啤酒发酵
啤酒发酵的流程

啤酒发酵的流程
啤酒发酵流程主要包括以下步骤:
1. 麦汁制备:大麦经过发芽、烘干、研磨后与水混合,通过糖化过程将淀粉转化为可发酵糖,再加入酒花煮沸后迅速冷却。
2. 酵母接种:将冷却后的麦汁转移至发酵罐,添加纯净酵母菌种。
3. 主发酵:在适宜温度下,酵母开始消耗麦汁中的糖分,生成酒精、二氧化碳和其他风味物质,这一阶段持续约一周左右。
4. 后发酵:当糖度降至一定值后,转入低温环境,继续发酵并进行双乙酰等化合物的还原,期间产生的二氧化碳逐渐溶解于酒体中。
5. 熟化与澄清:保持低温静置,使啤酒进一步成熟、澄清,排除剩余酵母及沉淀物。
6. 过滤与灌装:经过澄清的啤酒通过过滤去除固形物,然后灌装入容器,并可能进行巴氏杀菌处理,最终成为市售的成品啤酒。
啤酒酿造工艺学(啤酒发酵)概述

工艺过程控制
01
糖化过程控制
精确控制糖化温度和时间,确保 麦芽中的淀粉充分转化为可发酵 性糖。
02
03
发酵过程控制
过滤与澄清
选用优质酵母,控制发酵温度和 时间,确保酵母充分发酵,产生 丰富的二氧化碳和酒精。
用于监控和控制整个生产过程,确保生产线的自动化和高效运行 。
05
啤酒发酵过程中的质量控制
原料质量控制
麦芽质量
选用优质大麦,控制发芽过程中的温度、湿度和时间,确保麦芽酶 活性、水分和色泽等指标符合标准。
啤酒花质量
选用新鲜、香气浓郁的啤酒花,控制其添加量和时间,以保证啤酒 的苦味和香味平衡。
水质控制
啤酒发酵的微生物学原理
酵母菌的生理特性
酵母菌是一类单细胞真菌,具有厌氧呼吸能力,能够在缺氧条件下进行发酵。 在啤酒酿造中,酵母菌主要通过摄取麦芽汁中的糖分进行生长和繁殖。
酵母菌的发酵作用
在啤酒发酵过程中,酵母菌通过厌氧呼吸作用将麦芽汁中的葡萄糖分解为乙醇 和二氧化碳。不同类型的酵母菌会产生不同的代谢产物,从而影响啤酒的风味 和品质。
啤酒酿造工艺学(啤酒发酵)概述
汇报人:XX
contents
目录
• 啤酒酿造工艺学简介 • 啤酒发酵原理 • 啤酒发酵工艺 • 啤酒发酵设备 • 啤酒发酵过程中的质量控制 • 啤酒发酵新技术与新趋势
01
啤酒酿造工艺学简介
啤酒酿造工艺学的定义
啤酒酿造工艺学是研究啤酒生产 过程中各种工艺技术和方法的科
质量检测与评估
过程检测
在酿造过程中进行定期检测,及时发现并解决问题,确保生产顺 利进行。
啤酒发酵简介

20-23
14-15
撇沫法 下落法
1-2
底
二 啤酒发酵工艺的影响
1 酵母菌株的选择
2 麦汁的组成 3 接种量
4 发酵温度
5 罐压和CO2浓度的影响
1 酵母菌株的选择
(1)发酵速度 (2)发酵限度:主发酵终了发酵度和啤酒发酵度;保留足够 可发酵性糖在后发酵 (3)凝聚性 (4)回收性 (5)稳定性:分批式发酵,波动较大
4 酸类
(1)总酸定义:用1mol/lNaoH滴定100ml啤酒, 滴至pH9.0为终点,用消耗NaoH的毫升数表示 总酸度。 (2)总酸的来源 a 麦芽和麦汁 b 来自于发酵的酸(酮酸、乳酸、琥珀酸和脂肪 酸等有机酸) (3)啤酒中的挥发酸主要是脂肪酸,尤其以乙酸 为主。乙酸的形成,发酵前期麦汁含氧不足,通 风不畅情况下,乙醛和乙醇氧化生成乙酸。
6 含硫化合物
主要来自于麦芽、辅料、酒花和酿造水;其中6%是挥发性 含硫化合物,主要是SO2, H2S, CH3SCH3, CH3SH等 CH3SH是啤酒日光臭的主要成分
第三节 啤酒发酵技术
一 啤酒发酵技术
