(完整word版)碳氮比的测定实验方案
土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪一、方法原理土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。
1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。
2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。
直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。
直接提取法测定土壤微生物量的碳的方法日趋成熟。
现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。
本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。
二、主要仪器振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。
二、试剂1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。
将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。
得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。
2.0.5 mol·L-1 K2SO4浸提液:43.57 g分析纯K2SO4 定溶至1 L。
四、操作步骤称取过2 mm筛的新鲜土样12.5 g六份,置于小烧杯中。
将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。
抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。
熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。
另三份土壤放入另一干燥器中,但不放氯仿。
将熏蒸的土样全部转移至150 mL三角瓶中,加入50 mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30 min,过滤。
碳氮比的测定实验方案

碳氮比的测定实验方案碳氮比是指有机物中碳元素和氮元素的相对含量比值。
测定碳氮比的实验方案可以分为两大类:测定有机物总碳和总氮的方法和测定有机物中各个功能团中碳氮比的方法。
以下是两种常用的测定碳氮比的实验方案。
实验一:测定有机物总碳和总氮的方法材料和器材:1.实验溶液:待测有机物溶液。
2.硫酸钾(或硫酸钠)和硫酸铜。
3.盐酸和银硝酸。
4.高温燃烧炉。
5.硝化炉。
6.电子天平。
7.燃烧船和干燥瓶。
步骤:1.将待测有机物溶液加入燃烧船中。
2.将燃烧船放入高温燃烧炉中燃烧,使有机物燃烧完全。
3.将燃烧后的残渣转移到硫酸钾(或硫酸钠)和硫酸铜的混合物中,加热反应,使残渣中的氮转化为氨。
4.向反应混合物中加入过量的盐酸和银硝酸,沉淀掉生成的氯化银。
5.过滤掉沉淀,用水洗涤,收集过滤纸。
6.对过滤纸和残渣进行称重。
计算:1.计算过滤纸重量:过滤纸重量=过滤纸和残渣总重量-燃烧船重量。
2.计算残渣重量:残渣重量=过滤纸和残渣总重量-过滤纸重量。
3.计算总氮量:总氮量=残渣重量×14/1084.计算总碳量:总碳量=燃烧船重量×3.67+过滤纸重量×3.67-残渣重量×3.67实验二:测定有机物中各个功能团中碳氮比的方法材料和器材:1.有机物样品。
2.氧气气体。
3.苛性钠。
4.硫酸钾。
5.高压反应釜。
6.气相色谱仪。
步骤:1.将有机物样品和一定量的氧气气体一起加入高压反应釜中。
2.加入适量的苛性钠和硫酸钾催化剂。
3.在高压和高温下进行催化反应。
4.反应结束后,将产物转移到装有吸附剂的气相色谱仪中进行分析。
计算:通过气相色谱仪的检测结果,可以得到各个功能团的相对含量。
根据链长的不同,不同功能团的碳氮比也不同。
通过比较各个功能团的碳氮比,可以推测有机物中各个功能团的相对含量。
