最新九年级数学专题复习 相似三角形解题技巧及口诀

合集下载

微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)

微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)

过一个直角顶点向两边作垂线,得到△PGE∽△PHF
29
【针对训练】
14.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,在Rt△MPN中,∠MPN=90°,点P在AC
3
上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=_______.
30
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM,
微专题16
相似三角形
之五大模型
2
模型1
特点
A字型(公共顶角)
两个三角形有一个公共角∠BAC,或者有DE∥BC,或者DE与BC不平行,
有∠ABC=∠AED
示例
思路 △ADE∽△ABC或△AED∽△ABC.如果没有明确说明对应关系,就应分
结论 以上两种情况讨论
3
【针对训练】
1.如图,在Rt△ABC中,∠ABC=90°,E,F分别为AC,BC的中点,连接EF,H为AE的中点,

1


ON分别交CA,CB于点P,Q,∠MON绕点O任意旋转.当 = 时, 的值为______;当
2


1


= 时, 的值为______.(用含n的式子表示)


31
16.(2024·青岛市南区二模)如图,点F在四边形ABCD的边AB上,
(1)如图1,当四边形ABCD是正方形时,过点B作BE⊥CF,垂足为O,交AD于点E.则BE
∴∠PBG=180°-∠ABC=90°,
∴∠PBG=∠POC=90°,
∵∠BPG=∠OPC,
∴△BPG∽△OPC,

∴ = ,

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。

(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。

2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C /。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a bc da b c d a d b c a c ()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质:①基本性质:a bc dadbc ②合比性质:±±a b c d a b b c d d③等比性质:……≠……a bc dm nb dn a c m bdna b()03. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2CF l3可得EF BC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EBC由DE ∥BC 可得:AC AEABAD EAEC ADBD ECAE DBAD 或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

九年级数学《相似三角形的判定-总复习课》课件

九年级数学《相似三角形的判定-总复习课》课件

(2)若∠A=∠A′,可添加条件____
复习目标
1 熟练掌握三角形相似的判定方法,理解各判定 方法的区别与联系。
2 能够从题目的条件和结论出发,选取合适的判 定方法解决三角形相似问题。
尝试思考题
1 你能记得多少种判定三角形相似的方法? 2 三1 定义: 对应角相等,对应边成比例。 2 平行线法 :平行于三角形一边的直线和其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似。 3 两角法:两角对应相等,两三角形相似。 4 两边一夹角法 :两边对应成比例且夹角相等,两三角 形相似。 5三边法:三边对应成比例,两三角形相似。 6直角三角形相似的判定定理: 斜边和一条直角边对应成比例的两直角三角形相似。
相似三角形的判定
导新定向
1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交
于点E,与DC交于点F,则图中相似三角形共有(

A 3对 B 4对 C 5对 D 6对
A
D
EF
B
图1 C
G
AB BC
2.要判定△ABC∽△A'B'C',已知条件, A,B,= B,C, (1)还要添加条件____或____.
(3)如图③,在矩形ABCD中,已知AB= 2 3 ,BC=3,
M是AD边上一点,将矩形ABCD沿CM折叠,点D落在AB边上 的点E处,求证:点E恰好是四边形ABCM的边AB上的一个
“强相似点”。
(4)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上 的点E处,若点E恰好是四边形ABCM的边AB上的一个强相 似点,试确定E点位置.
(1)如图①, ∠A=∠B=∠DEC=45°, 试判断点E是否是四 边形ABCD的边AB上 的相似点,并说明理由; (2)如图②,在矩形ABCD中,A、B、C、D四点均在正方 形网格(网格中每个小正方形的边长为1)的格点(即每 个小正方形的顶点)上,试在图②中画出矩形ABCD的边 AB上的强相似点;

