(完整版)荧光分析法习题参考答案

合集下载

荧光法习题

荧光法习题

荧光分析法一、选择题1、为了提高分子荧光光度法的灵敏度,合适的办法就是A、增加待测溶液的浓度B、增加激发光的强度C、增加待测液的体积D、另找能与待测物质形成荧光效率大的荧光化合物2、下列结构中能产生荧光的物质就是A、苯酚B、苯C、硝基苯D、碘苯3、荧光分析中,溶剂对荧光强度的影响就是A、对有π→π*跃迁者,溶剂极性增加,荧光强度增大B、对有π→π*跃迁者,溶剂极性增加,荧光强度减小C、溶剂粘度增大,荧光强度减弱D、溶剂粘度降低,荧光强度减弱4、荧光分析中,当被测物质的浓度较大时,荧光强度与浓度不成正比,其原因可能就是A、自熄灭B、自吸收C、散射光的影响D、溶剂极性增大5、在下列哪个pH值时苯胺能产生荧光(苯胺以分子形式产生荧光)?A、1B、2C、7D、146、硫酸奎宁在0、05mol/L H2SO4中,分别用320nm与350nm波长的光激发,所制得的荧光光谱A、形状与荧光强度都相同B、形状与荧光强度都不同C、形状相同,荧光强度不同D、荧光强度相同,形状不同7、荧光光谱分析中的主要光谱干扰就是A、激发光B、溶剂产生的拉曼散射光C、溶剂产生的瑞利散射光D、容器表面产生的散射光8、对分子荧光强度的测量时,要在与入射光成直角的方向上检测就是由于A、荧光就是向各个方向发射的B、只有在与入射光方向成直角的方向上才有荧光C、为了消除透射光的影响D、克服散射光的影响9、荧光法中,荧光效率Φ的计算式就是A、Φ=发射荧光的电子数/吸收激发光的电子数B、Φ=发射荧光的光量子数/吸收荧光的光量子数C、Φ=发射光的强度/吸收光的强度D、Φ=发射荧光的光量子数/吸收激发光的光量子数10、A、钨灯B、氢灯C、元素灯D、溴钨灯λ=256nm)可用作光源。

