+2x )=10B .8.5(1+x )=10C .8.5(1+x )2=10D .8.5+8.5(1+x )+8.5(1+x )2=106.一张矩形纸片ABCD ,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG 长为( )A .2B .C .2D .17.如图,在△ABC 中,∠A=78°,AB=4,AC=6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .8.已知,a+2b=16,则c 的值为( )A .B .C .8D .29.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .B .C .D .10.设M=,N=,则M与N的关系为()A.M>N B.M<N C.M=N D.M=±N二、填空题(本大题共6小题,每小题4分,共24分把答案填在答题卡的相应位置)11.二次根式有意义,则x的取值范围是.12.如图,在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC= .13.某坡面的坡比为1:,则它的坡角是度.14.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB= .15.若一元二次方程ax2+bx+c=0中,4a﹣2b+c=0.则此方程必有一根为.16.如图,等腰△ABC中,CA=CB=6,AB=6.点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAE与△CBF,连接EF,则△CEF面积的最小值为.三、解答题(本大题9小题,共86分,解答应写出文字说明,证明过程或演算步骤,请在答题卡上相应题目的答题区城内作答)17.(8分)计算:÷﹣|4﹣3|+(﹣1)018.(8分)解方程:x(x﹣5)+6=019.(8分)先化简,再求值:(a﹣)(a+)+a(5﹣a),其中a=+1.20.(8分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.21.(8分)已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.22.(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人.(1)当25<x<40时,人均费用为元,当x≥40时,人均费用为元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?23.(10分)阅读材料,回答问题:小聪学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,请判断此时“==”的关系是否成立?答:(2)完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c,请判断此时“==”的关系是否成立?并证明你的判断.(提示:过点C作CD⊥AB于D,过点A作AH⊥BC,再结合定义或其它方法证明).24.(12分)如图,在ABC中,点D是BC边上的一个动点(不与B、C重合),BC=4,∠B=∠ADE=∠C=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.x+b与x轴、y轴相交于C、D两点,与y=交于A(m,2)、25.(14分)如图,已知直线y=k1B(﹣2,n)两点.(1)求m+n的值;(2)连接OA、OB,若tan∠AOD+tan∠BOC=1.x+b>时,请结合图象求x的取值范围;①当不等式k1②设点E在y轴上,且满足∠AEO+∠AOD=45°,求点E的坐标.2017-2018学年福建省泉州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上相应题目的答题区域内作答)1.下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【解答】解:A、=2,故此选项错误;B、=|a|,故此选项错误;C、=,故此选项错误;D、是最简二次根式,故此选项正确;故选:D.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.2.下列事件中是必然发生的事件是()A.任意画一个三角形,其内角和是180°B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖C.掷一枚硬币,正面朝上D.投掷一枚质地均匀的骰子,掷得的点数是奇数【分析】根据事先能肯定它一定会发生的事件称为必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、任意画一个三角形,其内角和是180°,是必然事件,故此选项正确;B、某种彩票中奖率是1%,则买这种彩票100张一定会中奖,是随机事件,故此选项错误;C、掷一枚硬币,正面朝上,是随机事件,故此选项错误;D、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故此选项错误;故选:A.【点评】此题主要考查了概率,以及随机事件和必然事件,关键是掌握①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.3.