专题化简绝对值

合集下载

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。

题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。

例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0a()0=a=1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

中考复习——绝对值的化简专题练习(解析版)

中考复习——绝对值的化简专题练习(解析版)

中考复习——绝对值的化简一、选择题1、如图,数轴上点A表示数a,则|a|是().A. 2B. 1C. -1D. -2答案:A解答:∵A点在-2处,∴数轴上A点表示的数a=-2,|a-2|=2.2、实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为().A. a-bB. b-aC. a+bD. -a-b 答案:C解答:观察数轴可得a>0,b<0,所以|a|-|b|=a-(-b)=a+b.3、如图,点A所表示的数的绝对值是().A. 3B. -3C. 13D. -13答案:A解答:点A表示的数是-3,|-3|=3.选A.4、实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为().A. a+bB. a-bC. b-aD. -a-b答案:C解答:由数轴值a<0,b>0,∴a-b<0,|a-b|为a-b的相反数.5、数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d-5d-c|,则关于D点的位置,下列叙述何者正确?().A. 在A的左边B. 介于A、C之间C. 介于C、O之间D. 介于O、B之间答案:D解答:∵c<0,b=5,|c|<5,|d-5d-c|,∴BD=CD,∴D点介于O、B之间,选D.6、已知实数a在数轴上的对应点位置如图所示,则化简|a-1|).A. 3-2aB. -1C. 1D. 2a-3答案:D解答:由数轴可知:1<a<2,所以|a-1|=a-1;a-2|=2-a;所以原式=a-1-(2-a)=2a-3,选D.7、如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在().A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点B与点C之间或点C的右边答案:C解答:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B与点C之间,且靠近点B的地方.8、若a-|a|=2a,则实数a在数轴上的对应点一定在().A. 原点左侧B. 原点或原点左侧C. 原点右侧D. 原点或原点右侧答案:B解答:由a-|a|=2a,得|a|=-a,故a是非正数.9、实数在数轴上的位置如图所示,则|a-2.5|=().A. a-2.5B. 2.5-aC. a+2.5D. -a-2.5答案:B解答:如图可得a<2.5,即a-2.5<0,则|a-2.5|=-(a-2.5)=2.5-a.10、如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于A、B之间C. 介于B、C之间D. 在C的右边答案:C解答:∵|a-b|=3,|b-c|=5,∴b=a+3,c=b+5.∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1.∵b=a+3,∴a=-4,b=-1.∵c=b+5,∴c=4.∴点O介于B、C点之间.选C.11、数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上,若|ab|,AC:CB=1:3,则下列b 、c 的关系式,何者正确?( ) A. |c |=12|b | B. |c |=13|b |C. |c |=14|b |D. |c |=34|b |答案:A解答:如下图所示, ∵C 在AB 上,AC :CB =1:3, ∴|c |=4a b ,又∵|ab |,∴|c |=12|b |.12、实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( ).A. aB. bC. cD. d答案:A 解答:方法一:由图可知:-4<a <-3,-2<b <-1,0<c <1,2<d <3, 故|a |最大. 方法二:由数轴可知,实数a 在数轴对应的点到原点的距离最大, 所以实数a 的绝对值最大. 选A.13、已知x 是整数,当|x 取最小值时,x 的值是( ).A. 5B. 6C. 7D. 8答案:A∴56,5,∴当|x取最小值时,x的值是5.选A.14、当1<a<2时,代数式|a-2|+|1-a|的值是().A. -1B. 1C. 3D. -3答案:B解答:因为1<a<2,所以a-2<0,1-a<0,所以|a-2|+|1-a|=-(a-2)-(1-a)=-a+2-1+a=1.15、数轴上A、B、C三点所代表的数分别是a、1、c,且|c-1|-|a-1a-c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?().A. B.C. D.答案:A解答:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,∵|c-1|-|a-1a-c|.∴|c-b|-|a-ba-c|.A、b<a<c,则有|c-b|-|a-b|=c-b-a+b=c-a=|a-c|,正确;B、c<b<a则有|c-b|-|a-b|=b-c-a+b=2b-c-a≠|a-c|,故错误;C、a<c<b,则有|c-b|-|a-b|=b-c-b+a=a-c≠|a-c|,故错误;D、b<c<a,则有|c-b|-|a-b|=c-b-a+b=c-a≠|a-c|,故错误.二、填空题16、|-3|的相反数是______.答案:-3解答:∵|-3|=3,∴3的相反数是-3,故答案为:-3.17、实数a在数轴上的位置如图,则|a|=______.-a解答:∵a<0,∴a0,则原式-a.18、实数a在数轴的位置如图所示,则|a-1|=______.答案:1-a解答:∵a<-1,∴a-1<0,原式=-(a-1)=1-a.19、在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为______.答案:-671解答:依题可知,|a-b|=2013,且AO=2BO,即b-a=2013,-a=2b,3b=2013,b=671,a=-1342,a+b=-671.20、在数轴上表示实数a a-2|的结果为______.答案:3解答:由数轴可得:a-5<0,a-2>0,a-2|=5-a+a-2=3.21、写出一个负数,使这个数的绝对值小于3:______.答案:-1(答案不唯一)解答:|-1|=1<3.22、已知aa+bb=0,则abab的值为______.答案:-1解答:由题意可得a、b异号,abab=-1.三、解答题23、我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法,例如,代数式|x-2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1x-(-1)|,所以|x+1|的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.发现问题:代数式|x+1|+|x-2|的最小值是多少?探究问题:如图,点A,B,P分别表示的是-1,2,x,AB=3.∵|x+1|+|x-2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3;当点P在点A的左侧或点B的右侧时,P A+PB>3,∴|x+1|+|x-2|的最小值是3.解决问题:(1)|x-4|+|x+2|的最小值是______.(2)利用上述思想方法解不等式:|x+3|+|x-1|>4.(3)当a为何值时,代数式|x+a|+|x-3|的最小值是2.答案:(1)6(2)x<-3或x>1.(3)a=-1或a=-5.解答:(1)设A表示的数为4,B表示的数为-2,P表示的数为x,∴|x-4|表示数轴上的点P到4的距离,用线段P A表示,|x+2x-(-2)|表示数轴上的点P到-2的距离,用线段PB表示,∴|x-4|+|x+2|的几何意义表示为P A+PB,当P在线段AB上时取得最小值为AB,且线段AB 的长度为6,∴|x-4|+|x+2|的最小值为6.故答案为:6.(2)设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则|x+3|+|x-1|的几何意义表示为P A+PB,∴不等式的几何意义是P A+PB>AB,∴P不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为x<-3或x>1.(3)设A表示-a,B表示3,P表示x,则线段AB的长度为|-a-3|,|x+a|+|x-3|的几何意义表示为P A+PB,当P在线段AB上时P A+PB取得最小值,∴|-a-3|=2,∴a+3=2或a+3=-2,即a=-1或a=-5.。