(1)光度法测乙醇中苯(m ax(2)荧光计采用作光源。

(3)原子吸收分光光度计可用作光源。

(4)光度法测定KMnO4溶液的浓度可用作光源。

11、处于第一电子单线激发态最低振动能级的分子以辐射光量子的形式回到单线基态的最低振动能级,这种发光现象称为A、分子荧光B、分子磷光C、化学发光D、拉曼散射12、三线态的电子排列应为A、全充满B、↑C、基态D、↓↑↑13、下列说法正确的就是A、溶液温度升高,荧光效率增加,荧光强度增大B、溶液温度降低,荧光效率增加,荧光强度增大C、溶液温度升高,荧光效率降低,荧光强度增大D、溶液温度降低,荧光效率降低,荧光强度增大14、在荧光分析中,以下说法错误的就是A、激发态分子通过碰撞回到同一电子激发态的最低振动能级的过程称为振动弛豫B、荧光光谱的形状随激发光波长改变而改变C、荧光激发光谱相当于荧光物质的吸收光谱D、测定任何荧光物质的荧光强度时都必须严格控制溶液的pH值15、荧光光度计中第一滤光片的作用就是A、消除杂质荧光B、得到合适的单色激发光C、消除激发光产生的反射光D、消除瑞利散射,拉曼散射16、荧光分析中,滤光片选择的原则就是A、获得最强的荧光强度B、获得最强的荧光强度与最低的荧光背景C、消除散射光的影响D、消除杂散光的影响17、 萘胺在酸性中形成铵盐离子,影响荧光的测定,这种影响就是A、共存物质的影响B、荧光的熄灭C、溶液pH对荧光的影响D、溶剂的影响E、温度的影响18、为使荧光强度与荧光物质溶液的浓度成正比,必须使A、激发光足够强B、吸光系数足够大C、试液浓度足够稀D、仪器灵敏度足够高19、如果空白溶液的荧光强度调不到零,荧光分析的计算公式就是A、C x=C s(F x—F0)/F sB、C x=C s(F x/F s)C、C x=C s(F x—F0)/(F s—F0)D、C x=C s(F s—F0)/(F x—F0)20、荧光测定时,观察荧光要在与入射光垂直方向,其原因就是A、只有在入射光垂直方向上才有荧光B、各个方向都可观察到荧光,为减少透射光的影响C、荧光波长比入射光波长小D、荧光强度比透射光强度小21、荧光物质的荧光光谱与它的吸收光谱的形状就是A、相同B、相同且重叠C、对称D、相似且成镜像E、以上都不就是22、比较荧光物质激发光谱的波长与其发射光谱的波长A、相同B、不同C、前者稍长D、前者稍短E、以上都不就是23、在同一电子激发能态内部进行能量转换的过程就是A、内部转换B、外部转换C、体系间跨越D、振动驰豫24、比较荧光的波长与入射光的波长A、前者稍长B、前者稍短C、相同D、不同E、以上都不就是25、光电荧光计的单色器就是A、棱镜B、光栅C、滤光片D、凸透镜26、荧光物质的分子一般都含有A、离子键B、共轭双键C、氢键D、金属键E、配位键27、可以改变荧光分析的灵敏度A、增强光源强度B、改换溶剂C、降低温度D、以上三种措施都28、物质分子从第一电子激发态的最低振动能级回到基态的不同振动能级以幅射形式放出的能量,称为:A、磷光B、荧光C、化学发光D、电子光谱29、在荧光分析中,利用较短的激发光进行激发,可以避免的干扰A、拉曼光B、瑞利光C、容器表面的散射光D、胶粒的散射光30、荧光物制裁发射的荧光强度与有关A、该物质的吸光能力B、照射光强度C、荧光效率D、与上述三者都31、下列哪种光的峰位与激发光波长无关A、瑞利散射光B、拉曼光C、仪器表面的散射光D、荧光32、下列哪种因素会使荧光效率下降A、激发光哟度下降B、溶剂极性变小C、温度下降D、溶剂中含有卤素的金属离子33、激发光波长固定后,荧光波长与荧光强度的关系曲线称为A、吸收光谱B、激发光谱C、分子光谱D、荧光光谱34、物制裁分子吸光后,发出的荧光就是从什么能级回到基态的不同振动能级产生的A、不同的电子激发态的各种振动能级B、不同电子激发态的最低振动能级C、第一电子激发态的最低振动能级D、第一电子激发态的各振动能级35、下列哪种因素不可能减少散射光对荧光的干扰A、改变激发光波长B、改换溶剂C、升高温度D、以上三种措施都可以减少散射光的干扰36、在同样条件下,测得浓度为0、030μg/ml的罗丹明标准液的荧光强度为60,样品的荧光强度为50,空白液的荧光强度为10,则样品中罗明的浓度为μg/mlA、0、020B、0、025C、0、026D、0、02437、一般荧光峰的浓度随着溶剂介电常数的增大A、而兰移B、而变短C、而增大D、并无变化38、就是显著的荧光熄灭剂A、CCl4B、CHCl3C、CO2D、O239、能产生荧光的物质多半就是A、级性有机化合物B、非级性有机化合物C、复杂之机物D、含有共轭体系的有机化合物40、荧光波长固定后,激发光波长与荧光强度的关系曲线称为A、荧光光谱B、激发光谱C、发射光谱D、吸收光谱41、VitB在440~500nm波长光的激发下可发出较强的荧光,而实际测定时选用400nm激发光,其目的就是A、克服溶剂的瑞利散射光B、避免拉曼散射光的干扰C、消除容器表面的散射光D、克服溶剂中荧光物质的干扰E、消除磷光干扰42、为了使荧光强度与荧光物质溶液浓度成正比,必须使A、激发光足够强B、试液足够稀C、吸光系数足够大D、仪器足够灵敏E、增大试液浓度43、下列物质中荧光强度最强的物质就是A、环己烷B、苯C、萘D、联苯E、苯甲酸COOH44、荧光就是在下述条件下产生的A、分子从基态跃迁到激发态B、原子外层价电子的能级跃迁C、分子振动能级的跃迁D、分子转动能级的跃迁E 、 分子从第一激发态最低振动能级跃迁到基态各振动能级45、 下述化合物在荧光分析中产生的荧光效率最大的就是A 、B 、C 、D 、E 、46、 一种物质能否发出荧光,主要取决于A 、 本身分子结构与具有较高的荧光效率B 、 激发光的波长C 、 本身分子吸光能力的强弱D 、 分子结构中有无极性E 、 温度高低 47、 在荧光分析中,哪种说法就是正确的A 、 溶液温度升高,荧光效率增加,荧光强度增加B 、 溶液温度降低,荧光效率增加,荧光强度增加C 、 溶液温度升高,荧光效率不变,荧光强度不变D 、 溶液温度降低,荧光效率不变,荧光强度不变48、 温度升高时,荧光物质的荧光效率与荧光强度A 、 降低B 、 增大C 、 不变D 、 无法确定49、 某荧光物质的吸收光谱有两个不同强度的吸收峰,当分别用两个最大吸收波长作激发光时,所得到的该物质的荧光光谱A 、 形状与荧光强度都相同B 、 形状相同,荧光强度不同C 、 荧光强度相同,形状不同D 、 形状与荧光强度都不同50、 荧光法中,固定激发光波长与强度,改变发射光波长进行扫描,可绘制A 、 荧光光谱B 、 激发光谱C 、 吸收光谱D 、 发射光谱51、 进行荧光分析时,固定激发光波长与强度,改变发射光波长进行扫描,可绘制A 、 fluorescence excitation spectrumB 、 fluorescence emission spectrumC 、 absorption spectrumD 、 fluorescence spectrophotometry52、 为了使荧光强度与荧光物质溶液浓度成正比,必须使A 、 激发光足够强B 、 试液足够稀C 、 吸光系数足够大D 、 仪器足够灵敏53、 荧光光谱的形状与下列哪种因素有关A 、 第一电子激发态中最低振动能级分布B 、 基态的最低振动能级分布C 、 基态的振动能级分布D 、 第一电子激发态中振动能级分布54、 一种物质能否发出荧光,主要取决于A 、 本身分子结构与具有较高的荧光效率B 、 激发光的波长C 、 本身分子吸光能力的强弱D 、 分子结构中有无极性55、 Vit 、B 在440~500nm 波长光的激发下可发出较强的荧光,而实际测定时选用400nm 激发光,其目的就是:A 、 克服溶剂的Rayleigh 散射光B 、 避免Raman 光干扰C 、 消除容器表面的散射光D 、 克服溶剂中荧光物质干扰56、 荧光法测定核黄素,采用硅镁吸附剂就是为了A 、 保持核黄素稳定B 、 使核黄素转变成具有荧光的物质C 、 将样品浓缩D 、 使杂质与核黄素分开57、 如果使激发光的波长与强度保持不变,让物质发生的荧光通过单色器,依次测定荧光强度,然后以荧光强度对波长作图,该曲线叫做A 、 荧光激发光谱B 、 荧光光谱C 、 吸收光谱D 、58、 荧光物质的分子可以选择性吸收一定波长(或频率)的光。

