初中河南数学卷子推荐

合集下载

9年级河南省数学考试题及答案

9年级河南省数学考试题及答案

9年级河南省数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个是等腰三角形的性质?A. 两腰相等B. 三条边相等C. 三个角相等D. 一个角是直角答案:A4. 计算下列哪个表达式的结果为0?A. 3-3C. 5-2D. 6*0答案:D5. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B6. 以下哪个是不等式的基本性质?A. 加法性质B. 乘法性质C. 减法性质D. 除法性质答案:B7. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或0答案:C8. 以下哪个是完全平方数?B. 4C. 5D. 6答案:B9. 一个数除以它自己等于:A. 0B. 1C. 负数D. 正数答案:B10. 一个数的倒数是它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:B二、填空题(每题4分,共20分)1. 一个数的平方等于25,这个数是______。

答案:±52. 一个三角形的三个内角的和是______。

答案:180°3. 一个数的立方等于-8,这个数是______。

答案:-24. 一个数的倒数等于它本身,这个数是______。

答案:1或-15. 如果一个数的绝对值是5,那么这个数是______。

答案:±5三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7。

答案:x = 52. 已知一个圆的直径是10,求它的面积。

答案:面积= π * (5)^2 = 25π3. 计算:(3x + 2)(3x - 2)。

答案:9x^2 - 44. 已知一个等腰三角形的底边长为8,两腰长为5,求它的高。

答案:高= √(5^2 - (8/2)^2) = √(25 - 16) = √9 = 35. 已知一个数列的前三项分别为2, 4, 6,求第四项。

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】

河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列不等式的变形中,不正确的是()A .若a b >,则11a b +>+B .若a b ->-,则a b <C .若13x y -<,则3x y >-D .若3x a ->,则13x a >-2、(4分)已知:在直角坐标系中,点A ,B 的坐标分别是(1,0),(0,3),将线段AB 平移,平移后点A 的对应点A ′的坐标是(2,﹣1),那么点B 的对应点B ′的坐标是()A .(2,1)B .(2,3)C .(2,2)D .(1,2)3、(4分)将抛物线y =x 2向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为()A .y =(x ﹣2)2+3B .y =(x ﹣2)2﹣3C .y =(x +2)2+3D .y =(x +2)2﹣34、(4分)在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为()A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4)5、(4分)若分式3y x y -的值为5,则x、y 扩大2倍后,这个分式的值为()A .52B .5C .10D .256、(4分)一个六边形ABCDEF 纸片上剪去一个角∠BGD 后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A .60°B .70°C .80°D .90°7、(4分)如图1,在▱ABCD 中,对角线AC ,BD 相交于点0,添加下列条件后,能使▱ABCD 成为矩形的是()A .AB=AD B .AC=BD C .BD 平分∠ABC D .AC ⊥BD 8、(4分)下列方程中,属于一元二次方程的是()A .213x x -=B .2 4x =C .2310x y ++=D .31x x +=二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知1x ,2x 是关于x 的方程()()222220x m x m m --+-=的两根,且满足()121221x x x x ⋅++=-,那么m 的值为________.10、(4分)已知正n 边形的一个外角是45°,则n =____________11、(4分)化简:()2--=.12、(4分)如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为米.13、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。

2023年河南中考数学试卷含参考答案

2023年河南中考数学试卷含参考答案

2023年河南中考数学试卷含参考答案第一部分选择题1. 在下列各组数中,只有一个是偶数的是()。

A. 1,3,9B. 2,5,7C. 6,8,10D. 4,7,92. 已知正整数a和b满足:a÷b=7.r, 则下列运算正确的是()。

A. a÷7bB. 7a÷bC. a÷b×7D. b×(7÷a)3. 若a=2-√3,b=√3-1,则(a-b)(a^2+ab+b^2)的值是()。

A. 13B. 12C. 11D. 94. 在△ABC中,∠C=90°,AD是BC边上的高,AC=3,BC=4,则AD的长度为()。

A. 2B. 4/3C. 4/5D. 6/55. 设m∈[16, 18],若m²-10m的值为正数,则m的取值范围是()。

A. [16,17)B. [16,18)C. [17,18)D. [17,18]第二部分解答题6. 计算:150的整数倍最接近850的数是多少?- 解析:150的整数倍最接近850的数是第一个小于或等于850的多少的整数倍,计算得出:150 × 5 = 750。

所以答案是750。

7. 用边长为4的小正方形铺满边长为30的大正方形,则包括在大正方形内的小正方形个数是多少?- 解析:大正方形的边长是小正方形边长的7.5倍,所以包括在大正方形内的小正方形个数是7.5 × 7.5 = 56.25 个。

