荧光材料基本知识
led的基本知识

LED半导体发光二极管工作原理、特性及应用半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。
事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。
一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN结。
因此它具有一般P-N结的I-N 特性,即正向导通,反向 截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相对于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。
若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。
比红光波长长的光为红外光。
现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
(二)LED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
光的知识

光的知识主要内容:1. 光学重要的术语2. 三原色3. 光谱图4. 物体的颜色5. LED基础知识6. LED主要参数与特性1. 光学重要的术语正如其它所有科技行业一样,照明行业也有其专业术语。
这些特殊的用语和概念可以明确定义光源和灯具的特征,并使测量单位标准化,下面是对其中最重要的术语的说明。
光线和辐射(Light and radiation)光是电磁波辐射(能量从一个物体传播到另一个物体,在传播过程无需任何媒介。
这种能量传播方式被称为辐射)到人的眼睛,经视觉神经转换为光线,即能被肉眼看见的那部份光谱。
这类射线的波长范围在360到830nm之间,仅仅是电磁辐射光谱非常小的一部份。
温度远远高于50Hz工作时的温度,从而产生更高色温的白色色表和更好的显色性。
光通量Φ (Luminous flux,Φ)单位:流明(lumen, lm)光源发射并被人的眼睛接收的能量之总和即为光通量(Φ)。
一般情况下,同类型的灯的功率越高,光通量也越大。
例如:一只40W的普通白炽灯的光通量为350~470lm,而一只40W的普通直管形荧光灯的光通量为2800lm左右,为白炽灯的6~8倍。
光强l (luminous intensity, I )单位:坎德拉(candela, cd)一般来讲,光线都是向不同方向发射的,并且强度各异。
可见光在某一特定方向角内所发射的强度就叫做光强(l)。
发光强度:是光通量的空间密度,即单位立体角的光通量,也就是衡量光源发光强弱程度的量。
光强分布图光强(l)是指在某一特定方向光线和辐射一支蜡烛的发光强度约为1cd, 100W普通白炽灯的发光强度约为100cd。
光亮度B(简称亮度)单位:坎德拉每平方米cd/m² , 或尼特nt, 熙提sb1nt尼特=cd/m² ,1sb熙提=10000nt尼特。
用公式表示:B = IQ ΔS·CoSQ单元表面在某一方向上的光强密度,它等于该方向上的发光强度和此表面在该方向上的投影面积之比。
有机化学基础知识点共轭体系的吸收光谱和荧光光谱

有机化学基础知识点共轭体系的吸收光谱和荧光光谱有机化学基础知识点:共轭体系的吸收光谱和荧光光谱共轭体系是有机分子中的一种特殊结构,它具有特殊的电子共享方式,使得分子中的π电子能够在分子内部运动,形成共轭体系。
共轭体系的存在对有机分子的吸收光谱和荧光光谱具有重要影响。
本文将讨论共轭体系的吸收光谱和荧光光谱,并探讨其背后的物理原理。
1. 吸收光谱1.1 低能π→π*跃迁和n→π*跃迁共轭体系能够吸收紫外可见光的原因在于其中的π电子可以发生跃迁。
其中,低能π→π*跃迁发生在具有共轭体系的化合物中,当一个π电子从空轨道跃迁至共轭体系的空π*轨道时,吸收了光的能量。
另一方面,n→π*跃迁发生在化合物中存在非共轭的孤对电子或非共轭的π电子与非共轭π*轨道之间的跃迁,同样能够吸收光的能量。