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2倍数.4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.5.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,某家快递公司,今年5月份与7月份完成投递的快递总件数分别为8.5万件和10万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.8.5(1+2x)=10B.8.5(1+x)=10C.8.5(1+x)2=10D.8.5+8.5(1+x)+8.5(1+x)2=10【分析】利用7月份完成投递的快递总件数=5月份完成投递的快递总件数×(1+x)2,进而得出等式求出答案.【解答】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意,得8.5(1+x)2=10,故选:C.【点评】此题主要考查了一元二次方程的应用,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.6.一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG长为()A.2B.C.2D.1【分析】首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG的长度.【解答】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选:B.【点评】本题主要考查了翻折变换以及矩形的性质,解题的关键是求出DC′的长度.7.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解A阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.8.已知,a+2b=16,则c的值为()A.B.C.8D.2【分析】设比值为k,用k表示出a、b、c,然后代入等式求出k的值,再求解即可.【解答】解:设===k(k≠0),则a=2k,b=3k,c=4k,∵a+2b=16,∴2k+6k=16,解得k=2,∴c=4×2=8.故选:C.【点评】本题考查了比例的性质,利用“设k法”求解更简便.9.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sinA===.故选:B.【点评】此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.10.设M=,N=,则M与N的关系为()A.M>N B.M<N C.M=N D.M=±N【分析】将被开方数利用平方差公式和完全平方公式计算、化简可得.【解答】解:∵M===1,N==1,∴M=N,故选:C.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握平方差公式和完全平方公式及二次根式的性质.二、填空题(本大题共6小题,每小题4分,共24分把答案填在答题卡的相应位置)11.二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.12.如图,在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC=1:4.【分析】利用三角中位线的性质得出DE AB,进而求出即可.【解答】解:∵在△ABC中,AD,BE是两条中线,∴DE AB,∴=,故答案为:1:4.【点评】此题考查了三角形中位线的性质以及相似三角形的性质,得出DE AB是解题关键.13.某坡面的坡比为1:,则它的坡角是30度.【分析】利用坡角的定义直接得出tanA=求出∠A即可.【解答】解:如图所示:∵某坡面的坡比为1:,∴tanA==,则它的坡角是:30°.故答案为:30.【点评】此题主要考查了坡角的定义,正确把握坡角的定义是解题关键.14.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB= 2.5.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k得到位似比为,然后根据相似的性质计算AB的长.【解答】解:∵A (1.5,0),D (4.5,0),∴==,∵△ABC 与△DEF 位似,原点O 是位似中心,∴==∴AB=DE=×7.5=2.5.故答案为2.5. 【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .15.若一元二次方程ax 2+bx +c=0中,4a ﹣2b +c=0.则此方程必有一根为 ﹣2 .【分析】根据一元二次方程的解的定义进行解答.【解答】解:当x=﹣2时,4a ﹣2b +c=0,则此方程必有一根为﹣2.故答案是:﹣2.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.如图,等腰△ABC 中,CA=CB=6,AB=6.点D 在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAE 与△CBF ,连接EF ,则△CEF 面积的最小值为 .【分析】作CH ⊥AB 于H .首先证明△ECF 是顶角为120°的等腰三角形,根据此线段最短可知CD 的最小值为3,延长即可解决问题;【解答】解:作CH ⊥AB 于H .