列方程解决问题找等量关系常用的几种方法

合集下载

找等量关系式的四种方法

找等量关系式的四种方法
我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:
3支钢笔的价钱-5支圆珠笔的价钱=0.9元
解:设每支钢笔X元。
3X-0.6×5=0.9
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?
我们可以根据“速度(和)×时间=路程”找出等量关系:(甲速+乙速)×相遇时间=路程
解:设乙车每小时行X千米
(38+X)×3=237
3、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
找等量关关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花0.9元。 每支圆珠笔的价钱是0.6元,每支钢笔多少钱?
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。求梯形的高。我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
解:设梯形的高是X分米
(4+8)×X÷2=30
4、画出线段图找等量关系
对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?

解方程等量关系式的四种方法

解方程等量关系式的四种方法

找等量关系式的四种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

例如:买3支钢笔比买5支圆珠笔要多花0.9元。

每支圆珠笔的价钱是0.6元,每支钢笔多少钱?我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=0.9元设:每支钢笔X元。

3X-0.6×5=0.92、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?我们可以根据“速度(和)×时间=路程”找出等量关系:“(甲速+乙速)×相遇时间=路程”设:乙车每小时行X千米(38+X)×3=2373、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。

求梯形的高。

我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。

设:梯形的高是X分米(4+8)×X÷2=304、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

找等量关系列方程的技巧教程文件

找等量关系列方程的技巧教程文件

找等量关系列方程的技巧找等量关系列方程的技巧-孩子学奥数的一定要看寻找相等关系是列方程解应用题的关键步骤。

列一元一次方程解应用题,首先要根据题意及题中的数量关系,找出能够反映应用题全部含义的一个相等关系,然后再设未知数布列方程求解。

对于条件表达不够明确的应用题,可用如下的方法寻找相等关系。

一、动态问题静止看静态的问题是指题中关系对应的量处于相对稳定的状态,而动态的问题则是指题中条件所表达的是不断变化的相等关系,对于这类问题,要善于在动中取静,以静制动。

例1.运动场的跑道一圈长400m,甲练习骑自行车,平均每分钟骑350m,乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发,经过多长时间首次相遇?分析:甲、乙两人出发后,所走过的路程、时间都在发生变化,但跑道的长度是固定不变的,是一个静态量,首次相遇即甲与乙走的路程和为400m,据此,可布列方程求解.设两人经过x分首次相遇,根据题意,得350x+250x=400.解得x=,即经过分两人首次相遇.二、变化之中找不变许多问题情景是在不断变化的,但在变化的问题情景中,肯定存在着不变量,找到这个不变量,我们就可以次为相等关系布列方程.例2.某校组织师生春游,若单独租用45座的客车若干辆,则刚好坐满;若单独租用60座的客车,则可以少租一辆,且空余30个座位.试问该校有多少人参加春游?分析:无论采用哪种租车方式,该校参加春游的人数是不变的,故可以此为相等关系,即租45座客车的坐车人数=租60座客车的坐车人数,采用间接设元的方法布列方程求解.设租45座客车x辆,则租60座客车(x-1)辆,根据题意得45x=60(x-1)-30,解得 x=6.于是45x=45×6=270(人).即该校参加春游的人数是270人.三、隐含条件摆“桌面”显性的相等关系是指根据所给的条件及所学的公式、性质、定律等一目了然就能看出的相等关系,而隐性的相等关系则是指问题中有一些隐含的条件,这类条件如果不认真去挖掘、分析,摆到“桌面”上,就不能清晰地看出其中的相等关系.例3.哥哥对弟弟说:“当我像你这么大年龄时,你才3岁,而当你到了我现在的年龄时,我就24岁了”根据以上对话,你能算出兄弟两人现在的年龄吗?分析:此题初看似乎没有明显的等量关系可寻,但生活经验告诉我们,年龄问题中隐含着的条件是“要长都长”,也即兄弟两人的年龄差不变.据此条件,并借助于线段图,可知题目蕴藏着的等量关系是:3×年龄差=24-3.设兄弟两人的年龄差为x岁,根据题意,得3x=24-3,解得x=7.于是弟弟的年龄为3+7=10(岁),哥哥的年龄为24-7=17(岁).四、虚实相生关系现在应用题中,除了有实实在在的条件外,有时还要人为地虚构一些条件,来帮助我们去寻找相等关系而解题.例如设辅助未知数(又称参数),它在题目的条件中没有给出,在解答的结果中也不存在,但正是这些虚拟的条件,却起到了“桥梁”的作用,能快速地渡我们过河.例4.某超市在“十一黄金周”期间为了促销一批库存的商品,先将该商品提价20%,然后再打折销售,为了使该商品打折后与调价前的销售价格相同,问该商品应按几折销售?分析:此题要求“该商品按几折销售”,但题目中没有直接给出涨价后的价格,由题意知,涨价后的价格与原标价有关系,若将原标价设为a元,进而可将涨价后的价格表示出来,使得题目中的数量关系明朗化,根据提价并打折后销售价格与原标价相等,即可列出方程.设该商品的原标价为a元,提价20%后应按x折销售,根据题意,得(1+20%)a=a.解得x=8.5,即该商品应按八五折销售.。