酵 分批式发酵{ 传统发
发酵
连续式发酵
大罐式
分批式
典型上面与下面发酵技术比较
下面发酵 菌种 S.Cerlsbergensis 糖化方法 出法为主 酒花用量 较多 起酵温度/℃ 6-8 主起酵最高温度/℃ 8-12 后起酵起始温度/℃ 4-5 酵母回收方法 面收集 贮酒时间/d
第四节 传统的下面发酵技术 (前池后卧式)
一 酵母的添加和前发酵 二 主发酵 三 后发酵和贮酒
一 酵母的添加和前发酵
1 酵母接种量 2 酵母的添加方法 (1)管道添加法:酵母泥+2倍量麦汁,用无菌压缩空气混合均 匀压至前酵池,与剩余麦汁混合均匀 (2)增殖池添加法:酵母泥+5倍量麦汁混匀,在13-15 ℃保 温培养10-12h.酵母出芽繁殖后与发酵麦汁混合均匀,直 接压入发酵池 (3)分池法:培养24-30h,酵母浓度达到20×106个/ml,用压 缩空气混合均匀,分为两池.再追加等温麦汁,培养18-24h, 再分割或转入主发酵 (4)通加法:首次培养酵母不够一池的接种量采用逐步递加麦 汁,每次间隔6-10h
五-啤酒发酵实验

1~1.5h。其间要经常搅拌。
5.麦汁冷却、接种。
停火后,沿着锅壁顺着一个方向搅拌,锅底中间会出 现沉淀物。静置,把热麦汁趁热缓缓倒入灭过菌试剂 瓶(8层纱布包扎),尽量减少沉淀物进入。 在麦汁冷却到室温后加入啤酒酵母,这个过程容易染 菌,须在酒精灯火焰保护下加入
6.主发酵 10 ℃发酵5~6d。发酵结束制成嫩啤酒。观察主 发酵过程中的变化,并且做好实验记录。
3.发酵—主发酵
主发酵:在冷却的麦汁中加入啤酒酵母使其发 酵,麦汁中的糖分分解为酒精和二氧化碳,大 约7-10d后,生成“嫩啤酒” 的过程。 主发酵整个过程分为:酵母繁殖期,起泡期, 高泡期,落泡期和泡盖形成期。
3.发酵—后发酵
后发酵又称后熟,是将主发酵后除去大量沉淀 酵母的嫩啤酒平缓的送至贮酒罐中,在低温下 贮存的过程。 目的:
三、啤酒发酵的原料
水
大麦:大麦提供啤酒酿造所必需的浸出物和适 量的蛋白质,大麦含水12%~20%,含干物质 80%~88%。
辅料:玉米或大米淀粉。 降低成本
酒花:啤酒花可以赋予啤酒爽口的苦味和特有 的香味,促进蛋白质凝固,提高啤酒的非生物 稳定性,此外还有利于啤酒泡沫和起到抑菌作 用。
1.麦芽粉碎 用谷物粉碎机粉碎,使粗细比例控制在1:2.5, 同时使表皮破而不碎。必要时可稍稍回潮后再 粉碎。
2.糖化:采用浸出糖化法(纯粹利用酶的生化 作用进行糖化的方法)
每实验台称500g麦芽加入2500ml水,分入四个烧
杯中于水浴锅上加热,使水浴锅中的液面高于烧杯 中的液面。
糖化流程:35~37℃,保温30min→50~52
麦汁过滤
啤酒生产技术第五章啤酒发酵

(4)产孢能力 一般啤酒酵母生产菌种都不能产生孢子或 产孢能力极弱,而某些野生酵母能很好产孢。根据此特 性,可判别啤酒酵母是否混入野生酵母。
啤酒酵母与野生酵母的主要区别
区别内容
培养酵母
野生酵母
细胞形态
圆形或卵圆形
有圆形、椭圆形、柠檬形等多种形态
抗热性能
在水中 53℃,10min 死亡
对啤酒酵母的基本要求是:发酵力高,凝 聚力强、沉降缓慢而彻底,繁殖能力适当,生 理性能稳定,酿制出的啤酒风味好。
啤酒酵母的主要特性要求
1.细胞和菌落形态 ★不同菌株的啤酒酵母有着不同的形态。 ★优良健壮的啤酒酵母细胞,具有均匀的形状和
大小,平滑而薄的细胞膜,细胞质透明均一 ★啤酒酵母在麦芽汁固体培养基上菌落呈乳白色
发酵温度