以上是两种常用的测定碳氮比的实验方案,可以通过测定有机物总碳和总氮的方法或测定有机物中各个功能团中碳氮比的方法来获得碳氮比的信息。
实验方案

土壤检测实验方案
(注:各指标测定意义另附于文件夹“指标意义”中,各测定方法另附于文件夹“指标测定方法中”)
注:10 目(筛孔直径2.00mm),100 目(筛孔直径0.149mm)
附录
1.称量(皿重、湿重)
2.烘干(105°C,24h)
3.称量(干重):计算含水率
4.研磨
5.过筛(120目)
6.四酸消解
(1)主要试剂:
浓盐酸(HCl),密度1.19g/mL,优级纯
浓硝酸(HNO3)密度1.42g/mL优级纯
硝酸溶液,1硝酸+5超纯水(体积),用1.2配制
氢氟酸(HF),密度1.49g/mL
高氯酸(HClO4),密度1.68g/mL优级纯
主要仪器:
一般实验仪器(试管、烧杯、容量瓶等)
塑料小瓶;聚四氟乙烯坩埚
电热板(可温控)
实验用水(电导率不低于18.3)
7.测定指标
(1)总铜(《GBT 17138-1997 土壤质量铜、锌的测定火焰原子吸收分光光度法》)
(2)总铅、隔(《GB_T_17141-1997_土壤质量_铅、镉的测定_石墨炉原子吸收分光光度法》)(3)总汞(《GBT 22105.1-2008 土壤质量总汞、总砷、总铅的测定原子荧光法(第1部分):土壤中总汞的测定》)
(4)总砷(《GBT 22105.1-2008 土壤质量_总汞、总砷、总铅的测定_原子荧光法(第2部分):土壤中总砷的测定》)
(5)总铬(HJ491-2009《土壤_总铬的测定_火焰原子吸收分光光度》)。
(完整word版)黄昌勇版 土壤学 名词解释

名词解释1.土壤:发育于地球陆地表面能生长绿色植物的疏松多孔的结构表层。
其基本特性是具有肥力。
2.土壤肥力:是土壤的基本属性和质的特征,是土壤从营养条件和环境条件方面,供应和协调植物生长的能力。
土壤肥力是土壤物理、化学和生物学性质的综合反映。
3.土壤剖面:由成土作用形成的层次成为土层(土壤发生层),而完整的垂直土层序列称为土壤剖面。
4.土壤生产力:土壤肥力因素的各种性质和土壤的自然、人为环境条件构成了土壤生产力。
5.自然肥力:是指土壤在自然因子即五大成土因素(气候、生物、母质、地形和年龄)的综合作用下发育而来的肥力,它是自然成土过程的产物。
6.人为肥力:耕作熟化过程中发育而来的肥力,是在耕作、施肥、灌溉及其它技术措施等人为因素影响作用下所产生的结果。
7.有效肥力:在农业实践中,由于土壤性质、环境条件和技术水平的限制,只有其中一部分在当季表现出来,产生经济效益,这一部分肥力叫有效肥力。
8.潜在肥力:在农业实践中,由于土壤性质、环境条件和技术水平的限制,而没有直接反映出来的肥力叫做潜在肥力。
9.土壤圈:是地球表层系统中处于四大圈层(气、水、生物、岩石)交界面上最富有生命活力的土壤连续体或覆盖层。
10.土壤生态系统:是以土壤为研究核心的生态系统,可分为研究土壤生物的生态系统和研究土壤性状与环境关系的土壤生态系统两类。
11.矿物:指天然产生于地壳中具有一定化学组成,物理性质和内在结构的物体,是组成岩石的基本单位。
12.风化作用:是指岩石、矿物在外界因素和内部因素的共同作用下,逐渐发生崩裂和分解的过程,包括物理风化作用、化学风化作用和生物风化作用。
13.土壤母质:岩石矿物的风化产物,又称土母质。
14.土壤原生矿物:是指那些经过不同程度的物理风化,未改变化学组成和结晶结构的原始成岩矿物。
15.土壤次生矿物:在风化及成土过程中由原生矿物分解转化而成的新矿物。
16.同晶替代:是指组成矿物的中心离子被电性相同、大小相近的离子所替代而晶格构造保持不变的现象。
(完整word版)发酵工程题库及试题要点

发酵工程部分题库及答案一、名称解释1、前体指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
2、发酵生长因子从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子3、菌浓度的测定是衡量产生菌在整个培养过程中菌体量的变化,一般前期菌浓增长很快,中期菌浓基本恒定。
补料会引起菌浓的波动,这也是衡量补料量适合与否的一个参数。