1.2 共轭体系的共振效应共轭体系由多个具有相同间隔的共轭键构成,共轭键上的π电子能够在分子中运动,并形成共振结构。
共振结构使得共轭体系具有较低的能量,能够吸收更长波长的光。
其共振频率与共振结构的稳定程度有关,当分子中存在更多共振结构时,共振频率越低。
这就解释了共轭体系吸收光谱中的颜色从紫外光到可见光逐渐变化的原因。
2. 荧光光谱共轭体系由于π电子的运动,使得分子具有相对较低的激发能级和高的激发态寿命。
当共轭体系吸收光的能量后,部分电子从基态跃迁至激发态。
在激发态中,共轭体系中的π电子能够在分子内自由运动,并通过非辐射跃迁的方式回到基态。
这种非辐射跃迁的过程会导致能量的损失,使得部分能量以荧光的形式被发射出来。
荧光光谱是荧光发射产生的光谱,在荧光光谱中,发射的波长通常比吸收光谱的波长长。
这是由于非辐射跃迁过程中能量的损失造成的。
荧光光谱的形状和强度与共轭体系的结构以及分子中其他基团的影响有关。
不同的共轭体系和取代基团会导致不同的能级分布和能量损失,进而影响荧光光谱的特性。
3. 共轭体系的应用共轭体系在化学和生物学领域具有广泛的应用。
LED灯基本知识

LED灯的封装工艺
LED灯的结构
芯片
反光杯
环氧树脂透镜 绑定金线
PCB板
支架(阴极)
支架(阳极)
LED灯的封装工艺
工艺流程
LED灯的封装工艺
固晶作业
先在LED支架上点上银胶(绝缘胶), 然后用真空吸嘴将LED芯片吸起移动位置, 再安置在相应的支架位置上。
LED灯的封装工艺
焊线作业
LED灯的主要形式
按封装形式分
点阵LED (Dot Matrix)
按颜色分:单红,单绿,双基色,三基色等; 按孔的直径分:Φ2.0、 Φ3.0、Φ3.75、Φ5.0等; 按点数分:5*7,8*8,16*16等
LED灯的主要形式
按封装形式分
功率型封装LED( HP LED):
LED灯基本知识讲义目录
LED的主要应用
背光源
LED作为背光源已普遍运用于手机、电脑、手持掌上电子产品及汽车、飞机仪表盘等众多领域。
LED的主要应用
交通灯
由于红、黄、绿光LED有亮度高、寿命长、省电等优点,在交通信号灯市场的需求大幅增加。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色 的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
按发光管出光面特征分
按发光管出光面特征分正圆灯、椭圆灯、方灯、矩形、面发光管、 侧向管、表面安装用微型管等。
LED灯的主要形式
按发光管结构分
按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底 座环氧封装及玻璃封装等结构。
什么是LED?
LED技术的发展历程
半导体照明问世已有40多年,根据其发光强度及运其用途大致可以将LED 的发展分为三个阶段:
LED常识

led节能灯百科名片LED即半导体发光二极管,LED节能灯是用高亮度白色发光二极管发光源,光效高、耗电少,寿命长、易控制、免维护、安全环保;是新一代固体冷光源,光色柔和、艳丽、丰富多彩、低损耗、低能耗,绿色环保,适用家庭,商场,银行,医院,宾馆,饭店他各种公共场所长时间照明。
无闪直流电,对眼睛起到很好的保护作用,是台灯,手电的最佳选择。
目录小功率LED节能灯(16张)的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。
半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N 型半导体,在这边主要是电子。
但这两种半导体连接起来的时候,它们之间就形成一个P-N结。
当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。
而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。
LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。