仪器分析练习题02附答案

仪器分析练习题02附答案

一、单选题1. UV-Vis 吸收光谱是由( ) A. 最内层原子轨道上的电子跃迁产生 B. 原子最外层电子跃迁产生 C. 分子价电子能级跃迁产生D. 分子振动和转动产生2. 下列有关有机化合物外层电子能级跃迁的哪种表述是正确的( ) A. σ→σ*有最低的能量 B. π→π*最低的能量C. n →π*有最低的能量D. n→σ*可产生波长最大的吸收3. 某化合物在己烷和乙醇中的λmax 分别为305和307 nm ,则该化合物的跃迁是下列哪种跃迁( )A. π→π*B. n →π*C. n →σ*D. σ→σ*4. 下列哪种化合物中不存在π→π*跃迁( ) A. 乙烯B. 丙酮C. 苯乙炔D. 乙醇5. 当pH 由酸性变为碱性,苯酚的最大吸波长将发生何种变化( ) A. 红移B. 蓝移C. 不变D. 不能确定6. 分光光度计中控制波长纯度的元件是( ) A. 棱镜B. 光栅C. 狭缝D. 光栅+狭缝7. 某浓度待测物的透射比为T ,若其它条件不变,浓度增大一倍后的透射比应为( ) A. 2TB. 2/TC. T 2D.T8. 在符合朗伯-比尔定律的范围内,有色物质的浓度、最大吸收波长和吸光度三者的关系为( ) A. 增大、增大、增大 B. 减小、不变、减小 C. 减小、增大、减小D. 增大、减小、不变9. 指出下列哪种因素不会产生对朗伯-比尔定律的偏差( )A. 溶质的离解作用B. 杂散光进入检测器C. 溶液的折射指数增加D. 改变吸收光程长度 10. 下列哪种化合物不太适合作为UV 光谱测定时的溶剂( )A. 环己烷B. 甲醇C. 乙腈D. 甲苯11. 质量相同的A 、B 物质(摩尔质量M A >M B ),经过显色测量后所得吸光度相等,则它们的摩尔吸光系数的关系为( ) A. εA >εBB. εA <εBC. εA =εBD. εA <1/2εB12. 在符合朗伯-比尔定律的范围内,以下说法正确的是( )A. 溶液透射比T 越大,说明对光的吸收越强B. 透射比T 与浓度成正比C. 摩尔吸光系数随λ改变,但与浓度无关D. 摩尔吸光系数随λ和浓度而改变13.以下说法正确的是()A. 透射比与浓度呈直线关系B. 助色团可使生色团的吸收波长红移C. 比色法测定FeSCN+时,应选用红色滤光片D. 玻璃棱镜适合紫外光区14.在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的()A. 极大值B. 极小值C. 零D. 极大或极小值15. 双波长分光光度计和单波长分光光度计的主要区别在于()A. 光源个数B. 检测器个数C. 吸收池个数D. 使用单色器个数16. 双波长分光光度计的输出信号是()A. 试样吸收与参比吸收之差B. 试样在λ1与λ2处的吸收之差C. 试样在λ1与λ2处的吸收之和D. 试样在λ1和参比在λ2处的吸收之差17. 示差分光光度法与普通分光光度法的不同之处是()A. 标准溶液不同 D. 所选测定波长不同B. 参比溶液不同 D. 使用的光程不同18. 用普通分光光度法测定标液c1的透射比为20%,试液透过率为12%;若以示差光度法测定,以c1为参比,则试液的透射比透光度为()A. 40%B. 50%C. 60%D. 70%19. 某分光光度计的测量误差∆T=0.01,在透射比T=70%时,由测量引起的浓度相对误差为()A. 2%B. 8%C. 6%D. 4%20. 邻二氮菲法测定铁时,应在加入盐酸羟胺摇匀后应放置至少2分钟后再加显色剂邻二氮菲,若放置时间不足,则分析结果很可能会()A. 无影响B. 不一定C. 偏低D. 偏高21. 邻二氮菲法测定水中微量铁含量的分析步骤是()A. 还原-发色-调节pH-比色-酸化B. 酸化-还原-调节pH-发色-比色C. 发色-酸化-还原-调节pH-比色D. 调节pH-发色-还原-酸化-比色22. 在吸光光度法中,有时会出现标准曲线不通过原点的情况,下列哪种情况不会引起这一现象()A. 吸收池位置放置不当B. 参比溶液选择不当C. 吸收池光学玻璃不洁净D. 显色反应灵敏度较低23.用紫外吸收光谱区别共轭烯烃和α,β-不饱和酮可根据下列哪种吸收带出现与否来判断()A. K带 B. R带 C. E带 D. B带24. 下列四种化合物λmax的顺序为()(a)CH CH CH CH2(b)CH CH2C2H5(c)CH CH CH CH2(d)CH CH2C2H5A. b>c>d>aB. a>d>c>bC. b>d>c>aD. a>c>d>b25. 下列关于荧光发射光谱的叙述中正确的是()A. 发射与激发光谱在任何情况下都是镜像关系B. 发射光谱的形状与激发波长无关C. 发射光谱位于激发光谱的左侧D. 发射光谱就是分子的吸收光谱26. 用波长300 nm的入射光激发硫酸奎宁的稀硫酸溶液时,所产生的300 nm的发射光是()A. 荧光B. 磷光C. Reyleigh散射D. 无法判断27.分子荧光分光光度计常用的光源是()A. 空心阴极灯B. 氙灯C. 氘灯D. 碳硅棒28. 荧光分析法是通过测定那种类型的光而达到对物质定性或定量分析的目的()A. 激发光B. 磷光C. 发射光D. 散射光29. 下列是化学发光仪必须的元件是()A. 光电倍增管B. 光栅C. 氘灯D. 氙灯30. 荧光物质,随溶液的温度降低,其荧光量子率将()A. 减小B. 增大C. 不变D. 不能确定31. 极性溶剂会使被测物质的UV-Vis吸收光谱()A. 消失B. 精细结构更明显C. 发生位移D. 分裂32. 分子的UV-Vis吸收光谱为带状光谱,其原因是()A. 分子中价电子运动的离域性质B. 分子中价电子能级的相互作用C. 分子振动能级的跃迁伴随着转动能级的跃迁D. 分子电极能级的跃迁伴随着振动、转动能级的跃迁33. 某化合物分子式为C5H8O,其UV光谱上有两个吸收带:λmax=204 nm(εmax=9750);λmax=314 nm (εmax=38)。