列方程解应用题如何找等量关系

列方程解应用题如何找等量关系

列方程解应用题如何找等量关系□翠屏区西郊中心校孙传兵不同情况方程解应用题是小学数学高段的一个重点,也是一个难点,教学列方程解应用题时,常发现学生不能正确列出方程,从而无法解答。

要突破这一个难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢?我认为可以从这些方面入手:1、熟记数量关系,根据数量关系找等量关系。

此方法适用于关系式问题,如:价格问题、工程问题、路程问题等,要让学生记住“单价×数量=总价;工作效率×工作时间=工作总量;速度×时间=路程”等关系式。

如“李阿姨今天买了6千克西瓜,付了12元钱,每千克西瓜多少元?”可以用“单价×数量=总价”来计算。

列出方程:6ⅹ=12。

2、牢记计算公式,根据公式来找等量关系。

这种方法一般适合几何应用题,教师要让学生牢记(周长、面积、体积)公式,然后根据公式来解决问题。

如“一个平行四边形的面积是60平方米,它的底为12米,它的高为多少米?”就可以根据平行四边形面积计算公式“底×高=面积”来计算。

列出方程:12ⅹ=60。

3、一倍量和多倍量的关系。

这种方法一般适合于倍数、和差关系的应用题。

题中常有这样的词语:“一共是”、“比…多(少)”、“是…的几倍”、“比…的几倍多(少)等。

可根据两种量的关系来找出等量关系,列出方程。

如“甲队铺了285平方米的草坪,比乙队的2倍多5平方米。

乙队铺了多少平方米呢”找到乙队是一倍量,甲队是多倍量。

列出方程:2ⅹ+5=285。

4、找准单位“1”,根据“量率对应”找相等关系。

这种方法适用于分数应用题,有时也适用于“倍比关系”应用题。

对于分数应用题,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。

在倍比关系问题的应用题时,也应找准标准量。

5、利用好线段图,根据线段图找等量关系。

有些应用题只从文字看,不易理解。

教师用线段图理解。

如果学生会画线段图,题目往往容易解答。

找等量关系列出方程

找等量关系列出方程

找等量关系列出方程★方程指的是“含有未知数的等式”。

☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。

则列方程解应用题的关键是——找出相等关系......,找出了相等的关系,方程也就可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。

习题1.某数与7的和的2倍是20,求这个数。

2.某数的一半与5的差是8,求这个数。

3.某数的2倍与5的差的3倍等于3,求这个数。

4.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?(方法一)(方法二)5. 一个数的3倍与9的和恰好等于这个数的6倍,求这个数。

6.甲组4名工人1月完成的总工作量比该月人均定额的4倍多20件,乙组5名工人1月完成的总工作量比该月的人均定额的6倍少20件。

(1)设月人均定额为X件,则甲组人均生产量为乙组人均生产量为(2)若两组工人人均生产量相等,可列方程为(3)若甲组人均生产量比乙组多2件,可列方程为(4)若甲组人均生产量比乙组少2件,可列方程为最常见的数量关系:1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)2.单价×数量=总价(总价÷单价=数量总价÷数量=单价)★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量(工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率)4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率)习题:1.已知皮划艇500米最好成绩是1.65分钟,求平均速度?2.学校跑道是200米环形跑道,小明跑完5个圈共用了4分钟,求他的平均速度。

3.小李30天一共跑了45000米,小张平均每天跑的距离比小李多200米,问小张30天一共跑了多远?4.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。

