数学方程找等量关系式的几种方法
小学生如何寻找等量关系列方程

小学生如何寻找等量关系列方程等量关系是表示数量间的相等关系。
列方程解应用题时,思路的重点是找出等量关系,这样就比较容易列出方程了。
1、根据题目中的关键句找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。
◆例如:星期天,妈妈上街买了一些水果,妈妈买20个苹果,买苹果的个数是西瓜的3倍多1个,西瓜有多少个?这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出等量关系:西瓜×3-1=苹果的个数。
设西瓜的个数为ⅹ,就可以列方程为:3X-1=20◆又如:小红在假日里折纸花71朵,是小军折叠的朵数的3倍还多2朵,小军折叠了多少朵?紧扣题中的关键句“是小军折的朵数的3倍还多2朵”,我们即可以来列出等量关系式:小军折叠的朵数×3+2=小红折叠的朵数。
设小军折叠的朵数为ⅹ,则有ⅹ×3+2=712、用公式、常见数量关系式作等量关系。
每份数×份数=总数结余=收入-支出已生产的量+还需生产量=生产总量单价×数量=总价工作效率×工作时间=工作总量或工作效率和×工作时间=工作总量速度×时间=路程或速度和×时间=路程等等◆例如:甲、乙两人加工520个零件,甲每小时加工5个,乙每小时加工8个,两人合做几小时完成?根据工程问题等量关系式:工作效率[和]×工作时间=工作总量设两人合做X小时完成,列方程:(5+8)X=520◆在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程:设梯形的高为X分米,(4+8)X÷2=303、根据生活的经验找出等量关系列方程◆例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块?本题的等量关系:原来的糖数-吃的糖数+又买来的糖数=现在的糖数。
寻找等量关系四绝招PPT.

“图示法”——解答“行程问题”
将题目中的条件及它们之间的关系用简单 明了的示意图表示出来,根据图示中有关数 量的内在联系题”
例2:若甲、乙两人同时从相距28千米的两地相向而行,则经过 2小时两人相遇。若甲、乙两人同时从相距28千米的两地同向出发, 则2.8小时后甲能追上乙。求甲、乙两人的速度。
例4:甲、乙两个公共汽车站相向发车,一个在街上匀速行走,他
还要注意将仪表盘上面的石英钟按北京时间对准。
发交发上现车车,解每。的人412(:隔如时步a(+a设行4果间-bb分)两的两间)==钟p车速车隔p,就. 站度站。迎发为发面车b车米开的的/来分间时一钟隔间辆,时间公相间隔交邻为相车两x同分,车,钟每相各,隔距车公1p的2米交分速,车钟度依的从相题速背同意度后,,为开求列a来米两方一/车分程辆站钟组公: 1(优九1②3严2511作达2你1【一五(3三2根 每要汽确411... . . . . . 、 、..0..7学渗新经3点、查防为到能本、.6、据天定车认供.儿.在) )电宿小根冰绕观不4校 漉 生 中: 组 找 发 销 这 为 讲 以上 的 公 事应确歌校设工舍组据对山车看吃党法报教(小织感生售种这重往 班是司先商消定:内备对里交产四理介相已政适到学结防染触人熟份点的 总什做所简化面外庞学有流品肢论绍关经公用往目:火源电员悉工】经 是么培谈介道试都大校存:特骨的腐—章范返标检:事,程作验 凭车训问沟每。)名必摄,的放征折录败—、围途:查感故掌度带, 感型的题通个注单须入投电物锁的象变显各:中,控。握需来很 觉,时谈面明遵。资器资定人,质性部必消科心要什多 ,也候判试公守大 设 的 客 , 学 和和门须除协理多么销一不,技者司交,备橱户要习超隐的注火助学少?售 把知曾巧应办通体,、就正过性公意险检是时人 抓道问:有公法积必箱地确保章交隐验非间员 。每了是各地规传须、取及质、通患科常呢不 甚天他否自址,热经包材时期财安,对重?知 至根们要的、注系常,,的的务全改病要权道 有据几求提注意数检一制处食专,善人的威什 很什个应问册交小查律作理品用妥消、。机么 多么问聘范资通,,加临方,章善防接从构是 专去题者围金安废发锁时式、保条触心在车 营控:具。、全气现存夹。合管件者理世的 店制备资,中损放板同好,、学界卖 的销较产不回坏到固专自完可的范点 经售强总要收、个定用己善疑角围, 理人的额违微老人;章的消传度内不 不员沟、章粒化位抬都生防染上调知 知的通职横的应置起应活设源讲查道 道进能工穿范及上时有用施、,的公 今度力人公围时,要专品,环两结司 天,丰数路分修任托人和每境个果可 、更富、,离理何好保现月、人是供 这不的年预装,人骨管金至物要:资 一知谈销防置自不折、,少品想最源 周道判售发较身准处启防参、成少的 、怎经额生复不随。用止加医为需情 这样验以交杂能便,途一务朋要况 个分?及通。解翻严中次人友一, 月析公事决动格丢检员,个不 将和司故的他执失查及一月知 有反优。要人行、。陪个道 多馈势及物领被护人怎 少市等时 资导窃人 会 样要 场内书。批。员把去 预上容面准等自管 订反。报使进己理 车映告用行心客 的出学制相里户 客来校度关的, 户的领。病秘不 ,重导原密知 不要,学告道 知信请检诉客 道息求查另户 这。尽。一的 些在快个优 客给解人先 户某决,级 将个,,