15~25℃
5~12℃
对棉子糖发酵 能将棉子糖分解蜜二糖和果糖, 能全部发酵棉子糖
只能发酵 1/3 果糖部分
对蜜二糖发酵 缺乏蜜二糖酶,不能发酵蜜二糖 含有蜜二糖酶,能发酵蜜二糖
37℃培养
能生长
不能生长
利用酒精生长 能
不能
凝聚性酵母与粉状酵母的区别
表 5-2 凝聚性酵母与粉状酵母的区别
区别内容
能耐比培养酵母较高的温度
孢子形成
较难形成
较易形成。有的野生酵母不形成孢子, 但可从细胞形态区别
糖类发酵
对葡萄糖、半乳糖、麦芽糖、果糖等 绝大多数野生酵母不能全部发酵上述 均能发酵,能全部或部分发酵棉子糖 的糖类
对选 1.含放线菌酮的培养基
放线菌酮含量达 O.2mg/kg 即不能生 非酵母属的野生酵母可耐此酮
传统下面酵母的几种主要菌株
传统啤酒发酵工艺流程

传统啤酒发酵工艺流程传统啤酒发酵工艺流程是一种历史悠久的发酵工艺,它通过大麦芽和啤酒花的发酵来制作啤酒,具有独特的风味和口感。
下面将介绍传统啤酒发酵工艺的流程。
首先,制作啤酒的第一步是麦芽的制作。
通过将大麦浸泡在水中并保持温度和湿度,促进大麦芽的发芽。
在发芽过程中,大麦的淀粉会转化为麦芽糖,这是后续发酵的主要碳源。
接下来,将麦芽研磨成糖化物,也称为麦汁。
这一步通常是通过磨碎麦芽将其变成细粉末。
研磨后的麦芽会被送入一个大容器中,加入适量的水,并加热。
加热过程中,麦汁中的麦芽糖会分解为更简单的糖类,这是后续酵母发酵的必要条件。
发酵是啤酒制作的关键步骤。
经过糖化的麦汁会被冷却,并转移到一个发酵罐中。
然后,添加啤酒酵母。
酵母会将麦汁中的糖类转化为酒精和二氧化碳。
在发酵过程中,酵母会产生一些副产物,如酯类、羧酸和其他化合物,这些物质会赋予啤酒特殊的风味和香气。
发酵通常需要几个星期的时间,具体时间根据啤酒的类型和酵母的品种而定。
发酵完成后,啤酒会进行熟化。
这一步骤通常包括将啤酒转移到一个较低的温度下,并进行冷却和沉淀。
在此过程中,酵母会沉淀并形成一层在啤酒表面的物质。
熟化的目的是更好地澄清啤酒,并使其口感更加醇厚。
最后一步是储存和瓶装。
熟化后的啤酒会被转移到一个储存罐中,以便进一步沉淀和发酵。
这一过程通常会持续几星期或几个月,以确保没有酵母残留,并使啤酒的风味更加稳定和均衡。
最后,啤酒会被瓶装,以供市场销售。
在瓶装过程中,啤酒会被过滤并装入瓶子中,并进行适当的密封和包装。
瓶装的啤酒通常需要一段时间才能达到最佳口感,因此消费者通常需要在瓶子上标明最佳饮用日期。
总之,传统啤酒发酵工艺流程是一个复杂而精密的过程,需要仔细控制和管理。
这种传统工艺所制作出的啤酒具有独特的风味和口感,一直以来都备受人们喜爱。
啤酒发酵的工艺流程

啤酒发酵的工艺流程
《啤酒发酵的工艺流程》
啤酒是一种广受欢迎的饮料,它经过精心的发酵工艺才能成为我们所喜爱的饮品。
啤酒发酵的工艺流程包括原料准备、糖化、烧制、发酵和成熟等多个步骤。
首先,原料准备。
啤酒的主要原料包括麦芽、啤酒花、水和酵母。
麦芽是啤酒的主要发酵原料,它能够提供淀粉和糖分,啤酒花则为啤酒增添了苦味和芳香。
水是组成啤酒的基础,并影响着啤酒的口感和质量,而酵母是发酵的关键。
这些原料在发酵工艺中将发挥各自的作用。
其次,糖化。
糖化是啤酒发酵的第一步,它的目的是将麦芽中的淀粉转化为可发酵的糖分。
这一过程需要通过加热和控制麦芽中的酶活性来实现,糖化后的麦汁成为接下来发酵的基础。
然后,烧制。
烧制是将糖化后的麦汁进行烹煮和加热,以杀死其中的细菌并增加其浓度。