列方程解应用题找等量关系的方法

列方程解应用题找等量关系的方法

列方程解应用题找等量关系的方法一、引言列方程是数学中常用的一种解题方法,尤其在应用题中更是不可或缺。

本文将介绍如何通过找等量关系的方法列方程解应用题。

二、什么是等量关系等量关系指两个物体或者两个数量之间的比较,可以表示成一个等式。

例如,两个物品的价格比较,可以表示为P1/P2=K(K为常数),这就是一个等量关系。

三、找等量关系的方法在应用题中,我们需要根据题目给出的条件找到两个物体或者数量之间的等量关系。

具体方法如下:1. 读懂题目并确定未知量首先要仔细阅读题目,并确定未知量。

通常情况下,未知量会在问题中被明确指出。

2. 找到给定条件之间的联系然后要找到给定条件之间的联系,并将它们表示为一个等式。

这个过程需要根据具体情况灵活运用。

3. 根据问题要求列出方程最后根据问题要求列出方程,并解方程得到答案。

四、列方程解应用题举例下面通过一个实例来说明如何通过找等量关系的方法列方程解应用题。

例:甲乙两人分别从A、B两地同时出发,相向而行。

已知甲的速度是8km/h,乙的速度是6km/h。

当两人相遇后,甲还要行2小时才能到达B地。

求A、B两地之间的距离。

1. 确定未知量题目中未知量为A、B两地之间的距离。

2. 找到给定条件之间的联系根据题目可知:甲的速度是8km/h;乙的速度是6km/h;两人从A、B两地同时出发,相向而行;当两人相遇后,甲还要行2小时才能到达B地。

我们可以通过画图来更好地理解问题:![image.png](attachment:image.png)设A、B之间的距离为x km,则:甲走了x km后与乙相遇,此时乙已经走了(x/2)km;甲继续走剩下的(x/2)+2 km 到达B。

因此有以下等量关系:8t = 6(t + x/12) (t表示两人相遇时所用时间)x/2 + 2 = 8(t + 2) (t + 2表示甲到达B所用时间)3. 根据问题要求列出方程将上述等量关系化简得到方程组:4t - x/6 = 0x - 16t - 14 = 0解得:t = 14/5(h)x = 56(km)因此A、B两地之间的距离为56km。

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

3.抓住关键字词,根据字词的提示找等量关系。

这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

3.抓住关键字词,根据字词的提示找等量关系。

这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解决问题找等量关系常用的几种方法
1、抓住题目中的关键句。

比如男生有63人,比女生人数的3倍还多3人。

女生有多少人?题目中的关键句是男生人数比女生人数的3倍多3人,抓住此关键句可以列出这样的等量关系式:女生人数×3+3=男生人数。

(当然还可以列出等量关系式:男生人数-女生人数×3=3等)。

2、运用常用的数量关系和计算公式。

如速度×时间=路程,底×高÷2=三角形的面积等等。

3、抓住不变量。

如正反比例解决问题中的比值或乘积一定。

又如四(1)男生人数是女生人数的5/6。

这学期转来1名女生,现在男生人数是女生的4/5。

四(1班)原来有多少名同学?这里男生人数是一个不变量,原来女生人数是男生的6/5,现在女生人数是男生的5/4。

现在女生人数-原来女生人数=1,也就是男生人数的5/4-男生人数的6/5=1,根据此等量关系就能列出方程,求出男生的人数,进而求出原来女生人数和原来全班人数。

4、根据题目叙述情节找等量关系。

如仓库上午运进货物123吨,下午又运进一批货物,现在仓库里一共有货物345吨。

下午运进货物多少吨?根据题目的叙述列出这样的等量关系式样:上午运进货物吨数+下午运进货物吨数=现又货物吨数。

5、画线段图找等量关系。

例如美术兴趣小组一共有男女生24人,其中女生人数是男生人数的2倍。

美术兴趣小组中男女生各有几人?先引导学生找出其中的1倍量(男生人数),再画出线段图(男生人数是1份,女生人数就是这样的2份,从图上可以看出:女生人数+女生人数×2=24。

据此可以列出方程。

再如,用分数解决实际问题,历来是学习的难点,学生不容易理解。

教师可以引导学生画出线段图,帮助学生理解,找准对应关系,进而列出等量关系式。

画线段图的关键仍是找准哪个量是单位“1”,其它量都是与单位“1”相比较而言的。

而理解单位“1”,重点要看清是哪个量的几分之几。

相关文档
最新文档