4、搅拌热:在机械搅拌通气发酵罐中,由于机械搅拌带动发酵液作机械运动,造成液体之间,液体与搅拌器等设备之间的摩擦,产生可观的热量。
搅拌热与搅拌轴功率有关5、分批培养:简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气.整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。
6、接种量 : 移入种子的体积接种量=—--—---——接种后培养液的体积7、比耗氧速度或呼吸强度单位时间内单位体积重量的细胞所消耗的氧气,mmol O2•g菌—1•h-18、次级代谢产物是指微生物在一定生长时期,以初级代谢产物为前体物质,合成一些对微生物的生命活动无明确功能的物质过程,这一过程的产物,即为次级代谢产物。
9、实罐灭菌实罐灭菌(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。
10、种子扩大培养:指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。
这些纯种培养物称为种子.11、初级代谢产物是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动所需要的物质和能量的过程。
这一过程的产物即为初级代谢产物.12、倒种:一部分种子来源于种子罐,一部分来源于发酵罐。
LYT 1237-1999 土壤有机质的测定及碳氮比 方法证实

1 方法依据本方法依据L Y/T 1237-1999土壤有机质的测定及碳氮比的计算2 仪器和设备电子分析天平,油浴锅3 分析步骤详见LY/T 1237-1999 土壤有机质的测定及碳氮比的计算5分析步骤4试验结果报告4.1方法检出限按HJ 168-2010规定检出限公式,并结合LY/T 1237-1999中的计算公式,得出 kgg M M V k MDL /300.010001.1724.1m 1010=⨯⨯⨯=ρλ, 其中2=k ;1=λ;滴定管的最小液滴体积为=0V 0.05ml ;21056.5-⨯=ρg/ml ;2780=M g/mol ;=1M 3g/mol ;g m 5.01=。
4.2精密度取5个不同浓度的样品,按照L Y/T 1237-1999测定步骤分别做6次平行实验,计算结果、平均值、标准偏差并求出相对标准偏差和最大绝对差值,结果如表1:表1精密度测试数据4.3准确度取2个有证标准物质,分别做6次平行实验,计算平均值,相对标准偏差,最大相对误差,检测结果见表2。
表2 有证标准物质测试数据5结论5.1检出限实验室检出限0.300g/kg。
5.2精密度样品1六次平行测定测得平均值为5.65g/kg,最大绝对偏差为0.15g/kg,标准中要求测定值<10g/kg 时,绝对偏差≤0.5g/kg;样品2六次平行测定测得平均值为23.5 g/kg,最大绝对偏差为0.3 g/kg,标准中要求测定值为10~40g/kg 时,绝对偏差为≤2.0g/kg;样品3六次平行测定测得平均值为58.5g/kg,最大绝对偏差为0.8g/kg,标准中要求测定值为40~70g/kg 时,绝对偏差为≤3.5g/kg;样品4六次平行测定测得平均值为92.3g/kg,最大绝对偏差为1.5 g/kg,标准中要求测定值70~100g/kg时,绝对偏差为≤5g/kg;样品5六次平行测定测得平均值为126g/kg,最大绝对偏差为3 g/kg,标准中要求测定值>100g/kg时,绝对偏差为≤5g/kg;5.3准确度对有证标准物质GBW07458(ASA-7)、GBW07460(ASA-9)进行测定,单次测定结果均在标准值范围内。
(完整word版)反硝化滤池调试方案