找分式方程的等量关系的技巧

找分式方程的等量关系的技巧找分式方程的等量关系是解决分式方程问题的重要方法。
以下是一些关于如何找分式方程的等量关系的技巧:明确等量关系的概念:等量关系指的是两个或者更多的表达式在任何情况下都相等。
这通常是通过某种代数操作得到的,例如,通过加法、减法、乘法、除法等操作将一个方程变形为另一个方程,这两个方程就有等量关系。
找出方程中的关键元素:在找分式方程的等量关系时,应首先找出方程中的关键元素,包括变量、系数、常数等。
这些关键元素可以帮助我们找到等量关系。
通过变形找等量关系:对于一个分式方程,我们可以通过一系列的代数操作将其变形为另一个方程。
这些操作包括合并同类项、移项、除以共同因子等。
通过这些操作,我们可以找到方程的等量关系。
利用已知的等量关系求解方程:一旦我们找到了等量关系,就可以利用这个关系来求解方程。
例如,如果我们知道一个方程等于零,那么我们就可以设变量等于零来求解方程。
如果我们知道两个表达式相等,那么我们就可以将一个表达式代入另一个表达式来求解方程。
找分式方程的等量关系需要一定的技巧和实践,但是一旦掌握了这个技巧,就能有效地帮助我们解决分式方程的问题。
当然,解决分式方程问题并不仅仅依赖于找等量关系,还需要掌握一些其他的数学知识和技巧,例如分式的基本运算、代数公式的运用、方程的解法等。
在解决分式方程的问题时,我们应该充分利用等量关系,但同时也不能忽视其他的方法。
我们应该灵活地运用各种方法和技巧,寻找最适合解决问题的方法。
同时,我们还应该注意到,分式方程的等量关系并不一定总是存在的,有时候我们可能需要通过其他的方法来求解方程。
在任何情况下,我们都应该保持开放的思维,勇于尝试各种可能的方法,以便找到最有效的解决方案。
怎样找等量关系

怎样找等量关系列方程1. 根据常见的数量关系找等量关系。
同学们,在解决有关整数或小数的实际问题时,已经掌握了一些常见的数量关系,如速度X时间=路程,单价X数量=总价等,根据这些数量关系就可直接写出等量关系式。
例 1. 一辆汽车每小时行驶56 千米,几小时可行驶336 千米?分析与解:根据“速度X时间=路程”可得等量关系:每小时行驶的路程X所需要的时间=行驶的路程,或行驶的路程十所需要的时间=每小时行驶的路程。
设汽车x小时可行驶336千米,可列万程56x= 336,或336—x= 56,解得x = 6。
2. 根据图形的计算公式找等量关系。
我们知道平面图形的周长和面积计算公式,如长方形的面积=长乂宽,正方形的周长=边长X 4,平行四边形的面积=底乂高等。
这些图形的计算公式为我们提供了等量关系,需要注意的是列方程时。
一般要把含有未知数的量放在等式的左边。
例 2. 一个平行四边形的面积是100平方厘米,它的底是25厘米,高是多少厘米?分析与解:平行四边形面积的计算公式:“平行四边形的面积=底乂高”是题中的等量关系。
设高是x 厘米,可列方程25x= 100,解得x= 4。
3. 根据关键词语找等量关系。
在实际问题的叙述中经常会出现“一共”“比……多” “比……少” “几倍”以及“和、差、积、商”等词语,我们可以抓住这些关键的词语来找等量关系。
例 3. 学校开展植树活动, 五年级植树80 棵,比四年级多植树26棵,四年级植树多少棵?分析与解:根据五年级比四年级多植树26棵,可以找出这样的等量关系:四年级植树的棵数+ 26=五年级植树的棵数。
设四年级植树x棵,可列方程x+ 26= 80。
解得x= 54。
4. 根据事情发展的经过找等量关系。
实际问题都有个发展顺序,我们可以根据事情发展的经过来找等量关系。
例 4. 学校食堂原来有一堆煤,用去3.6 吨后,还剩 4.8 吨。
这堆煤原来有多少吨?分析与解:根据事情发展的经过可以找出等量关系:食堂原来的煤-用去的煤=还剩的煤。
五年级列方程解应用题找等量关系的方法

在五年级数学学习中,列方程解应用题是一个重要的知识点,也是学生们比较困惑的一个内容。
今天我们就来探讨一下如何在解决这类问题中找到等量关系的方法。
一、了解等量关系的概念等量关系是指两个或多个物体在数量上相等的关系。
在解决列方程解应用题时,我们需要通过分析题目中所涉及的物体或数量,找出它们之间的等量关系,从而建立方程,进而解决问题。
二、分析题目,找出关键信息在解决列方程解应用题时,首先要仔细阅读题目,找出关键信息,明确题目中涉及的物体及其数量关系。
题目中可能涉及到苹果、香蕉的数量,或者小明、小华的芳龄等等。
通过分析题目,找出问题中涉及的等量关系,为建立方程奠定基础。
三、设立未知数,建立方程在分析题目并找出等量关系之后,我们需要设立未知数,建立方程。
设立未知数是为了将问题中涉及的数量用代数式表示出来,然后根据等量关系建立方程。
设立“苹果的数量为x”,“香蕉的数量为y”,然后根据题目中的条件建立方程,进而解决问题。
四、解方程,求解未知数建立方程之后,就需要解方程,求解未知数。
这一步可能涉及到一些数学运算,比如方程的合并、移项、化简等,最终得出未知数的值。
通过求解未知数,我们就能得出问题的答案,解决列方程解应用题。
五、检验解答,确定问题的解最后一步,我们需要对求解出的未知数进行检验,确定问题的解。
通过将未知数的值代入原方程,验证方程两边是否相等,从而确定问题的解是否正确。