∵CA=CB ,CH ⊥AB ,∴AH=BH=3,∴cos ∠CAH==,∴∠CAB=∠CBA=30°,∴∠ACB=120°,CH=AC=3,由翻折不变性可知:CD=CE=CF ,∠ACE=∠ACD ,∠BCD=∠BCF ,∴∠ECF=360°﹣120°﹣120°=120°,∴△ECF 是顶角为120°的等腰三角形,∴当CE 的长最短时,△ECF 的面积最小,根据垂线段最短可知,当CD 与CH 重合时,EC=CD=CH=3,∴S △ECF =××=,故答案为.【点评】本题考查翻折变换、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题(本大题9小题,共86分,解答应写出文字说明,证明过程或演算步骤,请在答题卡上相应题目的答题区城内作答)17.(8分)计算:÷﹣|4﹣3|+(﹣1)0【解答】解:原式=÷﹣(3﹣4)+1=3﹣3+4+1=5.18.(8分)解方程:x(x﹣5)+6=0【解答】解:∵x(x﹣5)+6=0,∴x2﹣5x+6=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得:x=2或x=3.19.(8分)先化简,再求值:(a﹣)(a+)+a(5﹣a),其中a=+1.【解答】解:(a﹣)(a+)+a(5﹣a)=a2﹣5+5a﹣a2=5a﹣5,当a=+1时,原式=5(+1)﹣5=5+5﹣5=5.20.(8分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为144度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.【解答】解:(1)如图所示为条形统计图;扇形统计图中“优秀”所对应的扇形的圆心角是(45÷15%﹣60﹣75﹣45)××360°=144°,(2)画树状图:由树状图可知:所有机会均等的结果有6种,其中符合条件的有2种,所有P(甲、丙)==,即选中的两名同学恰好是甲、丙的概率是.21.(8分)已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【分析】(1)解:设方程的另一根为t,利用根与系数的关系得到2+t=﹣a,2t=a﹣2,然后通过解方程组可得到a和t的值;(2)先计算判别式的值得到△=a2﹣4(a﹣2)=(a﹣2)2+4,然后利用非负数的性质得到△>0,则根据判别式的意义可判断不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:设方程的另一根为t,根据题意得2+t=﹣a,2t=a﹣2,所以2+t+2t=﹣2,解得t=﹣,所以a=﹣;(2)证明:△=a2﹣4(a﹣2)=a2﹣4a+8=(a﹣2)2+4,∴△>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.22.(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人.(1)当25<x<40时,人均费用为1000﹣20(x﹣25)元,当x≥40时,人均费用为700元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?【分析】(1)求出当人均旅游费为700元时员工人数,再根据给定的收费标准即可求出结论;(2)由25×1000<27000<40×700可得出25<x<40,由总价=单价×数量结合(1)的结论,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)∵25+(1000﹣700)÷20=40(人),∴当25<x<40时,人均费用为[1000﹣20(x﹣25)]元,当x≥40时,人均费用为700元.故答案为:1000﹣20(x﹣25);700.(2)∵25×1000<27000<40×700,∴25<x<40.由题意得:x[1000﹣20(x﹣25)]=27000,整理得:x2﹣75x+1350=0,解得:x1=30,x2=45(不合题意,舍去).答:该单位这次共有30名员工去旅游.【点评】本题考查了列代数式以及一元二次方程的应用,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.23.(10分)阅读材料,回答问题:小聪学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,请判断此时“==”的关系是否成立?答:成立(2)完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c,请判断此时“==”的关系是否成立?并证明你的判断.(提示:过点C作CD⊥AB于D,过点A作AH⊥BC,再结合定义或其它方法证明).【分析】(1)因为=c,=c,=c,推出“==”成立,(2)作CD⊥AB于D.在Rt△ADC和Rt△BDC中,∠ADC=∠BDC=90°,可得sinA=,sinB=,推出=,=,可得=,同理,作AH⊥BC于H,可证=,即可解决问题;【解答】解:(1)∵=c,=c,=c,∴“==”成立,故答案为成立.(2)作CD⊥AB于D.∵在Rt△ADC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=,∴=, =,∴=,同理,作AH ⊥BC 于H ,可证=,∴==.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考创新题目.24.