高中数学一轮复习函数(带答案)
高中函数专项复习题带答案

高中函数专项复习题带答案一、选择题1. 函数f(x) = 2x^2 + 3x - 5的图像的对称轴是:A. x = -1B. x = 1C. x = 3/2D. x = -3/22. 已知函数f(x) = x^3 - 2x^2 + x - 2,若f(a) = f(b),a ≠ b,且f(x)在[a, b]上单调递增,则a和b的关系是:A. a < bB. a > bC. a = bD. 无法确定3. 函数y = 3x + 2在x = 1处的导数是:A. 3B. 5C. 6D. 94. 下列哪个函数不是奇函数?A. y = x^3B. y = sin(x)C. y = cos(x)D. y = x^25. 函数y = 1/x在区间(-1, 0)上是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:1. D2. B3. A4. D5. A二、填空题6. 若函数f(x) = ax^2 + bx + c的顶点坐标为(-1, -4),则a的值为________。
7. 函数g(x) = |x - 1| + |x + 2|的最小值为________。
8. 若函数h(x) = √x在区间[0, 4]上的平均变化率为1/4,则x的值为________。
9. 函数F(x) = log_2(x)的定义域是________。
10. 函数R(x) = sin(x) + cos(x)的周期是________。
答案:6. a = -17. 38. x = 19. (0, +∞)10. 2π三、解答题11. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求证f(x)在[1, 2]上单调递增。
12. 已知函数g(x) = 2x - 3,求g(x)在x = 2处的切线方程。
13. 已知函数h(x) = x^2 - 4x + 4,求h(x)的极值点。
14. 已知函数p(x) = 3x^2 - 6x + 2,求p(x)在x = 1处的切线斜率。
高中数学一轮复习三角函数 第5节 两角和与差的正弦、余弦和正切公式

【解析】
对于(2),cosAcos B-sin Asin B=cos(A+B)<0, ∴cos Acos B<sin Asin B,则(2)不正确. b 在(4)中,φ 的正切与a有关,φ 所在象限内 a,b 的符号确 定,(4)错.
【答案】
θ π θ (2)由 θ∈(0,π),得 0< < ,∴cos >0. 2 2 2 因此 2+2cos θ= θ 4cos =2cos . 2 2
2θ
θ θ 又(1+sin θ+cos θ)(sin -cos ) 2 2 θ θ θ θ 2θ =(2sin cos +2cos )(sin -cos ) 2 2 2 2 2 θ θ 2θ 2θ =2cos (sin -cos )=-2cos cos θ. 2 2 2 2 θ -2cos cos θ 2 故原式= =-cos θ. θ 2cos 2
(2)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定 ( )
tan α+tan β (3)公式 tan(α+β)= 可以变形为 tan α+tan β 1-tan αtan β =tan(α+β)(1-tan αtan β),且对任意角 α,β 都成立( )
(4)公式 asin x+bcos x= a2+b2sin(x+φ)中 φ 的取值与 a,b 的值无关( )
【例 1 】 40° ;
θ θ 1+sin θ+cos θsin -cos 2 2 (2) (0<θ<π). 2+2cos θ
【思路点拨】
(1)切化弦,逆用两角和的正弦公式;
θ (2)统一为 的三角函数,变形化简. 2
【尝试解答】
sin 40° (1)4cos 50° -tan 40° =4sin 40° - cos 40°
对数与对数函数--选择题-2025届高中数学人教B版一轮复习题型滚动练(含解析)