(完整版)仪器分析练习题及答案

(完整版)仪器分析练习题及答案

(完整版)仪器分析练习题及答案1. 简述仪器分析法的特点。

答:1.仪器分析法灵敏度⾼。

2.仪器分析法多数选择性较好。

3.仪器分析法分析速度较快,利于批量样品分析。

4.易于使分析⼯作⾃动化。

5.相对误差较⼤。

6.设备复杂、价格昂贵,对仪器⼯作环境要求较⾼。

光分析导论⼀、选择题1.在光学分析法中, 采⽤钨灯作光源的是( )(1)原⼦光谱(2)分⼦光谱(3)可见分⼦光谱(4)红外光谱2.可见光的能量应为( )(1) 1.24×104~1.24×106eV (2) 1.43×102~71 eV(3) 6.2 ~3.1 eV (4) 3.1 ~1.65 eV3.已知:h=6.63×10-34 J s则波长为0.01nm的光⼦能量为( )(1) 12.4 eV (2) 124 eV (3) 12.4×105eV (4) 0.124 eV4..频率可⽤下列哪种⽅式表⽰(c------光速,λ---波长,б---波数()(1)б/c (2cб (3)1/λ(4)c/б5.光量⼦的能量正⽐于辐射的()(1)频率(2)波长(3波数(4)传播速度6. 下列四个电磁波谱区中,请指出能量最⼩(),频率最⼩(),波数最⼤者(),波长最短者()(1)X射线(2)红外区(3)⽆线电波(4)紫外和可见光区⼆、填空题( 共7题12分)1.库仑滴定分析法, 实际上是⼀种___________________________电解分析法.2. 任何⼀种分析仪器都可视作由以下四部分组成:________________________、____________________、_____________________和________________________.3. 仪器分析主要分为三⼤类, 它们是、和.4.⽤pH计测定某溶液pH时, 其信号源是__________________________________;传感器是_______________________________.5.电化学分析法是建⽴在基础上的⼀类分析⽅法.6.光学分析法是建⽴在基础上的⼀类分析⽅法.三、解释术语1.电磁波谱2.发射光谱3.吸收光谱4.荧光光谱四、计算题1.计算下列辐射的频率(Hz)和波数(cm-1)(1)0.25cm的微波束;(2)324.7nm铜的发射线。

川大学仪器分析第八章 分子发光分析法答案

川大学仪器分析第八章 分子发光分析法答案

第八章分子发光分析法基本要求:了解荧光的产生和影响荧光强度的因素,掌握分子荧光光谱法的定量关系和应用特点,重点:荧光光谱法的定量关系、应用特点。

难点:荧光的产生和影响荧光强度的因素。

参考学时:3学时作业参考答案1.简述荧光法产生的基本原理。

具有什么样结构的物质最容易发荧光答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。

芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。

2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、荧光量子产率、激发光谱、荧光光谱答:单重态:电子自旋都配对的分子的电子状态称为单重态。

三重态:有两个电子自旋不配对而同方向的状态。

荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射;振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。