发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p 型半导体和n型半导体之间有一个过渡层,称为p-n结。
在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。
PN结加反向电压,少数载流子难以注入,故不发光。
这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。
当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。
蓝色LED(blue light emitting diodes)相关知识介绍

指蓝色发光二极管。
发光波长的中心为470nm前后。
用于照明器具和指示器等蓝色显示部分的光源、LED显示屏的蓝色光源以及液晶面板的背照灯光源等。
与荧光体材料组合使用可得到白色光。
目前的白色LED一般采用蓝色LED与荧光材料相组合的构造。
蓝色LED得以广泛应用的契机,是日亚化学工业于1993年12月在业内首次开发出了光强达1cd以上的品种。
而在此之前,还没有蓝色纯度较高且具有实用光强的LED。
因此,采用LED的大尺寸显示屏无法实现全彩显示。
蓝色LED的材料使用氮化镓(GaN)类半导体。
以前曾盛行用硒化锌(ZnSe)类半导体开发蓝色LED,但自从1993年12月采用GaN类半导体的高亮度蓝色LED被开发出来后,蓝色LED的主流就变成了采用GaN类半导体的产品。
蓝色LED的构造为,在蓝宝石或者SiC底板等的表面上,重叠层积氮化铝(AlN)半导体层和GaN类半导体层。
在称为活性层、发蓝色光的部分设置了使p型GaN类半导体层和n 型GaN类半导体层重叠的构造。
pn结是制作高亮度LED所必须采用的构造。
在使用GaN以外材料的红色等LED中,pn 结很早以前就是主流构造。
而在1993年高亮度蓝色LED面世之前,采用GaN类材料难以实现pn结。
原因是制成n型GaN类半导体层虽较为简单,但p型GaN系半导体层的制作则较为困难。
之后,通过对在p型GaN类半导体层和n型GaN类半导体层之间配置的Ga N类半导体层采用多重量子阱构造,并进一步改善GaN类半导体层的质量,光强获得了大幅提高。
蓝色LED的大型投资不断,开始出现供过于求担忧目前,LED背照灯在液晶电视、个人电脑和液晶显示器领域迅速普及。
大部分需求为白色L ED,而作为其基础的蓝色LED则开始供应不足。
为此,不仅是LED专业厂商,就连购买LED的显示器厂商也开始自行扩大生产白色LED和蓝色LED。
例如,除了韩国三星电子对三星LED的LED芯片积极投资外,韩国LG显示器等液晶面板厂商也开始强化LED生产。
有关发光的基本知识
有关发光的基本知识
一种物质由电子激发态回复到基态时,释放出的能量表现为光的发射,称为发光(luminescence)。
发光可分为三种类型:光照发光、生物
发光和化学发光。
1.光照发光(photoluminescence)发光剂经短波长入射光照射
后进入激发态,当回复至基态时发出较长波长的可见光(见第十七章)。
2.生物发光(bioluminescence)典型例子为萤火虫发光。
反应
底物为萤火虫光素(fireflyluciferin),在荧光素酶(luciferase)的催化下利用ATP产能,生成激发态的氧化荧光素(oxyluciferin),
后者在回复到基态时多余的能量以光子形式放出。
反应式如下:
3.化学发光(chemiluminescence)在常温下由化学反应产生的
光的发射。
化学发光是一个多步骤的过程,其机制为某些化合物(发
光剂或发光底物)可以利用一个化学反应产生的能量使其产物分子或
反应中间态分子上升至电子激态。
当此产物分子或中间态分子衰退至
基态时,以发射光子的形式释放能量(即发光)。
本章主要叙述化学
发光免疫技术。
NaI(Tl)闪烁晶体基本知识