即答案是56个。

参考答案1. C2. B3. C4. D5. C6. 7507. 56。

2024年河南省中考数学试卷正式版含答案解析

2024年河南省中考数学试卷正式版含答案解析

绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

河南初一初中数学专题试卷带答案解析

河南初一初中数学专题试卷带答案解析

河南初一初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为2.已知AB 在x 轴上,A 点的坐标为(3,0),并且AB =5,则B 的坐标为3.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是__________4.如图(3)、已知AE ∥BD, ∠1=130°,∠2=30°,则∠C=5.如图(4),当∠1、∠2、∠3满足条件 时,AB ∥CD6.如图(5),已知AB ∥CD ,直线EF 与AB 、CD 相交于E 、F 两点, EP 平分∠AEF ,过点F 作PF ⊥EP ;垂足为P ,若∠PEF =30,则∠PFC =7.如图(6),直线AB ⊥l 1,l 1∥l 2,∠1=75°,则∠2=8.如图(7),已知AB ∥CD,则∠1、∠2、∠3之间的关系是二、解答题1.已知点A (-2,0)B (4,0)C (-2,-3)。

(1)求A 、B 两点之间的距离。

(2)求点C 到X 轴的距离。

(3)求△ABC 的面积2.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。

可是她忘记了在图中标出原点和x 轴、y 轴。

只知道游乐园D 的坐标为(2,-2),你能帮她求出其他各景点的坐标?(10分)3.如果│3x+3│+│x+3y-2│=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在坐标平面内的什么位置?4.建立两个适当的平面直角坐标系,分别表示边长为8的正方形的顶点的坐标5.如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.6.如图将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?7..阅读材料,回答问题。

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷及答案一、选择题1. 下列各数中,最小的数是()A. -lB. 0C. 1D.【答案】A【解析】根据实数的大小比较法则,比较即可解答.解:∵,∴最小的数是-1.故选:A【点拨】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】直接利用已知几何体分别得出三视图进而分析得出答案.解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点拨】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】将一个数表示为的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可得出答案.解:4.59亿.故选:C.【点拨】本题主要考查了用科学记数法表示较大的数,掌握形式为,其中,确定与的值是解题的关键.4. 如图,直线,相交于点O,若,,则的度数为()A. B. C. D.【答案】B【解析】根据对顶角相等可得,再根据角和差关系可得答案.解:∵,∴,∵,∴,故选:B【点拨】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简的结果是()A. 0B. 1C. aD.【答案】B【解析】根据同母的分式加法法则进行计算即可.解:,故选:B.【点拨】本题考查同分母分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A,B,C在上,若,则的度数为()A. B. C. D.【答案】D【解析】直接根据圆周角定理即可得.解:∵,∴由圆周角定理得:,故选:D.【点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x的一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】对于,当,方程有两个不相等的实根,当,方程有两个相等的实根,,方程没有实根,根据原理作答即可.解:∵,∴,所以原方程有两个不相等的实数根,【点拨】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.【答案】B【解析】先画树状图,再根据概率公式计算即可.设三部影片依次为A.B.C ,根据题意,画树状图如下:故相同的概率为.故选B .【点拨】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数的图象如图所示,则一次函数的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为()A. 6B. 3C.D.【答案】A【解析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,,易知,当点在上运动时,可知点到达点时的路程为,可知,过点作,解直角三角形可得,进而可求得等边三角形的边长.解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为,∴,即,∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A.【点拨】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【解析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.解:由题意得:3个年级共需配发得套劳动工具总数:套,故答案为:.【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组的解为______.【答案】【解析】利用加减消元法求解即可.解:由得,,解得,把代入①中得,解得,故原方程组的解是,故答案为:.【点拨】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于的“无絮杨”品种苗约有______棵.【答案】280【解析】利用1000棵乘以样本中不低于的百分比即可求解.解:该基地高度不低于的“无絮杨”品种苗所占百分比为,则不低于的“无絮杨”品种苗约为:棵,故答案为:280.【点拨】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,与相切于点A,交于点B,点C在上,且.若,,则的长为______.【答案】【解析】连接,证明,设,则,再证明,列出比例式计算即可.如图,连接,∵与相切于点A,∴;∵,∴,∴,∴,∵,∴,∴,∵,,∴,设,则,∴,解得,故的长为,故答案为:.【点拨】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【解析】分两种情况:当时和当时,分别进行讨论求解即可.解:当时,∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,∴,即:,∴,当时,∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点拨】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:;(2)化简:.【答案】(1);【解析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.(1)解:原式;(2)解:原式.【点拨】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.(1)由题意可得,,,∴,故答案为:7.5;;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点拨】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,中,点D在边上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边交于点E,连接.求证:.【答案】(1)见解析(2)见解析【解析】(1)利用角平分线的作图步骤作图即可;(2)证明,即可得到结论.(1)解:如图所示,即为所求,(2)证明:∵平分,∴,∵,,∴,∴.【点拨】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.(1)求k的值;(2)求扇形的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)(2)半径为2,圆心角为(3)【解析】(1)将代入中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.(1)解:将代入中,得,解得:;(2)解:过点作的垂线,垂足为,如下图:,,,半径为2;,∴,,由菱形的性质知:,,扇形的圆心角的度数:;(3)解:,,,如下图:由菱形知,,,,.【点拨】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).【答案】树的高度为【解析】由题意可知,,,易知,可得,进而求得,利用即可求解.解:由题意可知,,,则,∴,∵,,则,∴,∵,则,∴,∴,答:树的高度为.【点拨】本题考查解直角三角形的应用,得到是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【解析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近【解析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.(1)解:一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点拨】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.【答案】(1),.(2)①,理由见解析;②(3)或【解析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接,由对称性可得,,进而可得,即可得出结论;②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.(1)(1)∵关于轴对称的图形,与关于轴对称,∴与关于点中心对称,则可以看作是绕点顺时针旋转得到的,旋转角的度数为∵,∴,∵,关于直线对称,∴,即,可以看作是向右平移得到的,平移距离为个单位长度.故答案为:,.(2)①,理由如下,连接,由对称性可得,,∴,②连接分别交于两点,过点作,交于点,由对称性可知:且,∵四边形为平行四边形,∴∴三点共线,∴,∵,∴,∴四边形是矩形,∴,在中,,∵,∴,∴(3)解:设,则,依题意,,当时,如图所示,过点作于点,∴∵,,∴,∴,则,在中,,∴,则,∴在中,,则,,在中,,,∴由(2)②可得,∵∴∴,解得:;如图所示,若,则,∵,则,则,∵,,∵,∴,解得:,综上所述,的长为或.【点拨】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