内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。

外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。

失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。

系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。

荧光量子产率:表示物质分子发射荧光的能力。

荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。

荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

有机化学1.David A. Evans,* Daniel Seidel, Magnus Rueping, Hon Wai Lam, Jared T. Shaw, and C. Wade Downey, A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction, J. AM. CHEM. SOC. 2003, 125, 12692-12693.2. Brian D. Dangel and Robin Pol,Catalysis by Amino Acid-Derived Tetracoordinate Complexes: Enantioselective Addition of Dialkylzincs to Aliphatic and Aromatic Aldehydes, Org. Lett. 2007, 2, 3003.3. Benjamin List, Proline-catalyzed asymmetric reactions, Tetrahedron, 2002, 58, 5573.4. Vishnu Maya, Monika Raj, and Vinod K. Singh, Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium, Org. Lett. 2007, 9, 2593.5. Sanzhong Luo, Jiuyuan Li, Hui Xu, Long Zhang, and Jin-Pei Cheng, Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts, Org. Lett. 2007, 9, 3675.6. Xiao-Ying Xu, Yan-Zhao Wang, and Liu-Zhu Gong, Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions, Org. Lett. 2007, 9, 4247.7. Jung Woon Yang, Maria T. Hechavarria Fonseca, Nicola Vignola, and Benjamin List, Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of a,b-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 44, 108–110.8. Giuseppe Bartoli, Massimo Bartolacci, Marcella Bosco, et. al., The Michael Addition of Indoles to r,â-Unsaturated Ketones Catalyzed by CeCl3â7H2O-NaI Combination Supported on Silica Gel, J. Org. Chem. 2003, 68, 4594-4597.9. Jayasree Seayad, Abdul Majeed Seayad, and Benjamin List, Catalytic Asymmetric Pictet-Spengler Reaction, J. AM. CHEM. SOC. 2006, 128, 1086-1087.10. Jingjun Yin, Matthew P. Rainka, Xiao-Xiang Zhang, and Stephen L. Buchwald, A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination, J. AM. CHEM. SOC. 9 VOL. 124, NO. 7, 2002 1162.11. Ulf M. Lindstro¨m, Stereoselective Organic Reactions in Water, Chem. Rev. 2002, 102, 2751-2772 .12. Sanzhong Luo, Hui Xu, Jiuyuan Li, Long Zhang, and Jin-Pei Cheng, A Simple Primary-Tertiary Diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones, J. AM. CHEM. SOC. 2007, 129, 3074-3075.13. Xin Cui, Yuan Zhou, Na Wang, Lei Liu and Qing-Xiang Guo, N-Phenylurea as an inexpensive and efficient ligand for Pd-catalyzed Heck and room-temperature Suzuki reactions, TL, 2007, 48, 163.14. Yoshiharu Iwabuchi, Mari Nakatani, Nobiko Yokoyama, and Susumi Hatakeyama, Chiral Amine-Catalyzed Asymmetric Baylis-Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (r-Methylene-â-hydroxy)esters, J. Am. Chem. Soc. 1999, 121, 10219-10220.15. Satoko Kezuka, Taketo Ikeno, and Tohru Yamada, Optically Active â-Ketoiminato Cationic Cobalt(III) Complexes: Efficient Catalysts for Enantioselective Carbonyl-Ene Reaction of Glyoxal Derivatives, Org. Lett. 2001, 3, 1937.分析化学16. Lei Liu, Qin-Xiang Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation , Chem. Rev. 2001, 101, .17. Sui-Yi Lin, Shi-Wei Liu, Chia-Mei Lin, and Chun-hsien Chen,Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles, Anal. Chem. 2002, 74, 330-33518. Mikhail V. Rekharsky and Yoshihisa Inoue, Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-deoxy-â-cyclodextrin with Anionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions, J. AM. CHEM. SOC., 2002, 124: 813-82619. Yu Liu, Li Li, Zhi Fan, Heng-Yi Zhang, Xue Wu, Xu-Dong Guan, Shuang-Xi Liu, Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative, nano letters, 2002, 2:257-262.20. CARLITO B. LEBRILLA, The Gas-Phase Chemistry of Cyclodextrin InclusionComplexes, Acc. Chem. Res. 2001, 34: 653-66121. Jian-Jun Wu, Yu Wang, Jian-Bin Chao, Li-Na Wang, and Wei-Jun Jin. Room Temperature Phosphorescence of 1-Bromo-4-(bromoacetyl) Naphthalene Induced Synergetically by -cyclodextrin and Brij30 in the Presence of Oxygen. The Journal of Physical Chemistry: B, 2004, 108: 8915-8919.22. Xiang-feng Guo, Xu-hong Qian, and Li-hua Jia. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc. 2004,126: 2272-2273.23. Yu Wang, Jian-Jun Wu, Yu-Feng Wang, Li-Pin Qin, Wei-Jun Jin. Selective Sensing of Cu (Ⅱ) at ng ml-1level Based on Phosphorescence Quenching of 1-Bromo-2-methylnaphthalene Sandwiched in Sodium Deoxycholate Dimer. Chem. Commun. 2005, 1090-1091.24. Yong-fen Chen and Zeev Rosenzweig(2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 74: 5132-513825. Thorfinnur Gunnlaugsson, Mark Glynn, Gillian M. Tocci (née Hussey), Paul E. Kruger, Frederick M. Pfeffer Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews 2006, 250: 3094–3117.26. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry 2004, 39 : 1033–104627. Ahmet Gu rses, Mehmet Yalcin, Cetin Dogar,Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Management 22 (2002) 491–428. K. Lang, J. Mosinger, D.M. Wagnerová, V oltammetric studies of anthraquinone dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques, Coordination Chemistry Reviews 248 (2004) 321–35029. You Qin Li, Yu Jing Guo, Xiu Fang Li, Jing Hao Pan, Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA, 2007,71: 123-128.30. P.J. Almeida, J.A. Rodrigues, A.A. Barros, A.G. Fogg, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Analytica Chimica Acta 385 (1999) 287-293.无机化学31. Silvia Miret, Robert J. Simpson, and Andrew T. McKie, PHYSIOLOGY ANDMOLECULAR BIOLOGY OF DIETARY IRON ABSORPTION, Annu. Rev. Nutr. 2003. 23:283–301.32. Joy J. Winzerling and John H. Law, COMPARATIVE NUTRITION OF IRON AND COPPER, Annu. Rev. Nutr. 1997. 17:501–26.33. Kurt Dehnicke and Andreas Greiner, Unusual Complex Chemistry of Rare-Earth Elements: Large Ionic Radii—Small Coordination Numbers, Angew. Chem. Int. Ed. 2003, 42, No. 12, 1341-1354.34. Todor Dudev, Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins, Chem. Rev. 2003, 103, 773-787.35. Maria M. O. Pena, Jaekwon Lee and Dennis J. Thiele, A Delicate Balance: Homeostatic Control of Copper Uptake and Distribution, J. Nutr. 129: 1251–1260, 1999.36. Elza V. Kuzmenkina, Colin D. Heyes, and G. Ulrich Nienhaus, Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions, PNAS, October 25, 2005, vol. 102 _ no. 43 _ 15471–15476.37. Simon Silver, Bacterial resistances to toxic metal ions - a review, Gene 179 (1996) 9-19.38. David A Zacharias, Geoffrey S Baird and Roger Y Tsien, Recent advances in technology for measuring and manipulating cell signals, Current Opinion in Neurobiology 2000, 10:416–421.39. Edward Luk Laran T. Jensen Valeria C. Culotta, The many highways for intracellular trafficking of metals, J Biol Inorg Chem (2003) 8: 803–809.40. JOHN B. VINCENT, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res. 2000, 33, 503-510.41. Mark D. Harrison, Christopher E. Jones, Marc Solioz, Intracellular copper routing: the role of copper chaperones, TIBS 25 – JANUARY 2000, 29-32.42. R.J.P. Williams, My past and a future role for inorganic biochemistry, Journal of Inorganic Biochemistry 100 (2006) 1908–1924.43. Gray H B., ‘Biological Inorganic Chemistry at the Beginning of the 21th Century’, PNAS, 2003, 100(7), 3563-3583.物理化学/应用化学44.Chemistry of Aerogels and Their Applications, Alain C. Pierre and Ge´rard M.Pajonk, Chem. Rev. 2002, 102, -4265.45.Mechanisms of catalyst deactivation, Calvin H. Bartholomew, Applied Catalysis A:General 212 (2001) 17–60.anic chemistry on solid surfaces, Zhen Ma, Francisco Zaera, Surface ScienceReports , 61 (2006) 229–281.47.Heterogeneous catalysis: looking forward with molecular simulation, J.W.Andzelm, A.E. Alvarado-Swaisgood, F.U. Axe, M.W. Doyle, G. Fitzgerald 等,Catalysis Today,50 (1999) 451-477.48.Current Trends in the Improvement and Development of Catalyst PreparationMethods,N. A. Pakhomov and R. A. Buyanov,Kinetics and Catalysis, V ol. 46, No. 5, 2005, pp. 669–683.49.Temperature-programmed desorption as a tool to extract quantitative kinetic orenergetic information for porous catalysts,J.M. Kanervo ∗, T.J. Keskitalo, R.I.Slioor, A.O.I. Krause,Journal of Catalysi s 238 (2006) 382–393.50.Adsorption _ from theory to practice,A. Da˛browski,Advances in Colloid andInterface Science93(2001)135-224.51.Characterization of solid acids by spectroscopy,Eike Brunner,Catalysis Today,38 (1997) 361-376.52.Chemical Strategies To Design Textured Materials: from Microporous andMesoporous Oxides to Nanonetworks and Hierarchical Structures,Galo J. de A. A.Soler-Illia, Cle´ment Sanchez等,Chem. Rev.2002, 102, 4093-4138.53.Solid-State Nuclear Magnetic Resonance,Cecil Dybowski,Shi Bai, and Scott vanBramer,Anal. Chem. 2004, 76, 3263-3268.54.Aerogel applications,Lawrence W. Hrubesh,Journal of Non-Crystalline Solids225_1998.335–342.55.Application of computational methods to catalytic systems,Fernando Ruette,Morella S´anchezb, Anibal Sierraalta, Journal of Molecular Catalysis A: Chemical 228 (2005) 211–225.56.Applications of molecular modeling in heterogeneous catalysis research,Linda J.Broadbelt1, Randall Q. Snurr,Applied Catalysis A: General 200 (2000) 23–46. 57.IR spectroscopy in catalysis,Janusz Ryczkowski,Catalysis Today 68 (2001)263–381.58.The surface chemistry of catalysis: new challenges ahead,Francisco Zaera,Surface Science 500 (2002) 947–965.药学60. Peishan Xie, Sibao Chen, Yi-zeng Liang, Xianghong Wang, Runtao Tian, Roy Upton,Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine,J. Chromatogr. A 1112 (2006) 171–180.61. Yi-Zeng Lianga, Peishan Xieb, Kelvin Chan, Quality control of herbal medicines, Journal of Chromatography B, 812 (2004) 53–70.62. 刘昌孝, 代谢组学的发展与药物研究开发, 天津药学2005 年4 月第17 卷第2 期.63. 徐曰文,林东海,刘昌孝,代谢组学研究现状与展望,药学学报2005, 40 (9) : 769 – 774。