(12分)如图,在ABC 中,点D 是BC 边上的一个动点(不与B 、C 重合),BC=4,∠B=∠ADE=∠C=30°. (1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.【分析】(1)先判断出∠ADC=∠EDC ,即可得出结论;(2)先求出AB=4,借助(1)的△ABD ∽△DCE ,得出比例式,代入化简即可得出结论; (3)分三种情况:利用等腰三角形的性质,建立方程求解即可得出结论. 【解答】解:(1)∵∠B=∠ADE ,∠ADC=∠B +∠BAD=∠ADE +∠EDC , ∴∠ADC=∠EDC ,∵∠B=∠C ,∴△ABD ∽△DCE ;(2)如图1,过点A 作AF ⊥BC 于F ,∴BF=BC=2,∵∠B=∠C=30°,∴AB=AC==4,∵△ABD ∽△DCE ,∴,即,∴y=x 2﹣x +4(0<x <4);(3)①当AD=DE时,如图2,由(1)知,△ABD∽△DCE,∴=1,∴AB=CD,∴4=4﹣x,∴x=4﹣4,代入y=x2﹣x+4中,解得,y=8﹣4,即:AE=8﹣4;②当AE=ED时,如图3,∠EAD=∠EDA=30°,∴∠AED=120°,∴∠DEC=60°,∠EDC=90°,∴ED=EC,∴y=(4﹣y),∴y=,即:AE=;③当AD=AE时,∠AED=∠EDA=30°,此时点D与点B重合,不符合题意,此种情况不存在,即:AE的长为(8﹣4)和.【点评】此题是相似形综合题,主要考查了相似三角形的判定和性质,锐角三角函数,等腰三角形的性质,用方程的思想解决问题是解本题的关键.25.(14分)如图,已知直线y=k1x+b与x轴、y轴相交于C、D两点,与y=交于A(m,2)、B(﹣2,n)两点.(1)求m+n的值;(2)连接OA、OB,若tan∠AOD+tan∠BOC=1.①当不等式k1x+b>时,请结合图象求x的取值范围;②设点E在y轴上,且满足∠AEO+∠AOD=45°,求点E的坐标.【分析】(1)利用点A,B在反比例函数上,代入反比例函数解析式中即可得出结论;(2)①先表示出tan∠AOD和tan∠BOC,进而用tan∠AOD+tan∠BOC=1,建立方程借助m+n=0,求出m,n即可得出点A,B坐标,最后利用图象即可得出结论;②分两种情况,Ⅰ、当点E在AM上方时,先求出AO==,再判断出△AOM∽△E1ON,即可求出m的值.最后利用勾股定理求出OE1即可得出结论;Ⅱ、当点E在AM下方时,利用对称性即可得出结论;【解答】解:∵点A(m,2),B(﹣2,n)在反比例函数y=,∴k2=2m,k2=﹣2n,∴2m+2n=0,∴m+n=0;(2)①如图1,过点A作AM⊥y轴于M,过点B作BF⊥x轴于F,在Rt△AOM中,tan∠AOM==,在Rt△BOF中,tan∠BOF===﹣,∵tan∠AOD+tan∠BOC=1,∴+(﹣)=1,∴m﹣n=2,∵m+n=0,∴m=1,n=﹣1,∴A(1,2),B(﹣2,﹣1),∵k1x+b>,∴y1>y2,∴当x>1或﹣2<x<0时,k1x+b>;②如图2,Ⅰ、当点E在AM上方时,过点E1作E1N⊥OA交OA的延长线于N,由题意知,∠E1AN=45°,∴∠E1AN=∠AE1N=45°,∴E1N=AN,在Rt△OAM中,AM=1,OM=2,∴AO==,设E1N=AN=m,∴ON=OA+AN=+m,∵∠AOM=∠E1ON,∠AMO=∠E1NO,ON,∴△AOM∽△E∴,∴,∴m=,由勾股定理得,E1A=,E1M=3,∴OE1=5,∴E1(0,5);Ⅱ、当点E在AM下方时,由对称性得,E2M=E1M=3,∴OE2=1,∴E2(0,﹣1),综合可知,点E的坐标为(0,5)或(0,﹣1).【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,锐角三角函数的定义,特殊角的三角函数值,勾股定理,相似三角形的判定和性质,对称的性质,构造出相似三角形和直角三角形是解本题的关键.。

江苏省张家港市2017—2018学年第一学期初三数学期末考试试卷(解析版)

2017—2018学年第一学期初三数学期末考试试卷满分130分,考试时间120分钟;一、选择题(本大题共有10小题,每小题3分,共30分.)1. 方程的解是( )A. x=0B. x=2C. x=0或x=2D. x=0或x=- 2【答案】D【解析】试题分析:原方程已化为了方程左边为两个一次因式的乘积,方程的右边为0的形式;可令每一个一次因式为零,得到两个一元一次方程,从而求出原方程的解.解:由题意,得:x=0或x﹣2=0,解得x=0或x=2;故选D.考点:解一元二次方程-因式分解法.2. 有一组数据:6,4,6,5,3,则这组数据的平均数、众数、中位数分别是( )A. 4.8,6,5B. 5,5,5C. 4.8,6,6D. 5,6,5【答案】A【解析】试题解析:这组数据按照从小到大的顺序排列为:3,4,5,6,6,则平均数为:众数为:6,中位数为:5.故选A.点睛:根据众数、中位数、平均数的概念求解.3. 将抛物线先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线对应的函数表达式是( )A. B.C. D.【解析】试题分析:本题考查二次函数的图象与几何变换.熟知函数图象平移的法则是解答此题的关键.根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.由“左加右减”的原则可知,将抛物线y=3x2先向左平移2个单位可得到抛物线y=3(x+2)2;由“上加下减”的原则可知,将抛物线y=3(x+2)2先向下平移1个单位可得到抛物线y=3(x+2)2-1.