绝对值化简专题训练2(有难度)(DOC)

绝对值化简专题训练2(有难度)(DOC)

绝对值化简专题训练2(有难度)绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.。

绝对值化简十种方法

绝对值化简十种方法

绝对值化简十种方法绝对值是数学中的一个重要概念,它表示一个数与0的距离,因此它的值总是非负的。

在数学中,我们经常需要对绝对值进行化简,以便更好地理解和计算问题。

下面将介绍十种常见的绝对值化简方法。

1. 绝对值的定义:|x| = x (x≥0) 或 |x| = -x (x<0)。

根据这个定义,我们可以将绝对值化为一个简单的表达式。

2. 绝对值的性质:|x| = |-x|。

这个性质告诉我们,绝对值的值与它的符号无关,只与它的绝对值大小有关。

3. 绝对值的加法:|x+y| ≤ |x| + |y|。

这个不等式告诉我们,两个数的绝对值之和不会超过它们的和的绝对值。

4. 绝对值的减法:|x-y| ≥ |x| - |y|。

这个不等式告诉我们,两个数的绝对值之差不会小于它们的差的绝对值。

5. 绝对值的乘法:|xy| = |x| |y|。

这个公式告诉我们,两个数的绝对值之积等于它们的绝对值的积。

6. 绝对值的倒数:1/|x| ≤ 1/x。

这个不等式告诉我们,一个数的倒数的绝对值不会超过它本身的绝对值的倒数。

7. 绝对值的平方:|x|² = x² (x≥0) 或 |x|² = (-x)² (x<0)。

这个公式告诉我们,一个数的绝对值的平方等于它本身的平方。

8. 绝对值的立方:|x|³ = x³ (x≥0) 或 |x|³ = -x³ (x<0)。

这个公式告诉我们,一个数的绝对值的立方等于它本身的立方或相反数的立方。

9. 绝对值的导数:d/dx |x| = x/|x|。

这个公式告诉我们,一个数的绝对值的导数等于它本身除以它的绝对值。

10. 绝对值的积分:∫|x|dx = x|x|/2 + C。

这个公式告诉我们,一个数的绝对值的积分等于它本身乘以它的绝对值除以2再加上一个常数C。

以上是十种常见的绝对值化简方法,它们在数学中的应用非常广泛。

绝对值化简ppt课件

绝对值化简ppt课件
类型二 不知道未知数取值范围,根据代数式的零点分段讨论, 按不同情况去绝对值化简
例3 化简 (1) (2)
1
2

随手练习:化简下列绝对值式子 (1) (2)
当 时,
1/2
0
解(2):由 ,得 ,得
当 时, ,
当 时, ,
当 时, ,
回味战果
这节课你有哪些收获?
思维之战
解:(1)
(2)
a
b
0
1
解:由数轴分析: 且
, ,
例2 已知有理数a,b,c在数轴上的位置如图所示, 试化简
类型一 已知未知数取值范围,利用定义直接化简
思维之战
类型二 不知道未知数取值范围,根据代数式的零点分段讨论, 按不同情况去绝对值化简
例3 化简 (1) (2)
解(1):由 ,解得
当 时,
x
1
0
-3
0
4
x
-3
0
4
x
-3
0
4
x
1
0
x
说明:当绝对值内的代数式为一元一次代数式,且未知数系数为1时,可根据绝对值几何定义,借用数轴数形结合分析去绝对值符号。
解答:(1) (2)
随手练习:化简下列绝对值式子 (1) (2)
性质 如果 ,那么 ; 如果 ,那么 。
0
a
b
a
类型一 已知未知数取值范围,利用定义直接化简
例1 化简 (1) (2)
1、已知 ,化简 ;
2 、已知 a<b ,化简 。
3 、化简 (1) (2)
4、如果x<0,化简 = 。
a
b
0
c

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

绝对值的三种化简方法绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。

并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。

【知识点梳理】 1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a | 2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0; ②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。

3.绝对值的化简:类型一、利用数轴化简绝对值例1.有理数a 、b 、c 在数轴上位置如图,则a c a b b c --++-的值为( ).A .2aB .222a b c +-C .0D .2c -例2.有理数a ,b 在数轴上对应的位置如图所示,那么代数式11a b a b ab a b-++--+的值是( )A .-1B .1C .3D .-3【变式训练1】已知,数a 、b 、c 的大小关系如图所示:化简||||2||3||a c b a a c b c +----+-=____.【变式训练2】有理数a 、b 、c 在数轴上的位置如图.