荧光分析法测定尿中核黄素(VB2)含量

荧光分析法测定尿中核黄素(VB2)含量

实验三荧光分析法测定尿中核黄素(VB2)含量【目的要求】1.掌握荧光分析法的基本原理及方法。

2.掌握固相萃取法对样品进行分离纯化的技术。

3.熟悉荧光分光光度计的使用方法。

【原理】核黄素(VB2)在一定波长的光波照射下发荧光。

在pH6~7的溶液中荧光最强,在其它条件恒定时,荧光强度F与VB2浓度C成正比,即F=K C;当pH>11时荧光消失。

尿中共存物质干扰VB2的测定,需将尿液通过硅镁吸附柱,使其中VB2被硅镁吸附剂吸附,再用洗脱液洗脱,测定洗脱液中VB2的荧光强度。

采用标准曲线法进行定量。

【仪器和材料】1.仪器与器皿荧光分光光度计,样品池,脱脂棉,吸附柱(内径0.8~1.0cm,柱长8cm),50ml、1000ml容量瓶,10ml比色管,2ml移液管。

2.试剂(1)VB2标准贮备液(25mg/L):准确称取25.0mg核黄素,加400ml超纯水,加冰醋酸1~2ml,加热溶解,冷却后转移至1000ml容量瓶中并用超纯水稀释定容,摇匀,贮存于棕色试剂瓶中。

(2)VB2标准应用液(0.5 g/ml):取标准贮备液1ml于50ml棕色容量瓶中,用0.1mol/LHAc溶液稀释至刻度,摇匀(现用现配)。

(3)硅镁吸附剂(60~100目)。

(4)洗脱液:按体积比丙酮:冰醋酸:双蒸水=5:2:9。

(5)0.1mol/L HAc溶液。

【操作步骤】1.装柱用一小团脱脂棉将吸附柱管下端轻轻塞住,将1.5g左右的硅镁吸附剂于适量的蒸馏水混合装柱(约占柱长的2/3左右),用双蒸水测试流速,流速控制在60~80滴/分,柱内应无气泡。

2.标准曲线的绘制(1)吸附:取VB 2标准应用液0.00、0.50、1.00、1.50、2.00和2.50ml ,分别过柱,用15~20ml 热水(60~70℃)淋洗柱子。

(2)洗脱:将10ml 比色管接在柱子下端,每个吸附柱中加入5ml 洗脱液,待流尽后再用不足5ml 的蒸馏水淋洗柱子,流出液一并盛入比色管中,用双蒸水定容至10ml ,混匀,避光保存。

荧光分析法练习题

荧光分析法练习题

第十二章荧光分析法(药学)A型题1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。

A、荧光光度法B、磷光光度法C、化学发光法D、X荧光光谱法E、原子荧光光谱法答案:A2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。

A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱B、能发射荧光的物质比较少C、荧光波长比相应的吸收波长稍长D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰E、分子荧光分析线性范围更宽答案:B3荧光量子效率是指()。

A、荧光强度与吸收光强度之比B、发射荧光的量子数与吸收激发光的量子数之比C、发射荧光的分子数与物质的总分子数之比D、激发态的分子数与基态的分子数之比E、物质的总分子数与吸收激发光的分子数之比答案:B4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。

A、吸收光谱B、激发光谱C、荧光光谱D、工作曲线E、标准工作曲线答案:C5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。

A、吸收光谱B、激发光谱C、荧光光谱D、工作曲线E、标准工作曲线答案:B6.一种物质能否发出荧光主要取决于()。

A、分子结构B、激发光的波长C、温度D、溶剂的极性E、激发光的强度答案:A7.下列结构中荧光效率最高的物质是()。

A、苯酚B、苯C、硝基苯D、苯甲酸E、碘苯答案:A8.下列因素会导致荧光效率下降的有()。

A、激发光强度下降B、溶剂极性变小C、温度下降D、溶剂中含有卤素离子E、激发光强度增大答案:D9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。

A、激发光足够强B、吸光系数足够大C、试液浓度足够稀D、仪器灵敏度足够高E、仪器选择性足够好答案:C10.在测定物质的荧光强度时,荧光标准溶液的作用是()。

A、用做调整仪器的零点B、用做参比溶液C、用做定量标准D、用做荧光测定的标度E、以上都不是答案:D11.荧光分光光度计与分光光度计的主要区别在于()。

(完整版)仪器分析习题答案-光谱分析部分

(完整版)仪器分析习题答案-光谱分析部分

(完整版)仪器分析习题答案-光谱分析部分仪器分析部分作业题参考答案第⼀章绪论1-21、主要区别:(1)化学分析是利⽤物质的化学性质进⾏分析;仪器分析是利⽤物质的物理或物理化学性质进⾏分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能⽤于组分的定量或定性分析;仪器分析还能⽤于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度⾼,适合于常量组分分析;仪器分析灵敏度⾼、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。

2、共同点:都是进⾏组分测量的⼿段,是分析化学的组成部分。

1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的⼀种技术设备,是⼀种装置;仪器分析是利⽤仪器设备进⾏组分分析的⼀种技术⼿段。

分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的⽬的,分析仪器是仪器分析的⼯具。

仪器分析与分析仪器的发展相互促进。

1-7因为仪器分析直接测量的是物质的各种物理信号⽽不是其浓度或质量数,⽽信号与浓度或质量数之间只有在⼀定的范围内才某种确定的关系,且这种关系还受仪器、⽅法及样品基体等的影响。