NaI(Tl)闪烁晶体基本知识附录⼀NaI(Tl)闪烁晶体闪烁体按其化学性质可分为两类:⼀类是⽆机晶体闪烁体,通常是含有少量杂质(称为激活剂)的⽆机盐晶体,如碘化钠(铊激活)单晶体、即NaI(Tl),碘化铯(铊激活)单晶体、即CsI(Tl),硫化锌(银激活)、即ZnS(Ag)等;另⼀类是有机闪烁体,它们都是苯环碳氢化合物。
闪烁体的发光机制⽐较复杂,在此对⽆机晶体闪烁体的发光机制作⼀些简要的定性介绍。
⽆机晶体闪烁体属离⼦型晶体,原⼦(离⼦)之间结合得⽐较紧密相互之间影响⽐较⼤,晶格中原⼦电⼦能级加宽成为⼀系列连续的能带。
其中最低能量状态已为电⼦所填满,故称为满带;价电⼦都处于稍⾼的能量状态,这种能带称为“价带”。
若价带未填满,则在外电场作⽤下将有净电流产⽣;若价带已填满,则必须有电⼦被激发到更⾼的能带——导带上去,才能产⽣电流,此时价带上有⼀空⽳,导带上有⼀电⼦,即产⽣了⼀个⾃由电⼦——空⽳对。
价带与导带之间的空隙中不存在电⼦能级,称为禁带;禁带有⼀宽度E g,它和晶体的导电性质密切相关,导体在0.1eV左右,半导体在0.63—2.5eV之间,⽆机闪烁体为绝缘透明物质,E g>3eV,NaI为7.0eV。
也存在另⼀种情况:在闪烁晶体中产⽣的电⼦——空⽳对仍束缚着,称为“激⼦”,它们在晶格中⼀起运动,在外电场中⽆净电流产⽣,其能带在导带之下,称为“激带”。
⾃由的导带电⼦和价带空⽳可以复合成激⼦,激⼦也可以吸收热运动能量变成⾃由电⼦——空⽳对。
当核辐射进⼊闪烁体时,既可产⽣⾃由电⼦——空⽳对,也可以产⽣激⼦。
⽽后电⼦从导带或激带跃迁到价带,退激过程中放出光⼦;也存在着竞争过程——⾮辐射跃迁,即通过放热(晶格振动)退激。
有⼀点需要指出,纯的NaI晶体不是有效的闪烁体。
⼀是因为相应禁带宽度的光⼦能量在紫外光范围,不是可见光;⼆是退激发出的光⼦尚未逸出晶体就会被晶体⾃⾝吸收。
为了解决这⼀问题,在纯晶体中掺⼊少量杂质原⼦(如Tl),称为“激活剂”,它们成为发光中⼼,形成⼀套激发能级,能量⽐导带低,⽽基态却⽐价带⾼,这样跃迁产⽣的光⼦能量就⽐禁带宽度E g⼩,那么它就不可能再使价带上的电⼦激发到导带上去,从⽽避免⾃吸收。
初中发光二极管知识点总结
初中发光二极管知识点总结一、发光二极管的基本原理1、半导体的能带结构半导体是介于导体和绝缘体之间的材料,它的能带结构决定了其导电性质。
半导体材料中存在价带和导带两个能带,其中价带中的电子填满,并且能量较低,而导带中的电子较少,且能量较高,当半导体受到激发时,价带中的电子可以跃迁到导带中成为自由电子,从而形成导电。
2、PN 结的形成当p型半导体和n型半导体直接相接触时,形成的结构称为PN结,形成PN结的过程叫做PN结的形成。
在PN结中,p型半导体的空穴向n型半导体扩散,n型半导体的自由电子向p型半导体扩散,形成内电场,使得p区和n区的电荷分布产生变化,形成耗尽层。
二、发光二极管的结构1、普通二极管结构普通二极管是由p型半导体和n型半导体直接接触而成,通常由硅、锗等半导体材料制成。
2、发光二极管结构发光二极管由p型半导体和n型半导体直接接触而成,具有普通二极管的PN结结构,同时还有一层发光层,当PN结正向导通时,电流通过发光层时,发光层发生发光现象,从而实现LED的发光功能。
三、发光二极管的工作特性1、正向导通和反向截止当PN结两侧的电压为正向电压时,即p区连接正电压,n区连接负电压,PN结导通,此时LED处于正向导通状态,电流流过PN结且LED发光。
当PN结两侧的电压为反向电压时,即p区连接负电压,n区连接正电压,PN结截止,此时LED处于反向截止状态,电流不流过PN结,LED不发光。
2、正向压降正向压降是指在PN结导通时,PN结两侧的电压差,当电压差达到LED的工作电压时,LED开始工作,电流流过PN结,LED发光。
一般LED的正向电压为1.5V~3.5V。
四、发光二极管的应用1、指示灯发光二极管具有发光、能耗低、寿命长等特点,因此广泛应用于各种电子产品的指示灯中,如电视机、空调、冰箱等家用电器的指示灯。
2、显示屏发光二极管还可以组成数码管、点阵屏等显示屏,用于显示数字、字母、符号等信息,广泛应用于计算机、手机、电子表等设备的显示屏上。
化学发光原理
化学发光原理化学发光是一种在化学反应中产生可见光的现象,这种现象在自然界和工业生产中都有着广泛的应用。