若验证通过,则问题解决;若验证不通过,则需要重新审视解题过程,找出问题所在,进行修正。
以上就是五年级列方程解应用题找等量关系的方法,希望对大家有所帮助。
在学习过程中,多做一些相关练习,逐步提高解决问题的能力,加深对等量关系的理解,相信大家在数学学习中一定会取得更大的进步!在学习数学的过程中,列方程解应用题是一个比较难掌握的知识点,但只要我们掌握了找等量关系的方法,就能够轻松解决这类问题。
下面我们来详细了解一下如何找到等量关系的方法。
了解等量关系的概念非常重要。
[五年级数学]找等量关系式的四种方法
![[五年级数学]找等量关系式的四种方法](https://img.taocdn.com/s3/m/fbb693514a7302768e993998.png)
[五年级数学]找等量关系式的四种方法找等量关系式的四种方法,、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的,倍多,,人”、“桃树和杏树一共有,,,棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买,支钢笔比买,支圆珠笔要多花0.9元。
每支圆珠笔的价钱是0.6元,每支钢笔多少钱,我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:,支钢笔的价钱,,支圆珠笔的价钱,0.9元设:每支钢笔,元。
,,,0.6×,,0.9,、用常见数量关系式作等量关系。
我们已学过了如“工效×工时,工作总量”、“速度×时间,路程”、“单价×数量,总价”、“单产量×数量,总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距,,,千米的两个车站相向开出,经过,小时两车相遇,甲车每小时行,,千米,乙车每小时行多少千米,我们可以根据“速度(和)×时间,路程”找出等量关系:“(甲速,乙速)×相遇时间,路程”设:乙车每小时行,千米(,,,,)×,,,,,,、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
例如:一个梯形的面积是,,平方分米,它的上底是,分米,下底是,分米。
求梯形的高。
我们就把梯形的面积公式作为等量关系即:“(上底,下底)×高?,,梯形的面积”列出方程。
设:梯形的高是,分米(,,,)×,?,,,,,、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了,天,平均每天耕780公顷,剩下的要,天耕完,平均每天要耕多少公顷,根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数,剩下的公顷数,6420”列出方程:设:平均每天要耕,公顷780×,,,,,6420想一想:根据上面的线段图还可以找出哪些等量关系。
找等量关系方法汇总

找等量关系式得四种方法1、根据题目中得关键句找等量关系。
应用题中反映等量关系得句子,如“合唱队得人数比舞蹈队得3倍多15人” 、“桃树与杏树一共有180棵”这样得句子叫做应用题得关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
寵蹰閱妫鰲苁饶。
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量” 、“速度×时间=路程” 、“单价×数量=总价” 、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
鲮傳锣阒镣涡戗。
3、把公式作为等量关系。
在解答一些几何形体得应用题时,我们可以把有关得公式作为等量关系。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显得应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780 公顷,剩下得要3天耕完,平均每天要耕多少公顷?喷庫颊頦屦鬧鴿。
根据题意画出线段图:从图中我们可以瞧出等量关系就是:“已耕得公顷数+剩下得公顷数=6420”列出方程:设:平均每天要耕X公顷780 ×5+3X=6420 想一想:根据上面得线段图还可以找出哪些等量关系。
1.牢记计算公式,根据公式来找等量关系。
这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。
觌钩亩輸娛瓏硗。
2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价” 等关系式。
螢辎鯖劢硤嚇缀。
如“汽车平均每小时行45千米,从甲地到乙地共225 千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。
五年级方程解决找等量关系的方法

在五年级的数学学习中,方程是一个重要的概念,它可以帮助我们解决很多实际问题。
当我们面对一个实际问题时,首先要做的是找出问题中的等量关系,然后建立方程来解决它。
找等量关系的方法主要有以下几点:
识别问题中的关键信息,如数量、速度、时间、价格等。
确定这些关键信息之间的关系,如加法、减法、乘法或除法。