Denite®深床反硝化滤池调试方案******************(苏州)有限公司上海浦东分公司2017年目录1.Denite®深床反硝化滤池简介 (3)1.1反硝化工艺原理及特点 (3)1.2生物反硝化的影晌因素 (4)1.3化学除磷原理 (6)1.4深床反硝化滤池 (7)2.Denite 滤池区域安全作业 (11)2.1滤池内安全作业 (11)2.2滤池及露天池附近安全作业 (11)2.3污水附近安全作业 (12)2.4辅助设备安全 (12)2.5化学品的处理 (12)3.Denite® 工程调试 (13)3.1水质及水量 (13)3.2调试方案 (13)4.启动、运行及注意事项 (15)4.1过量供给碳源的征兆 (15)4.2碳源供给不足的征兆 (15)4.3混凝剂对SS影响 (15)1.Denite®深床反硝化滤池简介1.1反硝化工艺原理及特点反硝化反应(denitrification)反硝化反应是由一群异养型微生物完成的生物化学过程。
在缺氧(不存在分子态溶解氧)的条件下,将亚硝酸根和硝酸根还原成氮气、一氧化氮或氧化二氮。
当有溶解氧存在时,反硝化菌分解有机物利用分子态氧作为最终电子受体。
在无溶解氧的情况下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3+作为能量代谢中的电子受体,O2-作为受氢体生成H2O 和OH-碱度,有机物作为碳源及电子供体提供能量并被氧化稳定。
生物反硝化过程可用以下二式表示:2NO2-十6H( 电子供体有机物)→ N2十2H2O 十2OH- (1-1)2NO3-十9H( 电子供体有机物) → N2十3H2O 十3OH- (1-2)反硝化过程中亚硝酸根和硝酸根的转化是通过反硝化细菌的同化作用和异化作用来完成的。
同化作用是指亚硝酸根和硝酸根被还原成氨氮,用来合成新微生物的细胞、氮成为细胞质的成分的过程。
异化作用是指亚硝酸根和硝酸根被还原为氮气、一氧化氮或一氧化二氮等气态物质的过程,其中主要成分是氮气。
土壤实验报告

篇一:土壤实验报告及方法模板土壤试验分析技术实验报告姓名:学号:专业:授课教师:实验一土壤样品的制备及土壤水分的测定1. 意义分析森林土壤的目的是为森林土壤资源的管理提供科学依据。
土壤样品的制备是对土壤进行分析测试前的前期处理工作。
田间或林地的土壤水分状况的好坏,是土壤肥力高低的重要标志之一。
测定吸湿水的意义,在于所有土壤分析的结果,都以无水烘干土重为基数来计算,通过吸湿水的测定还可以间接地了解土壤的某些物理性质,如机械组成、土壤结构等。
2. 土壤样品的制备2.1. 研磨过筛:取两个风干土样(a12和b3),挑去石块、根茎及各种新生的叶片,研磨使之全部通过2 mm(10目)筛。
2.2. 混合分样:用四分法,两个土样各取三分之一再进行研磨,使之全部通过0.25mm(60 目)筛。
2.3. 用密封塑料袋保存土样。
(用记号笔标号:2mma12、0.25mma12、2mmb3、0.25mmb3) 3. 土壤吸湿水的测定在已知质量的铝盒中称过2mm风干土样5g,准确称至0.001g放人烘箱内,在温度105℃±2℃下烘8h后移至干燥器内冷却室温,立即称重.然后将铝盒置于烘箱中,如前温度烘 2—3h,冷却、称至恒重(前后两次称重之差不大于0.003g)。
计算方法:吸湿水(%)=风干土质量?烘干土质量×100烘干土质量表1 土壤吸湿水测定a12-1 a12-2 b3-1 b3-2风干土质量/g 5.03 5.01 4.99 5.00铝盒质量/g 铝盒+土(烘前)/g铝盒+土(烘后)/g 36.14 23.44 28.10 21.91烘干土质量/g 4.70 4.64 4.62 4.66失去水分/g 0.33 0.37 0.37 0.34吸湿水/%31.44 18.80 23.48 17.2536.47 23.81 28.47 22.257.02 7.97 8.01 7.30由于7.97-7.02=0.95<1,8.01-7.30=0.71<1,满足“平行测定结果的允许误差不得大于1%”的要求,因此,通过取两次平行测定的算术平均值的方法,求两个土样的吸湿水/%:对于土样a12:吸湿水=(7.02+7.97)/2*100%=7.50% 对于土样b3:吸湿水=(8.01+7.30)/2*100%=7.66% 土壤水分换算系数的计算: k2=m/m1,m—烘干土质量(g),m1—风干土质量(g)对于土样a12:k2=(4.70+4.64)/(5.03+5.01)=0.9303 对于土样b3:k2=(4.62+4.66)/(4.99+5.00)=0.9289 对于土样b3:k2=(4.62+4.66)/(4.99+5.00)=0.9289 4. 注意事项4.1. 分析微量元素、避免用铜丝网筛,而应改用尼龙丝网筛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳氮比的测定