化学发光的原理是通过激发物质的电子,使其跃迁到激发态,然后再返回到基态释放出光子。
本文将详细介绍化学发光的原理及相关知识。
首先,我们来了解一下化学发光的基本原理。
化学发光的反应通常包括两个步骤,第一步是激发,第二步是发射。
在激发阶段,化学物质受到能量的激发,使得其内部的电子跃迁到更高能级的轨道上。
而在发射阶段,这些激发的电子会返回到基态,释放出光子。
这个过程可以用化学方程式来表示,其中包括反应物、产物和释放的能量。
其次,化学发光反应的种类有很多种,常见的包括荧光、磷光和化学发光等。
荧光是指物质受到紫外光激发后,再照射下会发出可见光的现象。
而磷光是指物质受到紫外光激发后,在停止激发后仍然能够持续发光一段时间。
化学发光是指在化学反应中产生可见光的现象,这种反应通常需要通过添加催化剂或者提供外部能量来触发。
此外,化学发光反应的机制也是多种多样的。
有的反应是通过氧化还原反应来释放能量,有的是通过化学能转换为光能来实现发光。
而在实际应用中,化学发光反应也被广泛应用于荧光标记、生物医学检测、环境监测等领域。
例如,在生物医学领域,荧光标记技术可以用于追踪生物分子的运动轨迹,而在环境监测领域,化学发光技术可以用于检测水质中的污染物。
最后,化学发光技术的发展也为人们带来了更多的可能性。
随着纳米技术的发展,人们可以通过调控纳米材料的结构和性质来实现更加精细的发光效果。
同时,化学发光技术也在LED、荧光屏等光电子器件中得到了广泛的应用,为人们的生活和工作带来了便利。
综上所述,化学发光是一种通过化学反应产生可见光的现象,其原理包括激发和发射两个步骤。
化学发光反应的种类和机制多种多样,而其应用也涉及到多个领域。
随着科学技术的不断发展,化学发光技术也将会有更加广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.把各种能量转换为光能的过程主要有两种: 其一是热辐射,其二是发光。
2. 按照激发能的不同可以把发光分类为光致发光(紫外波段发光或真空紫外波段发光激发)、阴极射线发光(电子束流激发)、电离辐射发光(X射线、γ射线及高能离子激发)、电致发光(直流或交流电场激发)、化学发光(由化学反应能激发)、生物发光(由生物能激发)、摩擦发光(由机械应力激发)等。
3. 发光材料是由作为材料主体的化合物(基质)和选定掺入的少量以至微量的杂质离子(激活剂)所组成,有时还掺入另一种杂质离子作为敏化剂。
4. 荧光,又作“萤光”,是指一种光致发光的冷发光现象。
当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。
具有这种性质的出射光就被称之为荧光。
在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。
5. 荧光淬灭(fluorescence quenching)又称荧光熄灭或萃灭:是指导致特定物质的荧光强度和寿命减少的所有现象。
6.荧光熄灭剂:引起荧光熄灭的物质称为荧光熄灭剂。
如,卤素离子、重金属离子、氧分子以及硝基化合物、重氮化合物、羧基和羰基化合物均为常见的荧光熄灭剂。
7.荧光淬灭的原因很多,机理也很复杂,主要包括:①因荧光物质的分子和熄灭剂分子碰撞而损失能量;②荧光物质的分子与熄灭剂分子作用生成了本身不发光的的配位化合物;③溶解氧的存在,使得荧光物质氧化,或是由于氧分子的顺磁性,促进了体系间跨越,使得激发单重态的荧光分子生在荧光物质分子与猝灭剂分子之间8.静态猝灭:当基态荧光分子与猝灭剂之间通过弱的结合生成复合物,且该复合物使荧光猝灭的现象称为静态猝灭。
动态猝灭:如果激发态荧光分子与猝灭剂碰撞使其荧光猝灭则称为动态猝灭。
动态猝灭:温度增高,猝灭增强;静态猝灭:温度增高,猝灭降低。
转变至三重态;④当荧光物质浓度过大时,会产生自淬灭现象。
9. 量子效率也称量子收率, 是指荧光物体分子发射的光量子数与吸收的光量子数之比。
其大小是由分子结构决定的, 而与激发光源的能量无关。
10.拉曼散射光谱是指分子对入射光所产生使其频率发生较大改变的一种光散射现象。