故选A.考点:二次函数的图象与几何变换.4. 在Rt△ABC中,∠C=90°,BC=l,AC=2,那么cosB的值是( )A. 2B.C.D.【答案】C【解析】试题解析:在Rt,△ABC中,∠C=90∘,AC=2,BC=1,由勾股定理,得故选C.5. 若二次函数的图像经过点(-1,),(,),则与的大小关系为( )A. >B. =C. <D. 不能确定【答案】A【解析】试题解析:当时,当时,故选A.6. 某商店6月份的利润是4800元,8月份的利润达到6500元.设平均每月利润增长的百分率为石,可列方程为( )A. B.C. D.【解析】试题解析:设平均每月利润增长的百分率为,根据题意可列方程为:故选B.7. 二次函数的图象如图所示,则下列结论中正确的是( )A. B. 当时,C. D. 当时,随的增大而增大【答案】B【解析】试题解析:A. 抛物线的开口方向向下,则a<0.故A选项错误;B. 根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是−1,则抛物线与x轴的另一交点的横坐标是3,所以当−1<x<3时,y>0.故此选项正确;C. 根据图示知,该抛物线的对称轴为:整理得:故此选项错误;D. 根据图示知,当时,y随x的增大而减小,故此选项错误;故选:B.8. 如图,为⊙的直径,点在⊙上.若,则等于( )A. 75°B. 95°C. 100°D. 105°【答案】A【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.9. 已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是( )A. 外离B. 外切C. 相交D. 内含【答案】B【解析】试题解析:由题中有两个相等的实数根可得,即R+r=d,由圆与圆的位置关系判定法则可知,两圆的位置关系是外切.故选B.10. 如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A. B. C. D.【答案】B【解析】试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.∵△PCD的周长等于3r,∴PA=PB=.∵⊙O的半径为r,∴在Rt△APO中,由勾股定理得. ∴.∵∠OHA=∠OAP=90º, ∠HOA=∠AOP,∴△HOA∽△AOP. ∴,即.∴.∴.∵∠AGH=2∠APO=∠APB, ∴.故选B.考点:1.切线的性质;2.切线长定理;3.勾股定理;4.相似三角形的判定和性质;5.锐角三角函数定义;6.直角三角形斜边上中线的性质;7.转换思想的应用.视频二、填空题:(本大题共8小题,每小题3分,共24分)11. 已知,则锐角的度数是_________.【答案】30°【解析】根据特殊角的三角函数值,可知∠A=30°.故答案为:30°.12. 抛物线的最小值是_________.【答案】2【解析】试题解析:根据二次函数的性质,当x=1时,二次函数的最小值是2.故答案为:2.【答案】-2【解析】试题解析:二次函数与轴的交点为(0,-4),∴m−2=-4,解得:m=-2.故答案为:-2.14. 如图,在中,点是边的中点,交对角线于点,则等于___________.【答案】1:2【解析】试题解析:∵四边形ABCD是平行四边形,∴AD BC,AD=BC,∴△DEF∽△DCF,∵点E是边AD的中点,故答案为:1:2.点睛:相似三角形对应边的比相等.15. 如图,电线杆上的路灯距离地面8米,身高1. 6米的小明()站在距离电线杆的底部(点)20米的处,则小明的影子长为________米.【答案】5【解析】试题解析:由题意得,即解得:AM=5.故答案为:5.16. 一圆锥的母线长为6cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径r为______cm.【答案】2【解析】圆锥的侧面积为扇形,扇形的面积公式为:,代入求解即可.圆锥的侧面积==12πcm2.17. 如图,四边形为菱形,点在以点为圆心的上,若cm, ,则的长为_______.【答案】【解析】试题解析:如图,连接OB.由题意可知OA=OB=OC=OF=2cm,∴△AOB,△BOC是等边三角形,∵∠1=∠2,的长为故答案为:18. 如图,为⊙的直径, 为⊙上一点,弦平分,交于点,,则的长为________.【答案】【解析】试题解析:如图,连接BD、CD,∵AB为的直径,∵弦AD平分∠BAC,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,即解得故答案为:三、解答题:(本大题共10小题,共76分)19. 计算: .【答案】2【解析】试题分析:按照实数的运算顺序进行运算即可.试题解析:原式20. 解不等式组:【答案】3≤x<4【解析】试题分析:分别求出各不等式的解集,再求出其公共解集即可.试题解析:由①得,由②得,x<4,故此不等式组的解集为:.....................【答案】7【解析】试题分析:先去括号,合并同类项,把字母的值代入运算即可.试题解析:原式当时,原式22. 南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向海里的C处,为了防止某国海巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A,C之间的距离.