这一过程也有助于增加啤酒的色泽和口感。
接着,发酵。
发酵是啤酒发酵工艺的核心环节,通过向麦汁中添加酵母,酵母将糖分转化为酒精和二氧化碳。
在这一过程中,酵母会释放出丰富的味道和气味,从而赋予啤酒独特的风味。
最后,成熟。
经过一定时间的发酵,酒精含量和味道都会逐渐完善,啤酒成熟后会变得更加丰富和饱满。
在整个工艺流程中,温度、压力和时间等因素都会对啤酒的质量产生影响,因此需要严格控制每个环节。
啤酒的发酵工艺流程非常复杂,但正是这些步骤的精心安排和严格控制,才使得我们能够品尝到口感丰满、风味独特的啤酒。
啤酒的发酵过程

啤酒的发酵过程啤酒的发酵过程啤酒是一种古老而广泛饮用的酒精饮品,它的制作过程中最重要的一步就是发酵。
发酵是啤酒生产中不可或缺的环节,它确定了啤酒的质量、口感和风味。
下面将介绍啤酒的发酵过程。
首先,要制作啤酒,我们需要一种称为麦芽的原料。
麦芽是由谷物(通常是大麦)经过发芽和干燥而成的,它富含淀粉和酶。
这些酶能够将淀粉分解成可发酵的糖类物质。
在发酵过程中,这些糖类物质会被酵母转化为酒精和二氧化碳。
接下来,麦芽要进行磨碎。
通过磨碎,麦芽的表面积增大,有利于后续步骤中酶的作用。
然后,将磨碎后的麦芽与水混合,形成麦芽浸渍液。
这个步骤被称为“糖化”。
糖化过程中,麦芽中的酶会活化,并开始将淀粉转化为糖类物质。
这个过程需要保持一定的温度。
一般来说,在麦芽中的酶最适宜的工作温度范围是50-70摄氏度。
麦芽与水的混合物被加热到一定温度,然后保持在这个温度下数十分钟或数个小时,使酶充分作用。
这个步骤叫做“糖化酒花”。
在这一步骤中,糖化酒花液变得甜,颜色也逐渐变浅,得到称为“麦汁”的液体。
接下来,将糖化后的麦汁通过滤网过滤,以去除麦芽渣和其他固体杂质。
这一步叫做“澄清”。
澄清后得到的液体称为“清麦液”。
下一步是酵母的添加。
将酵母加入清麦液中,它们会通过对糖类物质的发酵作用将其转化为酒精和二氧化碳。
在这个过程中,啤酒会产生气泡,并且发酵液的温度也会有所升高。
为了控制发酵液的温度,通常会使用降温装置,以确保温度始终保持在适宜的范围内。
酵母的发酵过程通常需要数日至数周的时间,具体取决于啤酒的类型和制作工艺。
在这段时间内,酵母会逐渐消耗掉糖类物质,并产生酒精和二氧化碳。
酒精的含量取决于酵母的工作效率和发酵液中的糖含量。
通常,酒精的含量在4-7%之间。
当发酵完成后,啤酒会在大容器中静置一段时间,以使其沉淀。
这个步骤叫做“沉淀”。
沉淀后,会有一层酵母沉淀物在容器的底部。
最后一步是对啤酒进行装瓶和储存。
啤酒会被装入瓶子或桶中,密封保持,以防止二氧化碳逸出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶解氧在啤酒发酵中的探讨
啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的麦芽糖而进行的正常生命活动,其代谢的产物就是所要的产品,其主要成分为乙醇,发酵副产物主要为醇类、醛类、酸类、酯类、酮类和硫化物等物质。
正是由于这些发酵产物决定了啤酒的风味、泡沫、色泽和稳定性等各项理化性能,赋予啤酒以典型特色。
因此根据酵母菌种类型,发酵的条件和产品要求,其发酵的方式也不尽相同。
啤酒发酵为厌氧发酵,所以发酵液中溶氧量的高低对代谢产物的积累有着重要的影响作用,研究表明溶氧对发酵过程的影响主要来自两个方面:一是溶氧浓度影响与呼吸链有关的能量代谢,从而影响微生物生长;另一是氧直接参与产物合成。