根据这些关系建立方程。
例如,假设我们有一个问题:'小红有10元钱,她买了2支铅笔,每支铅笔的价格是x元。
她买完铅笔后还剩下多少钱?'
在这个问题中,关键信息是小红的初始金额(10元)、铅笔的数量(2支)和每支铅笔的价格(x元)。
等量关系是:小红的初始金额- 铅笔的总价= 小红剩下的钱。
所以,我们可以建立方程:10 - 2x = 小红剩下的钱。
现在,我们来看一个具体的例子,并尝试找出等量关系。
问题:'小明有30个苹果,他每天吃2个苹果。
如果他吃了5天,他还剩下多少个苹果?'
在这个问题中,关键信息是小明的初始苹果数量(30个)、他每天吃的苹果数量(2个)和他吃苹果的天数(5天)。
等量关系是:小明的初始苹果数量- 他每天吃的苹果数量× 他吃苹果的天数= 他剩下的苹果数量。
所以,我们可以建立方程:30 - 2 × 5 = 小明剩下的苹果数量。
计算结果为:小明还剩下20 个苹果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找等量关系式的几种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
3、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:780×5 3XX6420公顷从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
1.牢记计算公式,根据公式来找等量关系。
这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。
2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。
如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。
3.抓住关键字词,根据字词的提示找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。
如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人?”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250。
4.找准单位“1”,根据“量率对应”找等量关系。
这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题。
对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。
在倍比关系的应用题中,也应找准标准量。
因此,正确地确定“量率对应”是解题的关键。
5.补充缺省条件,根据句子意思找等量关系。
这类应用题的特征是含有“比……多(少)”、“比……增加(减少)”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难。
因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整。
如“小明第一天看书60页,比第二天少看,第二天看了多少页?”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的是指第二天的”,于是可列方程X- X=60。
6.利用好线段图,根据线段图找等量关系。
有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解。
当然,如果学生会画线段图,题目往往很容易解开。
画线段图的关键仍是找准谁是单位“1”,其它量都是与单位“1”相比较而言的。
而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”。
以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答。
当然,这里更离不开教师平时的引导与启迪。
方程(组)是解决实际问题的一个有效数学模型.列方程(组)的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我们分解难点,寻找出等量关系,进而列出方程(组)求解.一、译式法例1 4辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨?分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x、y吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:27x;“6辆小卡车和10辆大卡车共运货51吨”+y54=可翻译成数学式子:51+yx.由这两个式子组合列出二元一次方程组即可求解.6=10评注: 对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程(组)也就列出来了.这种将关键词语译成代数式列方程(组)解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.