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。

特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。

直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。

模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。

最新人教版九年级数学相似三角形27.2.2相似三角形的性质

最新人教版九年级数学相似三角形27.2.2相似三角形的性质

27.2.2相似三角形的性质
知识点
1.如何灵活应用相似三角形的判定方法
(1)条件中若有平行线,可以采用找角相等证明两个三角形相似
(2)条件中若有一对等角,可再找一对等角或者再找此角所在的两边比对应相等
(3)条件中若有两边比对应相等,可找夹角相等或者第三边的比对应相等
(4)条件中若有一对直角,可考虑再找一对等角或两直角边的比对应相等
(5)条件中若有等腰三角形,可找顶角相等或找一对底角相等或找腰和底的比对应相等
2.相似三角形的性质:对应边的比相等,对应角相等(画出图形,并且用数学符号语言表示)
3.相似三角形对应线段(对应高,对应中线,对应角分线)的比:等于相似比(画出图形,写出已知求证并证明)
4.相似三角形(多边形)的周长比:等于相似比(画出图形,写出已知求证并证明)
5.相似三角形(多边形)的面积比:等于相似比的平方(画出图形,写出已知求证并证明)
练习题
5.
6.。

九年级数学相似三角形知识点汇总参考(搜集整理全面细致)

九年级数学相似三角形知识点汇总参考(搜集整理全面细致)

.
( 5)平行线分线段成比例定理 :两条直线被三条平行的直线所截,截得的对应线段成比例
.
( 6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在
另一条直线上截得的线段也相等 .
这几个定理主要提出由平行线可得到比例式;反之
, 有比例可得到平行线 . 首先要弄清三个基本图形:
九年级数学相似三角形知识点汇总参考
一、比例线段及比例的性质
1.比例线段: ( 1)线段的比:如果选用同一长度单位量得两条线段
a, b 的长度分别是 m, n,那么就说这两条线段的比是
a:b=m:n ,或写成
, 其中 a 叫做比的前项 ;b 叫做比的后项 .
( 2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比
( 3)向量平行的 判定定理: a 是一个非零向量,若存在一个实数 m ,使 b ma ,则向量 b 与非零向量 a 平行 .
( 4)向量平行的性质定理:若向量 b与非零向量 a 平行 ,则存在一个实数 m ,使 b ma .
( 5) A、 B、 C 三点的共线
AB// BC 若存在实数 λ ,使 AB λBC .
3
诠释: ( 1)向量数乘结果是一个与已知向量平行(或共线)的向量; ( 2)实数与向量不能进行加减运算;
( 3) ka 表示向量的数乘运算, 书写时应把实数写在向量前面且省略乘号,
面;
( 4)向量的数乘体现几何图形中的位置关系和数量关系
.
3.实数与向量相乘的运算律
设 m 、 n 为实数,则:
注意不要将表示向量的箭头写在数字上
, 所截得的三角形的
三边与原三角形三边的对应成比例 .

相似三角形口诀归纳ok1

相似三角形口诀归纳ok1

相似三角形口诀归纳相似图形 你必须了解的特殊图形!A 字形,A ’形,8字形,蝴蝶形,双垂直,旋转形双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项⑴△ACD ∽△CDB →AD:CD=CD:BD →CD 2=AD •BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC 2=AD •AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC 2=BD •AB结论:⑵÷⑶得AC 2:BC 2=AD:BD结论:面积法得AB •CD=AC •BC →比例式 证明等积式(比例式)策略1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形 三点定形法2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型 ②先证其它三角形相似——创造边、角条件相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略:遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比;四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。

彼相似,我角等,两边成比边代换。

(3)等比代换:若d c b a ,,,是四条线段,欲证d c b a =,可先证得f eb a =(f e ,是两条线段)然后证d c fe =,这里把fe叫做中间比。

①∠ABC =∠ADE .求证:AB ·AE =AC ·ADF②△ABC 中,AB=AC ,△DEF是等边三角形,求证:BD•CN=BM•CE .③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。