激光拉曼光谱主要的一些特点: (l)每种物质(分子)都有自己完全独立的特征谱线,因此每种物质的特征谱线可以表征这一物质。
(2)拉曼谱线的线宽大多数较窄,并且往往都是成对出现的,也就是具有完全相同大小的正负频差。
这两条谱线在短波一边的叫做反斯托克斯谱线,在长波一边的叫做斯托克斯谱线。
(3)每一物质的拉曼频移(也就是入射频率与散射频率之差)的大小和入射光的频率是完全无关的,拉曼散射是瞬间产生的,即入射光消失时,拉曼散射也会在瞬间消失。
11.荧光光谱可能被分子或原子所能吸收的一些频率来进行激发,而所有的频率都可以激发拉曼光谱。
12.荧光分析是指利用某些物质在紫外光照射下产生荧光的特性及其强度进行物质的定性和定量的分析的方法。
13. 荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。
其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。
通过对这些参数的测定,不但可以做一般的定量分析, 而且还可以推断分子在各种环境下的构象变化,从而阐明分子结构与功能之间的关系。
荧光分光光度计的激发波长扫描范围一般是190~650nm,发射波长扫描范围是200~800nm。
可用于液体、固体样品(如凝胶条)的光谱扫描。
14.荧光分析可应用于物质的定性及定量,由于物质结构不同,所能吸收的紫外光波长不同,在返回基态时,所发射的荧光波长也不同,利用这个性质可以鉴别物质。
对于同种物质的溶液,其产生的荧光强度与浓度呈线性关系,利用这个性质可进行定量分析。
15.荧光法的主要特点是灵敏度高,检出限为10-7~lO-9g/m-1比紫外可见分光光度法高101~103倍。
荧光法的选择性强,能吸收光的物质并不一定产生荧光,且不同物质由于结构不同,虽吸收同一波长的光,产生的荧光波长也不同。
此外,因此使它的应用范围受到限制。
16.荧光光谱和激发光谱呈现大致的镜像对称关系。
17.温度的影响:一般来说,大多数荧光物质的溶液随着温度降低,荧光效率和荧光强度将增加,相反,温度升高荧光效率将下降。
18.当荧光物质是弱酸或弱碱时,溶液的pH值对荧光强度有较大的影响。
19.当荧光物质浓度较大时,常会发生自淬灭现象,这可能是由于激发态分子之间的碰撞引起能量损失。
当荧光物质的荧光光谱曲线与吸收光谱曲线重叠时,荧光被溶液中处于基态的分子吸收,称为自吸收。
20. 在荧光分析中,可以采用不同的实验方法以进行分析物质浓度的测量。
其中,最简单的便是直接测定的方法。
只要分析物质本身发荧光,便可以通过测量它的荧光强度以测定其浓度。
21.间接测定的办法:第一种方法是通过化学反应将非荧光物质转变为适合与测定的荧光物质;间接测定的第二种方法是荧光淬灭。
22.荧光粉(俗称夜光粉),通常分为光致储能夜光粉和带有放射性的夜光粉两类。
光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,再缓慢地以荧光的方式释放出来,所以在夜间或者黑暗处,仍能看到发光,持续时间长达几小时至十几小时。
带有放射性的夜光粉,是在荧光粉中掺入放射性物质,利用放射性物质不断发出的射线激发荧光粉发光,这类夜光粉发光时间很长,但因为有毒有害和环境污染等,所以应用范围小。
23.稀土三基色荧光粉的特点是发光谱带狭窄,发光能量更为集中,且在短波紫外线激发下稳定性高,高温特性好,更适用于高负载细管荧光灯和各种单端紧凑型荧光灯。
24.灯用荧光粉主要有3类。
第一类用于普通荧光灯和低压汞灯,第二类用于高压汞灯和自镇流荧光灯,第三类用于紫外光源等。
25. 示踪剂是指那些能随注入流体一起流动、指示流体在多孔介质中的存在、流动方向和渗流速度的物质。
26. 色谱法又称色层法或层析法,是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。
27. 荧光类物质具有稳定性好、灵敏度高和检测限极低的优点。
并且利用荧光光度法可直接进行单一品种的检测,方便快捷,适合现场应用。
28. 物质的激发光谱和荧光发射光谱,可以用作该物质的定性分析。