二、列表法例3 某日小伟和爸爸在超市买12袋牛奶24个面包花了64元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了60元却比上次多买了4袋奶3个面包.求打折前牛奶和面包的单价?分析:设打折前牛奶的单价为x元,面包的单价为y元.可列表如下并根据上表可得方程组⎩⎨⎧=⨯+⨯=+608.0278.016642412yxyx解:略.评注:列表法是指将题目中数量及其关系填在表格内,再据此逐层分析,找到各量之间的内在相等关系,列出方程(组)的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.三、图示法例4 甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔2分二人相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈?分析:根据题意可以分别画出甲、乙相向而行、同向而行时的示意图(如图1和图2)如果设甲每分钟跑x圈,乙每分钟跑y圈,根据图1可得12x2=+y;根据图2可得166=-yx. 图1 图26x6y相向评注:图示法是指将条件及它们之间的内在联系用简单明了的示意图表示出来,然后据图找等量关系列方程(组)的方法.图示法直观、明了,是解决行程等问题的常用方法.评注: 对于较为复杂的题目,可把三种方法结合使用.这三种方法在突破等量关系这一难点问题上,体现的是分步、分层、分散的转化思想,不论容易题、难题,都非常适用.同学们开始接触这些方法时可能觉得有些繁琐,如果有意识加强这方面的训练,形成习惯,自然会省时省力,这类问题也就会迎刃而解了.1.把日常的语言翻译成代数的语言,而代数的语言就是方程,即可得等量关系式。
例如,商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。
这个商店原来有多少千克饺子粉?日常语言:原有的重量减去每袋的重量乘以卖出的袋数等于剩下的重量。
代数的语言:χ-5×7=40(这里的χ表示原有的重量)。
又如,望岳小学买来2个足球和25根跳绳,共用44.2元。
每个足球的售价4.6元,每根跳绳的售价是多少元?日常语言:买2个足球的钱加上买25根跳绳的钱等于共用去的钱代数语言:4.6×2+25χ=44.2(这里χ表示每根跳绳的售价)。
2.掌握常见的基本数量关系,建立等量关系式。
根据“行程问题”基本数量关系式:速度×时间=路程根据“工作问题”基本数量关系式:工作效率×工作时间=工作总量3.根据题中关键性词语来理解数量关系从中得到等量关系式。
例如,一个花坛里有3行芍药花,每行5棵。
另一个花坛里有3行牡丹花,芍药花比牡丹花少9棵,牡丹花每行多少棵?根据题中“芍药花比牡丹花少9棵”的关键性词语“比”、“少”,就可以列出:3χ-5×3=9(χ表示每行牡丹花的棵数)4.利用线段图的直观性,从图中发现等量关系。
例如,某农具厂计划生产新式农具144件,现在已经生产了19件,其余的要在4天内完成,平均每天应当生产多少件?19件χχχχ┕━━━┻━━━━┻━━━━┻━━━━┻━━━━┛144件从图中很容易看出:19+4χ=144。
5.根据一些定义、公式,列出等量关系式。
例如,李家营建造一个养鸡场,用110米长的篱笆围成一个长方形场地。
如果长是37米,宽应该是多少米?根据长方形的周长公式,得:(37+χ)×2=110(这里的χ表示长方形的宽)★方程指的是“含有未知数的等式”。
☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。
则列方程解应用题的关键是——找出...,找出了相等的关系,方程也就..相.等关系可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
习题:1.某数的三分之一比这个数小1,求这个数。
二、根据常见的数量关系找等量关系最常见的数量关系:1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)2.单价×数量=总价(总价÷单价=数量总价÷数量=单价)★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量(工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率)4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率)习题:1.已知皮划艇500米最好成绩是1.65分钟,求平均速度?三、根据常用的计算公式找等量关系最常用的计算公式有:1.正方形周长=边长×4 正方形面积=边长×边长=(边长)22.长方形周长=(长+宽)×2 长方形面积=长×宽3.三角形面积=(底×高)÷2 梯形面积=(上底+下底)×高÷24. 圆形周长=π×直径=2π×半径圆形面积=π×(半径)2习题:1.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。
四、理解文字找等量关系。
习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。