【答案】20【解析】试题分析:作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.试题解析:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=,CD+BD=BC,即x+x=,解得:x=20,∴AC=x=(海里).答:A.C之间的距离为海里.考点:解直角三角形的应用-方向角问题.23. 如图,在中,点在边上,.点在边上,.(1)求证: ;(2)若,求的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)由CE=CD,推出推出由即可证明.(2)由(1)△ABD∽△CAE,得到把代入计算即可解决问题.试题解析:(1)证明:∵CE=CD,∴∠CDE=∠CED.∴∠ADB=∠CEA.∵∠DAC=∠B,∴△ABD∽△CAE.(2)由(1)△ABD∽△CAE,∴.∵AB=6,AC=,BD=2,∴AE=.24. 如图,在中,,点在斜边上,以为直径的⊙与相切于.若.(1)求⊙的半径;(2)求图中阴影部分的面积.【答案】(1)6;(2)【解析】试题分析:(1)利用切线的性质结合勾股定理求出r的值即可;(2)首先得出为等边三角形,再利用S阴影=S扇形AOD-S△AOD求出即可.试题解析:(1)连接OD,∵与BC相切于点D,设的半径为r,在中,解得:(2)连接DE,过点O作于点H,由(1)知,则故为等边三角形,则则∵O是AE中点,∴S阴影=S扇形AOD-S△AOD=.25. 已知二次函数.(1)证明:不论取何值,该函数图像与轴总有公共点;(2)若该函数的图像与轴交于点(0,3),求出顶点坐标并画出该函数图像;(3)在(2)的条件下,观察图像,解答下列问题:①不等式的的解集是 ;②若一元二次方程有两个不相等的实数根,则的取值范围是 ;③若一元二次方程在的范围内有实数根,则的取值范围是 .【答案】(1)证明见解析;(2)顶点(1,4);作图略(3)①0<x<2;②k<4;③-5<t≤4【解析】试题分析:(1)令y=0得到关于x的方程,找出相应的a,b及c的值,表示出,整理配方后,根据完全平方式大于等于0,判断出大于等于0,可得出抛物线与x轴总有交点,得证;(2)由抛物线与y轴交于(0,3),将x=0,y=3代入抛物线解析式,求出m的值,进而确定出抛物线解析式,配方后找出顶点坐标,根据确定出的解析式列出相应的表格,由表格得出7个点的坐标,在平面直角坐标系中描出7个点,然后用平滑的曲线作出抛物线的图象,如图所示;(3)由图象和解析式即可可求得.试题解析:(1)∴不论m取何值,该函数图象与x轴总有公共点,(2)∵该函数的图象与y轴交于点(0,3),∴把x=0,y=3代入解析式得:m=3,∴顶点坐标为(1,4);列表如下:x −2−10 1 2 3 4y −50 3 4 3 0 −5描点;画图如下:(3)根据图象可知:①不等式的解集是:0<x<2,②由抛物线的解析式可知若一元二次方程有两个不相等的实数根,则k的取值范围是:k<4,③若一元二次方程在−1<x<4的范围内有实数根,t的取值就是函数在−1<x<4的范围内的函数值,由图象可知在−1<x<4的范围内,故故答案为0<x<2,k<4,26. 如图,在⊙O中,两条弦AC,BD垂直相交于点E,等腰△CFG内接于⊙O,FH为⊙O直径,且AB=6,CD=8.(1)求⊙的半径;(2)若CF=CG=9,求图中四边形CFGH的面积.【答案】(1)5(2)【解析】试题分析:连接DO并延长,交与,连接设的半径为则又因为AC垂直于BD,则平行故,于是.,而AB=6,CD=8,即连接CO并延长,交与,连接根据四边形CFGH的面积试题解析:连接DO并延长,交与,连接设的半径为根据题意可得:是的中点,是的中点,又因为AC垂直于BD,则平行故,于是.,连接CO并延长,交与,与交于点连接根据勾股定理可得:根据面积相等可得:解得:四边形CFGH的面积27. 如图,已知一条直线过点,且与抛物线交于A、B两点,其中点A的横坐标是-2.⑴求这条直线的函数关系式及点B的坐标;⑵在轴上是否存在点C,使得 ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;⑶.过线段AB上一点P,作PM∥轴,交抛物线于点M,点M在第一象限;点,当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?【答案】(1) y=x+4,(8,16);(2) 存在,C的坐标为(−,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是18.【解析】试题分析:(1)、根据点A在二次函数上求出点A的坐标,然后利用待定系数法求出一次函数的解析式,根据一次函数和二次函数的交点坐标求出求出点B的坐标;(2)、根据点A和点B的坐标求出的值,设点C的坐标为(m,0),然后分别求出和的值,然后根据勾股定理分三种情况进行讨论,分别求出m的值,得出点C的坐标;(3)、设点M的坐标为:(a,),MP与y轴交于点Q,根据Rt△MQN的勾股定理求出MN的长度,根据点P和点M的纵坐标相等得出点P的横坐标为,从而得出MN+3MP关于a的函数解析式,然后利用二次函数的性质得出最大值.