求证:BP •PC=BM •CN☞有射影,或平行,等比传递我看行斜边上面作高线,比例中项一大片①在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 为AC 的中点,求证:AB •AF=AC •DF②ABCD③梯形ABCD 中,AD//BC ,作BE//CD,求证:OC2=OA.OE☞四共线,看条件,其中一条可转换;①Rt △ABC 中四边形DEFG 为正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
F
E
D A
B C
相似三角形解题技巧及口诀
A 字形,A ’形,8旋转形
双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项
⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD •BD
⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD •AB
⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD •AB
结论:⑵÷⑶得AC2:BC2=AD:BD
结论:面积法得AB •CD=AC •BC →比例式 证明等积式(比例式)策略
直接法:找同一三角形两条边 变化:等号同侧两边同一三角形 三点定形法
2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换;
⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型
②先证其它三角形相似——创造边、角条件
相似判定条件:两边成比夹角等、两角对应三边比
相似终极策略:
遇等积,化比例,同侧三点找相似;
四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。

彼相似,我角等,两边成比边代换。

(3)等比代换:若是四条线段,欲证,可先证得

是两
条线段)然后证,这
里把叫做中间比。

①∠ABC=∠ADE .求证:AB ·AE=AC ·AD
②△ABC 中,AB=AC ,△DEF 是等边三角形 求证:
BD•CN=BM•CE .
③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。

求证:BP •PC=BM •CN
☞有射影,或平行,等比传递我看行 ①在Rt △ABC 中,∠BAC=90°,AD
⊥BC 于D ,E 为AC 的中点,求证:AB •AF=AC •DF E
A C
D E A
B C B
A
D
E
C
2
斜边上面作高线,比例中项一大片 ②ABCD
③梯形ABCD 中,AD//BC ,作BE//CD, 求证:OC2=OA.OE
☞四共线,看条件,其中一条可转换;
①Rt △ABC 中四边形DEFG 为正方形。

求证:EF2=BE •FC
②△ABC 中,AB=AC ,AD 是BC 边上的中线,CF ∥BA , 求证:BP2=PE·PF 。

③AD 是△ABC 的
角平分线,EF 垂直
平分AD ,
交BC 的延长线于E ,交AB 于F. 求证: DE2=BE·CE.
☞两共线,上下比,过端平行条件边。

①AD 是△ABC 的角平分线.
求证:AB:AC=BD:CD.
②在△ABC 中,AB=AC ,
求证:DF:FE=BD:CE.
③在△ABC 中,AB>AC ,D 为AB
上一点,E 为AC 上一点,AD=AE ,
直线DE 和BC 的延长线交于点P , 求证:BP:CP=BD:CE. ④在△ABC 中,BF 交AD 于E. (1)若
AE:E
D=2:3,
BD:DC=3:2,求AF:FC ;
(2)若AF:FC=2:7,BD:DC=4:3,求AE:ED. (3)BD:CD=2:3,AE:ED=3:4 求:AF:FC
⑤在△ABC 中,D 、E 分别为BC 的三等分
点,AC 边上的中线BM 交AD 于P ,交AE 于Q ,若BM=10cm ,试求BP 、PQ 、QM 的长.
⑥△ABC 中,AC=BC ,F 为底边AB 上的一点,(m 、n >0),
取CF 的中点D , 连结AD 并延长交BC 于E.(1)
的值.(2)如果BE=2EC ,那么CF 所在直线与边AB 有怎样的位置关系?证明你的结论;(3)E 点能否为BC 中点?如果能,求出相应的的值;如果不能,证明你的结论。

☞彼相似,我条件,创造边角再相似①AE2=AD·AB ,且∠ABE =∠BCE , 试说明△EBC ∽△DEB
F B
A
C
D
E
3
2
1E D
A
B
C
12F E D B C A
D
A
C
E
E A
D
F O
D A E
3
②已知ABD ∆∽ACE ∆,求证:ABC ∆∽
ADE ∆.
③D 为△ABC 内一点,连接BD 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD ,求证:△DBE ∽△ABC 。

④D 、E 分别在△ABC 的AC 、AB 边上, 且AE •AB=AD •AC ,BD 、CE 交于点O. 求证:△BOE ∽△COD .。

相关文档
最新文档