因此要进⾏组分的定量分析,并消除仪器、⽅法及样品基体等对测量的影响,必须⾸先建⽴特定测量条件下信号与浓度或质量数之间的关系,即进⾏定量分析校正。

第⼆章光谱分析法导论2-1光谱仪的⼀般组成包括:光源、单⾊器、样品引⼊系统、检测器、信号处理与输出装置。

各部件的主要作⽤为:光源:提供能量使待测组分产⽣吸收包括激发到⾼能态;单⾊器:将复合光分解为单⾊光并采集特定波长的光⼊射样品或检测器;样品引⼊系统:将样品以合适的⽅式引⼊光路中并可以充当样品容器的作⽤;检测器:将光信号转化为可量化输出的信号。

信号处理与输出装置:对信号进⾏放⼤、转化、数学处理、滤除噪⾳,然后以合适的⽅式输出。

2-2:单⾊器的组成包括:⼊射狭缝、透镜、单⾊元件、聚焦透镜、出射狭缝。

各部件的主要作⽤为:⼊射狭缝:采集来⾃光源或样品池的复合光;透镜:将⼊射狭缝采集的复合光分解为平⾏光;单⾊元件:将复合光⾊散为单⾊光(即将光按波长排列)聚焦透镜:将单⾊元件⾊散后的具有相同波长的光在单⾊器的出⼝曲⾯上成像;出射狭缝:采集⾊散后具有特定波长的光⼊射样品或检测器 2-3棱镜的分光原理是光的折射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荧光分析法
思考题和习题
1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰?
荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。

这时分子发射的光称为荧光。

荧光的波长比原来照射的紫外光的波长更长。

磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。

磷光的波长比荧光更长。

瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。

拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。

当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。

这两种光均称为拉曼光。

为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除
为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长
2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率?
荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。

以下分子结构的物质有较高的荧光效率:
(1)长共轭结构:如含有芳香环或杂环的物质。

(2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。

(3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。

3.哪些因素会影响荧光波长和强度?
(1)温度:物质的荧光随温度降低而增强。

(2)溶剂:一般情况下,荧光波长随着溶剂极性的增大而长移,荧光强度也有增强。

溶剂如能与溶质分子形成稳定氢键,荧光强度减弱。

(3)pH:荧光物质本身是弱酸或弱碱时,溶液的pH对该荧光物质的荧光强度有较大影响。

(4)荧光熄灭剂:荧光熄灭是指荧光物质分子与溶剂分子或溶质分子的相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。

(5)散射光的干扰:包括瑞利光和拉曼光对荧光测定有干扰。

4.请设计两种方法测定溶液Al3+的含量。

(一种化学分析方法,一种仪器分析方法)
配位滴定:利用铝与EDTA的配位反应进行滴定分析,因铝与EDTA的反应速率比较缓慢,而且铝对指示剂有封蔽作用,因此铝的测定一般用EDTA作为标准溶液,返滴定法或置换滴定法测定。

仪器分析法:利作铝离子与有机试剂如桑色素组成能发荧光的配合物,通过检测配合物的荧光强度以来测定铝离子的含量。

另可采用原子吸收分光光度法或原子发射光谱法进行测定。

5.一个溶液的吸光度为0.035,试计算式(12∙5)括号中第二项与第一项之比。

0403.0)035.03.2(2
)035.03.2(3.2!2)3.2(2
2=⨯÷⨯-=÷-ECl ECl
6.用荧光法测定复方炔诺酮片中炔雌醇的含量时,取供试品20片(每片含炔诺酮应为0.540.66mg ,含炔雌醇应为31.5~38.5μg ),研细溶于无水乙醇中,稀释至250ml ,滤过,取滤液5ml ,稀释至10ml ,在激发波长285nm 和发射波长307nm 处测定荧光强度。

如炔雌醇对照品的乙醇溶液(1.4μg/ml )在同样测定条件下荧光强度为65,则合格片的荧光读数应在什么范围内? (58.5~71.5)
测定液中炔雌醇的浓度范围在
之间应在得合格片的荧光计计数由计数为的对照品溶液的荧光计之间为合格
即5.71~5.58,65
/4.1/54.1~26.1:105250205.38~105250205.31s
x s x C C F F ml g ml g ml
ml ml g ml ml ml g =⨯⨯⨯⨯μμμμ
7.1.00g 谷物制品试样,用酸处理后分离出VB 2及少量无关杂质,加入少量KMnO 4,将VB 2氧化,过量的KMnO 4用H 2O 2除去。

将此溶液移入50ml 量瓶,稀释至刻度。

吸取25ml 放入样品池中以测定荧光强度(VB 2中常含有发生荧光的杂质叫光化黄)。

事先将荧光计用硫酸奎宁调至刻度100处。

测得氧化液的读数为6.0。

加入少量连二亚硫酸钠(Na 2S 2O 4),使氧化态VB 2(无荧光)重新转化为VB 2,这时荧光计读数为55。

在另一样品池中重新加入24ml 被氧化的VB 2溶液,以及1ml VB 2标准溶液(0.5μg/ml ),这一溶液的读数为92,计算试样中VB 2的含量。

(0.5698μg/g )
25ml 氧化液的荧光计数为6.0,相当于空白背景;测定液的荧光计数为55,其中VB 2的荧光为55-6.0=49 24ml 氧化液+ 1ml VB 2标准溶液的荧光读数为92,其中VB 2标准溶液(0.5μg/ml )的荧光读数为92-6=86, 则25ml 测定液中含VB 2 0.5×49/86 = 0.2849 (μg )
故谷物中含VB 2 0.2849×50/25 = 0.5698 (μg/g )。

相关文档
最新文档