试题解析:(1)、∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得:,解得:,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)、如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5, BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,),设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN=,又∵点P与点M纵坐标相同,∴+4=,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣+3a+9,∴当a=﹣=6,又∵﹣2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.点睛:本题主要考查的就是二次函数的增减性,直角三角形的勾股定理以及分类讨论思想的应用,属于中上难度的题目.解决这个问题的时候,我们必须要掌握在平面直角坐标系中两点之间的距离公式,即d=.在直角三角形的分类讨论时,我们首先一定要找准直角,然后根据勾股定理进行计算.28. 如图,在平面直角坐标系中,,线段在轴上,=12,点的坐标为(-3,0),线段交轴于点,过作于,动点从原点出发,以每秒3个单位的速度沿轴向右运动,设运动的时间为秒.(1)点的坐标为( , );(2)当是等腰三角形时,求的值;(3)若点运动的同时,以为位似中心向右放大,且点向右运动的速度为每秒2个单位,放大的同时高也随之放大,当以为直径的圆与动线段所在直线相切,求的值和此时C点的坐标.【答案】(1)点的坐标为(0,4);(2) t=或t=1或t=; (3)当t=1时F与动线段AD所在直线相切,此时C(11,0).【解析】试题分析:首先求出直线AB的解析式,直接求得的坐标.(2)进而分别利用①当BE=BP时,②当EB=EP时,③当PB=PE时,得出t的值即可;(3)首先得出再利用在中:,进而求出t的值以及C点坐标.试题解析:.(1)∵AB=AC,AD⊥BC,∴BD=CD=6,∵AB=10,∴AD=8,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴BE=5,(2)当△BPE是等腰三角形有三种情况:①当BE=BP时,3+3t=5,解得:t=;②当EB=EP时,3t=3,解得:t=1;③当PB=PE时,∵PB=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴,∴,解得:t=,综上:t=或t=1或t=;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD,FG⊥OP,∵FG∥EO,∴△PGF∽△POE,∴PG=OG=t,FG=EO=2,∴F(t,2),∴FH=GD=OD−OG=3+t−t=3−t,∵F与动线段AD所在直线相切,FH=12EP=3−t,在Rt△EOP中:∴4(3−t)²=(3t)²+16,解得:(舍去),∴当t=1时F与动线段AD所在直线相切,此时C(11,0).。

2017-2018学年上海市松江区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市松江区九年级第一学期期末质量调研数学测试卷一、选择题(本大题共6题,每题4分,满分24分)1、已知13a b =,那么a a b +的值为( ) 【A 】13【B 】23【C 】14【D 】34【答案】C【解析】令k b k a 3.==代入2、下列函数中,属于二次函数的是( )【A 】3y x =-【B 】()221y x x =-+【C 】()11y x x =-- 【D 】21y x=【答案】C 【解析】二次函数定义3、已知飞机离水平地面的高度为5千米,在飞机上测得该水平地面上某观测目标A 的俯角为α,那么这时飞机与目标A 的距离为( )【A 】5sin α【B 】5sin α【C 】5cos α【D 】5cos α【答案】A 【解析】三角比4、已知非零向量a ,b ,c ,在下列条件中,不能判定a ∥b 的是( )【A 】a ∥c ,b ∥c【B 】a =2c ,b =3c【C 】a =5b -【D 】a =2b【答案】D【解析】向量5、在△ABC 中,边BC =6,高AD =4,正方形EFGH 的顶点E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么这个正方形的边长等于( )【A 】3【B 】2.5【C 】2.4【D 】2 【答案】C【解析】证ABC AEH ∆∆∽6、如图,已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,:AD BD =2:1,点F 在AC 上,:AF FC =1:2,联结BF ,交DE 于点G ,那么:DG GE 等于( )【A 】1:2【B 】1:3【C 】2:3【D 】2:5【答案】B【解析】三角形一边的平行线二、填空题(本大题共12题,每题4分,满分48分)7、已知线段14==b a ,,如果线段c 是线段b a 、的比例中项,那么c = .【答案】2【解析】0,2>c b a c ⋅=8、在比例尺是15000000:1的地图上,测得甲乙两地的距离是2厘米,那么甲乙两地的实际距离 是 千米.【答案】300【解析】注意单位换算9、如果抛物线1)2(2-++=x x a y 的开口向下,那么a 的取值范围是 . 【答案】2-<a【解析】开口向下,02<+a10、如果一个斜坡的坡度3:1=i ,那么该斜坡的坡角为 度。

河南省洛阳市2017-2018学年九年级上期末数学试卷(含答案解析)