因此研究溶氧对发酵的影响及控制对提高生产效率,改善产品质量等都有重要意义。
啤酒发酵所用的菌种为酵母菌,其为兼性好氧微生物,其生长不一定需要氧,但是在培养中供给氧,则菌体生长更好。
然而,酒精在其发酵过程中必须严格控制氧气的存在。
因为如果有氧存在的情况下会使啤酒的质量下降,其主要的影响有以下几个方面:(1)溶氧过高会使啤酒产生胶体浑浊,因为啤酒中含有大量的琉基的蛋白质和多肤,容易受到氧化后形成双硫键,促进了蛋白质和多肤聚合,形成浑浊物质。
啤酒中多酚物质在一定条件下可以氧化聚合为多聚体,如果啤酒中有较多的溶解氧存在,加上有一价金属离子的催化与结合,多酚加速聚合的同时又可以氢键和共价键的形式与多肽相结合,使呈现雾状浑浊。
由于氧化聚合继续进行,形成许多牢固的共价键结合物,呈絮状或片状混合物。
由此可知,氧对啤酒浑浊的形成具有极大的影响。
(2)溶氧过高会使啤酒中双乙酞含量升高,主要由于氧的存在,使啤酒中残留的α一乙酞乳酸氧化脱羚而使双乙酞的含量增高。
(3)溶氧过高还会影响啤酒的风味,因为啤酒的风味主要是由于双乙酞及其前体、醛类、酯类、高级醇、含硫化合物等引起的。
这些风味组成成分所含有的醛基、轻基、琉基、烯或烯醇基等,都可以被氧化或进行加氧反应,结果可能会使啤酒中原来感觉不到的风味成分转化为能感觉到的风味成分,或改变原有风味成分的呈味性质从而产生异杂味,并且导致啤酒口感粗劣。
(4)溶氧过
高还能加深啤酒色泽,啤酒中含有的一些糖类和氨基酸在有氧的条件下会缓慢氧化,使啤酒色泽加深,主要原因是多酚类氧化聚合形成的蹂配而使啤酒呈现暗红色。
(5)溶氧过高会破坏酒花香味和苦味,原因是由于氧能促进酒花不饱和菇烯化合物氧化,形成饱和烃,丧失酒花的新鲜香味,形成烷烃臭和苦味。
氧也能促进α一酸氧化,形成氧化α一酸、β至一树脂,这些产物大多数给啤酒带来粗糙的苦味和后苦味。
然而在发酵过程中始终不供给氧也是不行的,因为虽然酵母菌为兼性厌氧型微生物,能在无氧条件下生活,但是在此条件下细菌生长缓慢,最终会因发酵产物酒精含量的增大而使菌体发生死亡,因此在发酵的前期因供给其一定的溶氧目的是是酵母菌增殖产生大的菌体,使其快速到达对数期,从而有利于后续发酵的快速进行。
因此在酒精发酵过程中对溶DO进行严格的控制,控制主要分两个阶段,初始提供高DO值进行菌体扩大培养,后期严格控制DO进行厌氧发酵。
啤酒发酵液总含氧量由酒体溶解氧和瓶颈空气两部分组成,一般情况下,啤酒中的含氧量超过2PPM时对生产就有明显的危害。
因为氧气的存在会促使酵母采取有氧呼吸的代谢途径,从而破坏乙醇发酵的厌氧代谢过程。
但是,研究表明无氧条件下发酵生成的乙醇低于溶氧控制在1%-4%条件下生成的乙醇。
这主要是由于无氧条件下的菌体量远远低于有氧条件下菌体量,而乙醇的生成与菌体量有很大的联系。
大量的研究和实验表明成品啤酒中溶解氧的含量应控制在0.1 mg/L左右,过高易导致啤酒产生类似脂肪氧化后的臭味,影响啤酒的爽快、醇厚性,且使啤酒的后苦味增强,甚至由于成品啤酒中过多氧的存在造成木已还原的双乙酞再次生成,使啤酒产生“生青味”,并氧化啤酒中的一些风味物质,使啤酒风味变差。
氧能与蛋白质、多酚化合物反应形成永久性浑浊,降低啤酒的非生物稳定性。
啤酒摄入氧主要在过滤与灌装工序,过滤工序中如果能够把清酒的溶解氧水平控制在0.1 mg/L以下,就可以有效地提高啤酒的稳定性,延长啤酒贮藏。