2023年河南省中考数学试卷

2023年河南省中考数学试卷

2023年河南省中考数学试卷参考答案与试题解析一、选择题。

(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)(2023•河南)下列各数中最小的数是()A.﹣1B.0C.1D【考点】实数大小比较;算术平方根.【答案】A【分析】【解答】解:∵1<3<4,∴12,根据实数的大小可得:<<101所以﹣1最小.故选:A.【点评】本题主要考查了实数的大小的知识,难度不大,认真比较即可.2.(3分)(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【考点】简单几何体的三视图.【答案】A【分析】根据三视图的定义求解即可.【解答】解:这个几何体的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点评】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.(3分)(2023•河南)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×109【考点】科学记数法—表示较大的数.【答案】C【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:4.59亿=459000000=4.59×108.故选:C.【点评】本题主要考查了用科学记数法表示较大的数,掌握形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°【考点】对顶角、邻补角.【答案】B【分析】由对顶角的性质得到∠AOD=∠1=80°,即可求出∠AOE的度数.【解答】解:∵∠AOD=∠1=80°,∴∠AOE=∠AOD﹣∠2=80°﹣30°=50°.【点评】本题考查对顶角,关键是掌握对顶角的性质:对顶角相等.5.(3分)(2023•河南)化简11aa a-+的结果是()A.0B.1C.a D.a﹣2【考点】分式的加减法.【答案】B【分析】根据分式的加法法则计算即可.【解答】解:原式11aa-+==1.故选:B.【点评】本题考查的是分式的加减法,熟知同分母的分式相加减,分母不变,把分子相加减是解题的关键.6.(3分)(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【考点】圆周角定理;圆心角、弧、弦的关系.【答案】D【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB=2∠C,∠C=55°,∴∠AOB=110°,故选:D.【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.7.(3分)(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】根据一元二次方程根的判别式解答即可.【解答】解:∵Δ=m 2﹣4×1×(﹣8)=m 2+32>0,∴方程有两个不相等的实数根.故选:A .【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)中,当Δ>0时,方程有两个不相等的实数根是解题的关键.8.(3分)(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A .12B .13C .16D .19【考点】列表法与树状图法.【答案】B【分析】画树状图,共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,再由概率公式求解即可.【解答】解:把三部影片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,∴这两个年级选择的影片相同的概率为3193,故选:B .【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2023•河南)二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A .第一象限B .第二象限C .第三象限D .第四象限【考点】二次函数的性质;一次函数的性质;二次函数的图象.【答案】D【分析】根据图象确定a ,b 的符号,即可得到答案.【解答】解:由函数图象可得,a <0,2ba->0,∴b >0,∴y =x +b 的图象过一,二,三象限,不过第四象限,故选:D .【点评】本题考查二次函数,一次函数的图象与系数的关系,解题的关键是掌握二次函数,一次函数的图象及性质.10.(3分)(2023•河南)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为PBx y PC=,,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A .6B .3C .D .【考点】动点问题的函数图象.【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为可知AO =OB =,过点O 作OC ⊥AB ,解直角三角形可得AD =AO •cos30°,进而得出等边三角形ABC 的边长.【解答】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,\结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB =PC ,AO =,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC (SSS ),∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为,∴OB =,即AO =OB =,∴∠BAO =∠ABO =30°,过点O 作OC ⊥AB ,垂足为D ,∴AD =BD ,则AD =AO •cos30°=3,∴AB =AD +BD =6,即等边三角形ABC 的边长为6.故选:A .【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.二、填空题。