1.实验目的:测定过滤槽中碳氮比
2.实验原理和步骤
2.1测定总氮
2.1.1原理
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢鉀和原子态氧,氮污染人为来源,硫酸氢鉀在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为 1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
分解出的原子态氧在120~124℃条件下,可使水样中含氮化合物的氮元素转化为硝酸盐,并且在此过程中有机物同时被氧化分解,可用紫外分光
光度法于波长220和275nm处,分别测出吸光度A
220及A
275
按下式求出校正吸光
度A:A = A
220 - A
275
按A的值查校准曲线并计算总氮的含量。
2.1.2 试剂
(1)碱性过硫酸钾溶液:称取40g过硫酸钾,另称取15g氢氧化钠,溶于水中,稀释至1000mL,因为过硫酸钾固体较难溶解,可在电热加热器中加热,并不断搅拌以加速其快速溶解。
待全部溶解后将其冷却至室温,再碱性过硫酸钾溶液存放在聚乙烯瓶内。
(2)硝酸钾标准储备液,C
N
=100mg/L:硝酸钾在105~110℃烘箱中干燥3小时,在干燥器中冷却后,称取0.7218g,溶于蒸馏水中,移至1000mL容量瓶中,用水稀释至标线在1~10℃暗处保存,(硝酸钾溶液见光易分解)或加入1~2mL三氯甲烷保存,可稳定6个月。
2.1.3 实验仪器
(1)T6紫外分光光度计及10mm石英比色皿
(2)具玻璃磨口塞比色管,25ml
(3)立式高压灭菌器
2.1.4 实验过程
2.1.4.1水样预处理
采样:在金湖各个不同地点才金湖水样,在水样采集后立即放于低于4℃的条件下保存,保存时间不得超过24小时。
当水样放置时间较长时,可在1000mL水样中加入约0.5mL硫酸
密度为1.84g/mL),酸化到pH小于2,并尽快测定。
样品可储存在玻璃瓶中。
2.1.4.2水样的测定
(1)测定:用吸量管吸取10.00mL水样,(共6个水样)置于比色管中。
加入5mL碱性过硫酸钾溶液,塞紧磨口塞,编号水样1、水样2、水样3、水样4、水样5、水样6.
(2)校准系列的制备:
a.移取硝酸钾式样10mL定容到100mL。
用吸量管向7个比色管中,分别加入硝酸钾标使用液0.0、0.30、0.50、1.00、3.00、5.00、7.00。
加水稀释至10.00mL。
b.将6个水样和7个标准系列包好报纸,用棉线将这13支比色管捆紧,以防弹出。
c.将比色管置于医用手提蒸汽灭菌器中,加热,使压力表指针到1.1~1.4kg/cm2,此时温度达120~124℃后开始计时。
加热半小时待其压力降至0时停止加热。
c.将捆好的比色管从医用手提式蒸汽灭菌器中取出,冷却,取出13支比色管冷却至室温。
d.加盐酸(1+9)1mL,用无氨水稀释至25mL标线,混匀。
e.移取部分溶液至10mm石英比色皿中,在紫外分光光度计上,分别在波长为220nm与275nm处测定吸光度,并计算出校正吸光度A。
2.2水质总碳的测定(燃烧氧化-非分散红外吸收法)
2.2.1实验原理
将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。
在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。
总碳与无机碳的差值,即为总有机碳。
2.2.2 干扰及消除
水中常见共存离子超过下列质量浓度时:SO
42−400 mg/L、Cl−400mg/L、NO
3−
100 mg/L、
PO
4
3−100 mg/L、S2−100 mg/L,可用无二氧化碳水(2.2.3.1)稀释水样,至上述共存离子质量浓度低于其干扰允许质量浓度后,再进行分析。
2.2.3 试剂和材料
本标准所用试剂除另有说明外,均应为符合国家标准的分析纯试剂。
所用水均为无二氧化碳水(2.2.3.1)。
2.2.