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,a c -+ 0. (2)化简:||||c|b c a b a -+++-+∣【变式训练3】有理数a ,b 在数轴上的对应点如图所示:(1)填空:b a -______0;1b -______0;1a +______0;(填“<”、“>”或“=”) (2)化简:11b a b a ---++【变式训练4】有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0. (2)化简:|a |+|b +c |﹣|c ﹣a |.类型二、利用几何意义化简绝对值例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索 (1)求|5-(-2)|=________;(2)同样道理|x +1008|=|x -1005|表示数轴上有理数x 所对点到-1008和1005所对的两点距离相等,则x =________;(3)类似的|x +5|+|x -2|表示数轴上有理数x 所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x ,使得|x +5|+|x -2|=7,这样的整数是__________.(4)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式训练1】阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a -b ∣;当A 、B 两点都不在原点时:①如图2,点A 、B 都在原点的右边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b -a =∣a -b ∣; ②如图3,点A 、B 都在原点的左边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=-b -(-a )=∣a -b ∣; ③如图4,点A 、B 在原点的两边:∣AB ∣=∣OA ∣+∣OB ∣=∣a ∣+∣b ∣=a +(-b )=∣a -b ∣, 综上,数轴上A 、B 两点之间的距离∣AB ∣=∣a -b ∣. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;(2)数轴上表示x 和-1的两点A 和B 之间的距离是________,如果∣AB ∣=2, 那么x 为__________.(3)当代数式∣x +1∣+∣x -2∣取最小值时,相应的x 的取值范围是__________.【变式训练2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离可以表示为|m ﹣n |.那么,数轴上表示数x 与5两点之间的距离可以表示为 ,表示数y 与﹣1两点之间的距离可以表示为 .(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a = 时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是 . 【变式训练3】(问题提出)1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?(阅读理解)为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值.我们先看a 表示的点可能的3种情况,如图所示:(1)如图①,a 在1的左边,从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②,a 在1,2之间(包括在1,2上),看出a 到1和2的距离之和等于1. (3)如图③,a 在2的右边,从图中很明显可以看出a 到1和2的距离之和大于1.因此,我们可以得出结论:当a 在1,2之间(包括在1,2上)时,12-+-a a 有最小值1. (问题解决)(1)47a a -+-的几何意义是 ,请你结合数轴探究:47a a -+-的最小值是 .(2)请你结合图④探究123a a a -+-+-的最小值是 ,由此可以得出a 为 .(3)12345a a a a a -+-+-+-+-的最小值为 . (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为 .(拓展应用)如图,已知a 使到-1,2的距离之和小于4,请直接写出a 的取值范围是 .类型三、分类讨论法化简绝对值 例1.化简:214x x x --++-.【变式训练1】若0,0a b c abc ++<>,则23a ab abc a ab abc++的值为_________.【变式训练2】(1)数学小组遇到这样一个问题:若a ,b 均不为零,求a bx a b=+的值. 请补充以下解答过程(直接填空)①当两个字母a ,b 中有2个正,0个负时,x= ;②当两个字母a ,b 中有1个正,1个负时,x= ;③当两个字母a ,b 中有0个正,2个负时,x= ;综上,当a ,b 均不为零,求x 的值为 . (2)请仿照解答过程完成下列问题: ①若a ,b ,c 均不为零,求a b cx a b c=+-的值. ②若a ,b ,c 均不为零,且a+b+c=0,直接写出代数式b c a c a ba b c+++++的值.。