河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a:b:c=3:4:5B.a=9,b=40,c=41C.a=11,b=12,c=13D.a=b=5,c=52.如图,在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为().A.15° B.45° C.30° D.22.5°3.“水立方”的游泳池长为50m,宽为25m,深为3m.现以x m/min的速度向池中注水,注满水池需y min,则y与x函数关系的大致图象为()4.已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )A.4B.4或34C.16或34D.4或5.一个平行四边形绕着对角线的交点旋转90°能够与本身重合,则该平行四边形为()A.矩形B.菱形C.正方形D.无法确定6.下列式子中,正确的是()A.B.C.D.7.若一个四边形四条边的长分别为a、b、c、d,若a+b十c+d="2(a" c + b d )则这个四边形是( )A.平行四边形B.菱形C.矩形D.正方形8.已知样本x,x,x,x的平均数是4,则x+3,x+3,x+3,x+3的平均数为 ( )A.7B.5.75C.3D.49.点P的坐标是(4,一8),则P点关于原点的对称点P1的坐标是( )[A.(—4,一8)B.(4,8)C.(4,一8)D.(-4,8) 10..下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是 ( )(A)A→B→C→D.(B)D→B→C→A.(C)C→D→A→B.(D)A→C→B→D.11.正方形在太阳光的投影下得到的几何图形一定是( )A.正方形.B.平行四边形或一条线段.C.矩形.D.菱形12.下列图中是太阳光下形成的影子是 ( )(A) (B) (C) (D)13.如图所示,下面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )14.给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个15.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m16.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A.相交B.平行C.垂直D.无法确定17..在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是 ( )A.两竿都垂直于地面.B.两竿平行斜插在地上.C.两根竿子不平行.D.一根竿倒在地上.二、填空题1.如图,在中,分别是的中点,若,Co则 cm.2.如图,分别以△ABC的两条边为边做平行四边形,所做的平行四边形有____ __个;平行四边形第四个顶点的坐标是 .3.如图,已知□ABCD中,点M是BC的中点,且AM=6,BC=12,CD=4,则该平行四边形的面积为 .4.皮影戏中的皮影是由投影得到的.5.将一个三角板放在太阳光下,它所形成的投影是_________,也可能是_________.21世纪教6.圆在太阳光线下的投影,可能是_________或_________也可能是_________.7.小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有 m2(楼之间的距离为20m).8.路灯下,小强对小华说:“我可以踩到你的影子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中河南数学卷子推荐
2022年中考数学试题依据课程标准,“四基”“四能”,创新试题形式,突出素养立意,加强教考衔接,助力“双减”改革。

一、加强基础考查,助力减负提质
试题突出对基础知识、基本技能的考查。

如对计算和化简,统计中的数据分析,利用三角函数测量拂云阁的高度,分式方程、不等式、函数综合运用的考查。

这些试题都注重基础知识、基本技能和通性通法的理解运用,很好地引导课堂教学遵循教学规律,提高课堂效果,实现作业题、练习题减量提质,服务“双减”改革。

二、注重关联教材,引导教学回归
试题材料呼应教材,问题设置与教材内容关联,让学生有扑面而来的熟悉感、亲切感,也减轻了学生考场上的心理负担。

如利用测角仪测量拂云阁的高度,教材中有相关例题和综合实践内容;利用生活中的喷泉情境考查二次函数,教材上有相关的问题背景和类似的研究方法;折纸操作源于教材内容,这些都是学生所熟悉的,有助于引导教学重视教材,用好教材,以提高课堂教学质量的方式提高学生成绩。