当激发光强度、波长、所用溶剂及温度等条件固定时,物质在一定浓度范围内,其发射光强度与溶液中该物质的浓度成正比关系,可以用作定量分析。
这种利用荧光强度和波长进行的定量、定性分析方法称为荧光光谱法。
荧光光谱法的灵敏度比紫外与可见分光光度法高几个数量级。
29. 溶液中H+浓度的测定通常采用:酸碱中和滴定法;精密pH 试纸法;酸度计法;光化学氢离子传感器法。
30. 有机荧光材料的光、热稳定性以及机械加工性能较差,且容易发生荧光猝灭现象,部分荧光材料还有毒副作用等等,这些缺陷大大限制了荧光材料进一步应用的可能性。
为解决有机荧光分子的上述缺陷,人们试图将具有耐高温,耐腐蚀,耐磨性好,强度高等优点的无机材料和有机荧光分子杂化,实现两者性能上的互补和优化,从而提高荧光材料广泛应用的可能性。
31.敏化剂是指分子中含有共轭体系的物质,它们能吸收光能跃迁至激发态。
处于激发态的敏化剂分子可将多余的能量传递给荧光物质的分子而使其荧光增强。
32.量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。
33.荧光分子尺寸越大时,负载量越高荧光强度越弱;荧光分子尺寸越大,荧光寿命越长。
34.激发光的强度超过一定限度时,光吸收就趋子饱和,并不可逆地破坏激发态分子,这就是光漂白现象。
35.半导体纳米粒子又称量子点。
量子点的结构导致了它具有尺寸量子效应和介电限域效应,并由此派生出量子点独特的发光特性。
量子点由于粒径很小(约1~100nm),电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此其光学行为与一些大分子(如多环的芳香烃)很相似,可以发射荧光。
36. 量子点具有较大的斯托克斯位移和狭窄对称的荧光谱峰,半高峰宽(Full Widths Half Max, FWHM)常常只有40nm或更小。
这样就允许同时使用不同光谱特征的量子点,而发射光谱不出现交叠,或只出现很少交叠。
37.发射波长总是大于其激发波长,两者的差值叫斯托克斯(Stokes)位移。
38. 荧光寿命(即激发态寿命),是指分子在激发态的平均停留时间。
若分子受激后迅速弛豫,则可实现多次激发,所以荧光寿命短时可提高灵敏度。
39. 由于能带中的能级之间的能量差值很小,所以通常我们可以把能带内的能级看成是连续的。
40.半导体的许多特性是由其所掺的杂质和缺陷所决定的。
在杂质和缺陷附近往往可以形成束缚电子态,其能级也与晶体中的其他正常原子不同,即杂质的能级可以在晶体能级的禁带当中,也就是说,束缚态的能量一般处在禁带之中。
如果施主能级离导带底比较近,那么在常温下,由于束缚态中的电子激发到了导带中而使得导带中的电子会远远多于价带中的空穴,这种半导体就称为N 型半导体。
如果受主能级与价带顶端比较接近,那么常温下由于价带中的电子激发到了束缚态,使得价带中的空穴远远的多于导带中的电子,这种半导体就被称为P型半导体。
P型半导体和N 型半导体的交界面附近的过渡区就是我们通常所说的PN结。
41. LED是一种可以将电能转化为光能的半导体器件,一般由一个PN结组成,具有单向导电性。
由于P区带有过量的正电荷(空穴),N 区带有过量的负电荷(电子),当把一定的正向偏置电压施加在该PN结上时,电子会受电场影响由N区向P区移动,而空穴则会由P 区向N区移动,在P区和N区的交界处发生复合,复合过程中产生的能量就会以光、热等的形式发射出来。
42.到目前为止,实现白光LED的方案主要有以下三种:第一种就是用蓝光LED芯片和发黄色光的焚光粉结合组成的白光LED;第二种是用发紫光或紫外光的LED芯片和可被紫光或紫外光有效激发的红、绿、蓝三基色焚光粉或多色焚光粉结合来制备白光LED;第三种则是将红、绿、蓝三基色LED芯片或发光管组成一个象素,实现白光。
43.LED是半导体电子一空穴复合造成的一种直接发光现象,因此发光的响应时间很短,小于100ns。
44.由于红色LED使用了GaAs,会对环境产生一定的危害,因此红色LED的替代技术或寻找另一种高效的红色LED是一个进一步改善环境性的要求。