绝对值化简专题训练

绝对值化简专题训练

绝对值难题解析绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。

一、根据题设条件例1 设化简的结果是()。

(A)(B)(C)(D)思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.二、借助数轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.三、采用零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式②当时,,∴原式③当时,,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.练习:请用文本例1介绍的方法解答l、2题1.已知a、b、c、d满足且,那么2.若,则有()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题2.4:化简绝对值
一.【知识要点】
1.根据
:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩化简含有绝对值的式子。

二.【经典例题】 1.已知a 、b 、c 在数轴上的位置如图所示,化简:b a b c a --+--+-12a .
2.有理数表示的点在数轴上的位置如图,则( )
A. B. C. D.
3.若m m -=||,则|2||1|---m m = .
4.若11,1-2132
a a a a <<+-+-则= . 5.阅读下列材料:点A ,点B 在数轴上分别表示两个有理数,A 、B 两点间的距离表示为AB 。

(1)当点A 在原点时,若点B 表示的数为5时,则AB =05-=5;若点B 表示的数为﹣5时,则AB =505-=--=5;若点B 表示的数为a 时,则AB =a a =-0,当a >0, AB =a , 当a=0,AB =0,当a <0,AB =-a
(2)当A .B 都不在原点时,A 表示的数为a ,B 表示的数为b ,则AB =b a -,当a -b >0时,AB =b a -=a ﹣b ;当a -b =0时,AB =b a -=0;当a -b <0时,AB =b a -=﹣(a ﹣b )=﹣a ﹢b 。

根据上述材料,回答下列问题:
有理数a .b .c 在数轴上的位置如图所示:
c b a ,,=+---+a b b c c a 2b a -3b a --c b a 23-+c b a 2--a 0 b c
化简(1
)=a =b =c
=+b a =+c a
=-b c =-b a
化简(2)c b b a b a -++++
三.【练习】
1.若a <0,则|1-a |+|2a -1|+|a -3|=______________________
2.当a <3时,|a -3|+a =_______________
3.已知a,b,c 在数轴上的位置如图,化简∣a+c ∣-∣a-2b ∣-∣c-2b ∣的结果是( )
A .0
B .4b
C .-2a-2c
D .2a-4b
4. 已知a 是正数,则=-a a 73 __________.
5.若1x >,化简:1x x --
6.若52x -≤≤,化简52x x ++-
7.有理数a ,b 满足a <0<b ,且|a |>|b |,则代数式|a +b |+|2a -b |化简后结果为___________
8.数a ,b ,c 在数轴上对应位置如图,
化简:| a + b | + | b + c | — | c – a |.
a
b 0 c
9.若有理数在数轴上的位置如图所示,则化简|a+c|+|a ﹣b|﹣|c-b|=________.
10.实数a ,b ,c 在数轴上的位置如图所示,化简a b a c -+-+-
11.已知有理数a ,b ,c 在数轴上的位置如图所示,且||||c a =,
试化简:|||||||2|||b a b c a b b c a ++----++;
12.已知有理数c b 、、a 在数轴上的位置如图所示,化简:|c -b |-|a -c ||c a |-|-a |++
13.已知m n n m -=-,且3,4==n m ,求2
)(n m +的值
14.已知a ,b ,c 在数轴上的对应点如下图所示,化简2a c a b c b +-++-= ..
15.已知 ,56-<<-x 化简12382++--+x x x。

相关文档
最新文档