三、严格依标考查,增强教考衔接
试题的考查内容、范围和比例、知识要求层次都与课程标准保持一致,没有偏题、怪题,没有超标试题,注重通性通法,淡化特殊技巧,体现“学什么,考什么”,增强教考衔接。

引导教师严格依据课程标准进行教学,做到应教尽教,既不随意提高或降低标准,也不随意增加或删减内容;引导学生把学习的
重心放到学校,不增加无谓的焦虑。

有助于营造良好的教育生态,有助于“双减”改革取得良好成效。

四、创新试题形式,思维考查
试题创设了丰富的情境,提高了开放性、探究性试题的比例,体现了跨学科命题。

如第2题的“北京冬奥会”,第13题的“喜迎二十大”,第17题的“天宫课堂”等取材于反映新时代、新变化、新成就的社会热点;如对尺规作图的考查由往年的识别作图痕迹改进为动手操作,并通过几何推理,揭示一般规律,是一道兼顾基础性、综合性和创新性的好题;如第11、17、23题都给学生一定的开放探究空间;如第10题的“呼气式酒精测试仪”立足生活情境和科学情境,体现跨学科命题。

新颖开放的试题降低了死记硬背和“机械刷题”的得分收益,引导学生社会,生活,会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。

总之,2022年河南中考数学试题稳中有变,变中有新,既考查了“四基”“四能”,又凸显了素养立意。

试题关联教材、难度适中,有效地落实了“双减”要求,对教学具有良好的导向作用。

2022年河南中考数学试卷以课程标准为依据,以学科素养为导向,对初中数学必备知识和关键能力进行了全面考查,坚持“五育”并举,落实立德树人。

试题思维发展的一般规律,注重数学的应用价值,有效落实“双减”政策,对一线教育教学具有很好的引导作用。

一、印象与评价
整卷没有偏题、怪题、计算繁难和机械“套路”的题目,强调通性通法,锁定核心知识,强化数学应用,落实“双减”政策,注重创新思维,前瞻课程改革。

1.锁定核心知识,“四基”“四能”
试题覆盖初中数学的四个领域,“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”中的核心知识悉数被考查到,且考查目标明确指向课标中的“基础知识”“基本技能”“基本思想”和“基本活动经验”。

同时,有些试题是在教材习题的基础上进行改编与加工的,体现了依标扣本,且试题难易适中,是对“双减”政策的有效落实。

2.强化数学应用,凸显文化自信
本卷在诸多题目中创设了丰富的情境,如第2题“北京冬奥会”、第8题《孙子算经》、第13题“喜迎二十大”、第17题“天宫课堂”、第19题“景观建筑”、第21题“喷泉”等情境,均来源于社会生活、时代热点和历史传承。

这些情境的创设,不仅体现了数学的应用价值和育人作用,还赋予了试题文化内涵,凸显了文化自信和民族自豪感。

3.体现学科综合,前瞻课程改革
新修订的课程标准(2022年版),设置“跨学科”主题学习活动,强化学科融合,增强课程的综合性和实践性,有助于培养复合型、创新型人才。

可喜的是,今年的中考数学试卷第10题“呼气式酒精测试仪”,把数学与物理知识联系起来,很好地体现了学科融合,前瞻了课程改革新动向。

4.强化思维过程,培养学科素养
在引导学生解决问题的同时,让学生亲身经历数学知识的形成、发展和应用的过程,积累数学活动经验,感悟数学思想,
从而能从数学的角度创造性地解决问题,促进学生数学核心素养的发展。

二、启发与思考
2022年中考是“双减”政策实施后的第一次中考,本次试题的命制内容与思想导向,对于引导与深化义务教育教学改革、促进减负提质、巩固“双减”成果、实现教考衔接具有重要意义,很好地起到了风向标的作用。

对于一线的初中数学教师来说,每年的中考数学试题无疑是教学参考的标杆。

在平时的教学工作中,一方面,要按照《河南省初中数学课堂教学基本要求》科学合理地设计与实施课堂教学的每个环节,落实课标相关要求;另一方面,要注重与凸显数学课程的育人价值,让学生在数学学习的过程中善于发现问题、提出问题、分析问题和解决问题。

总之,2022年河南中考数学试题既有优良的传承,又有突破与创新。

试题在全面考查课标所要求的数学核心知识的同时,更加注重对数学本质、数学思维以及数学核心素养的考查,回答了社会关切,展现出了应有的引领与担当。

相关文档
最新文档