3.1 无二氧化碳水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。
也可使用纯水机制备的纯水或超纯水。
无二氧化碳水应临用现制,并经检验TOC质量浓度不超过0.5 mg/L。
2.2.
3.2 硫酸(H2SO4):ρ(H2SO4)=1.84 g/ml。
2.2.
3.3 邻苯二甲酸氢钾(KHC8H4O4):优级纯。
2.2.
3.4无水碳酸钠(Na2CO3):优级纯。
2.2.
3.5 碳酸氢钠(NaHCO3):优级纯。
2.2.
3.6 氢氧化钠溶液:ρ(NaOH)=10 g/L。
2.2.
3.6 有机碳标准贮备液:ρ(有机碳,C)= 400 mg/L。
准确称取邻苯
二甲酸氢钾(预先在110~120℃下干燥至恒重)0.8502 g,置于烧杯中,加水(2.2.3.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(2.2.3.1)稀释至标线,混匀。
在4℃条件下可保存两个月。
2.2.
3.7 无机碳标准贮备液:ρ(无机碳,C)=400 mg/L。
准确称取无水
碳酸钠(预先在105℃下干燥至恒重)1.7634 g和碳酸氢钠(预先在干燥器内干燥)1.4000g,置于烧杯中,加水(2.2.3.1)溶解后,转移此溶液于1000 ml
容量瓶中,用水(2.2.3.1)稀释至标线,混匀。
在4℃条件下可保存两周。
2.2.3.8差减法标准使用液:ρ(总碳,C)= 200 mg/L,ρ(无机碳,C)
= 100 mg/L。
用单标线吸量管分别吸取50.00 ml有机碳标准贮备液(2.2.3.6)和无机碳标准贮备液(2.2.3.7)于200 ml容量瓶中,用水(2.2.3.1)稀释至标线,混匀。
在4℃条件下贮存可稳定保存一周。
2.2.
3.9载气:氮气或氧气,纯度大于99.99%。
6 仪器和设备本标准除非另有说明,分析时均使用符合国家A级标准的玻璃量器。
2.2.4. 非分散红外吸收TOC分析仪。
2.2.5 一般实验室常用仪器。
2.2.6 样品
水样应采集在棕色玻璃瓶中并应充满采样瓶,不留顶空。
水样采集后应在24 h 内测定。
否则应加入硫酸(2.2.3.2)将水样酸化至pH≤2,在4℃条件下可保存7 d。
2.2.7分析步骤
2.2.7.1 仪器的调试
按TOC分析仪说明书设定条件参数,进行调试。
2.2.7.2 差减法校准曲线的绘制
在一组七个100 ml容量瓶中,分别加入0.00、2.00、5.00、10.00、20.00、40.00、100.00 ml差减法标准使用液(2.2.3.8),用水(2.2.3.1)稀释至标线,混匀。
配制成总碳质量浓度为0.0、4.0、10.0、20.0、40.0、80.0、200.0 mg/L和无机碳质量浓度为0.0、2.0、5.0、10.0、20.0、40.0、100.0 mg/L的标准系列溶液,按照的步骤测定其响应值。
以标准系列溶液质量浓度对应仪器响应值,分别绘制总碳和无机碳校准曲线。
3.结果计算碳氮比=总碳/总氮。