2017-2018学年河南省洛阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017-2018学年河南省洛阳市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;.(3)过点B作BC⊥x轴,垂足为C,求S△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S=×2×5=5.△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C ,D 的坐标,进而可得出0<m <4,由点P 的横坐标为m 可得出点P ,E 的坐标,进而可得出PE =﹣m 2+m +2,再利用二次函数的性质即可解决最值问题;(3)分PE 为对角线、PC 为对角线、CD 为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P ,C ,D 的坐标可求出点Q 的坐标,此题得解. 【解答】解:(1)将A (﹣1,0),B (5,0)代入y =﹣x 2+bx +c ,得:,解得:,∴抛物线的解析式为y =﹣x 2+4x +5.(2)∵直线y =﹣x +3与y 轴交于点C ,与x 轴交于点D , ∴点C 的坐标为(0,3),点D 的坐标为(4,0), ∴0<m <4.∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+4m +5),点E 的坐标为(m ,﹣ m +3),∴PE =﹣m 2+4m +5﹣(﹣m +3)=﹣m 2+m +2=﹣(m ﹣)2+.∵﹣1<0,0<<4,∴当m =时,PE 最长.(3)由(2)可知,点P 的坐标为(,).以P 、Q 、C 、D 为顶点的四边形是平行四边形分三种情况(如图所示):①以PD 为对角线,∵点P 的坐标为(,),点D 的坐标为(4,0),点C 的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济宁市坟上县康驿二中2017-2018学年九年级数学上学期期
末模拟试题
一、精心选一选(每小题3分,共30分)
1.下列函数中,自变量x的取值范围是x≥2的是()
A.y=﹣B.y=C.y=D.y=
2.如图,∠BOD的度数是()
A.55° B.110°C.125°D.150°
3.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()
A.55° B.60° C.65° D.70°
4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()
A.6 B.16 C.18 D.24
5.化简:x的结果是()
A.B.C.﹣D.﹣
6.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根
B.有两个负根
C.有一正根一负根且正根绝对值大
D.有一正根一负根且负根绝对值大
7.在△ABC中,∠A=50°,O为△ABC的内心,则∠BOC的度数是()
A.115°B.65° C.130°D.155°
8.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠1
9.两圆的圆心坐标分别为(3,0)、(0,4),它们的直径分别为4和6,则这两圆的位置关系是()
A.外离 B.相交 C.外切 D.内切
10.以下命题正确的是()
A.圆的切线一定垂直于半径
B.圆的内接平行四边形一定是正方形
C.直角三角形的外心一定也是它的内心
D.任意一个三角形的内心一定在这个三角形内
二、耐心填一填(每小题4分,共36分)
11.方程x2﹣6x+4=0的两个实根分别为x1、x2,那么(x1﹣x2)2的值为.
12.如图,在⊙O中,直径AB⊥弦CD于E,若EB=1cm,CD=4cm,则弦心距OE的长是cm.
13.已知等边三角形的边长是4,则它的一边上的高是,外接圆半径是.
14.(1)()2= ;(2)= .
15.已知圆锥的母线长为4cm,底面圆的半径为3cm,则此圆锥的侧面积是cm2.16.已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为.17.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a= ,b= .
18.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离cm.
19.如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=40°,点C是⊙O上不同于A、B的任意一点,则∠ACB的度数为.
三、解答题
20.解方程:
(1)x2﹣3x﹣5=0(用配方法);
(2)(2x﹣3)2=x2.
21.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC;
①将△ABC向x轴正方向平移5个单位得△A1B1C1,
②再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明
对应字母.
22.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.
(1)求证:BC是⊙O切线;。

相关文档
最新文档