对数与对数函数 选择题 ——2025届高中数学人教B 版一轮复习题型滚动练一、选择题1.函数()2ln(23)f x x x =--+的单调递减区间为( )A.(,1)-∞-B.(1,)-+∞C.(1,1)-D.(1,)+∞2.已知2a b =,23b =,log 6b c =,则( )A.1b ac+= B.3b a c += C.2ac a b += D.b ac =3.2log 50.5=( )4.若函数()()2ln 22f x x mx m =-++的值域为R ,则m 的取值范围是( )A.()1,2-B.[]1,2-C.()(),12,-∞-+∞D.(][),12,-∞-+∞ 5.神舟十二号载人飞船搭载3名宇航员进入太空,在中国空间站完成了为期三个月的太空驻留任务,期间进行了很多空间实验,目前已经顺利返回地球.在太空中水资源有限,要通过回收水的方法制造可用水.回收水是将宇航员的尿液、汗液和太空中的水收集起来经过特殊的净水器处理成饮用水,循环使用.净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为( )(参考数据lg 20.3010=)A.10B.12C.14D.166.函数2lg[(2)1]y x m x =+-+的值域为R .则实数m 的取值范围是( )A.(0,4)B.[0,4)C.(,0)(4,)-∞+∞D.(,0][4,)-∞+∞ 7.牛顿曾提出:物体在空气中冷却,如果物体的初始温度为1C θ ,空气温度为0C θ ,则t 分钟后物体的温度θ(单位:C ︒)满足:()010e kt θθθθ-=+-(k 为常数).若0.02k =,空气温度为20C ,某物体的温度从80C 下降到50C 以下,至少大约需要的时间为( )(参考数据:ln20.69≈)A.25分钟B.32分钟C.35分钟D.42分钟8.已知ln a a +=b b +=A.2a b << B.2a b << C.2b a << D.2b a<<9.已知()()2lg 21f x ax ax =++的值域为R ,则实数的取值范围为( )A.()0,1 B.(]0,1 C.[)1,+∞ D.()(),01,-∞+∞ 10.已知a =5b =,58c =,则( )A.a b c << B.a c b << C.c b a << D.b c a<<11.已知函数12()log a f x x x ⎛⎫=+ ⎪⎝⎭在区间[1,)+∞上单调递减,则实数a 的取值范围是( )A.(,1]-∞ B.[0,1] C.(1,1]- D.[1,)+∞12.方程()2lg(21)lg 9x x --=-的根为( )A.2或4-B.4-C.2D.2-或413.若函数()7,42log (1),4a x x f x x x -+≤⎧=⎨+->⎩(其中0a >,且1a≠)的最小值是3,则a的取值范围是( )a <<1a ≤< C.13a << D.13a <≤14.计算的结果是( )A.1 B.2 C.lg2 D.lg515.在我们的日常生活中,经常会发现一个有趣的现象:以数字1开头的数字在各个领域中出现的频率似乎要高于其他数字.这就是著名的本福特定律,也被称为“第一位数定律”或者“首位数现象”,意指在一堆从实际生活中得到的十进制数据中,一个数的首位数字是d (1,2,9,d = )的概率为1lg 1d ⎛⎫+ ⎪⎝⎭.以此判断,一个数的首位数字是1的概率与首位数字是5的概率之比约为( )(参考数据:lg20.301≈,lg30.477≈)A.2.9B.3.2C.3.8D.3.916.已知函数()()()log 4a f x x a x =--⎡⎤⎣⎦在()3,4上单调递减,则a 的取值范围是( )()2lg 2lg 20lg 5+⨯A.10,2⎛⎤ ⎥⎝⎦B.1,12⎡⎫⎪⎢⎣⎭C.(]1,2D.[)2,417.设a ,b 都为正数,e 为自然对数的底数,若,则( )A. B. C. D.1e a b +<18.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”,设51049N =⨯,则N 所在的区间为( )(lg 20.3010≈,lg 30.4771≈)A.()101110,10B.()111210,10C.()121310,10D.()131410,1019.根据有关资料,围棋的状态空间复杂度的上限约为3613,记3613M =.光在真空中的速度约为8310m /s ⨯,记8310N =⨯(参考数据:lg30.48≈)A.15510B.16510C.17510D.1851020.若lg a 与lg b互为相反数,则( )A.a b +=1= C.1ab = D.以上答案均不对1e ln a a b b b ++<e ab >1e a b +>e ab <参考答案1.答案:C解析:由函数()2ln(23)f x x x =--+,令2230x x --+>,即2230x x +-<,解得31x -<<,即函数()f x 的定义域为(3,1)-,令()223g x x x =--+,根据二次函数的性质,可得()g x 在(3,1)--单调递增,在(1,1)-上单调递减,结合复合函数的单调性的判定方法,可得函数()f x 在(1,1)-上单调递减,即()f x 的递减区间为(1,1)-.故选:C.2.答案:A解析:因为2a b =,23b =,所以2log a b =,2log 3b =,,222log log 6log 6log 31b ac b =⋅==+,故1b ac +=.故选:A.3.答案:C解析:222log 5log 5log 510.522-⎛⎫=== ⎪⎝⎭21log 52=故选:C.4.答案:D解析:函数()()2ln 22f x x mx m =-++的值域为R ,则函数222y x mx m =-++的值域应包含()0,+∞,则有()()22420m m --+∆≥=,解得1m ≤-或2m ≥,所以m 的取值范围是(][),12,-∞-+∞ .故选:D.5.答案:C解析:设过滤的次数为n ,原来水中杂质为1,则()120%5%n -<,即0.8n <所以lg 0.8n <所以lg 0.8lg 20n <-,所以lg 20lg 201lg 213.4lg 0.813lg 213lg 2n -+>==≈--,因为n *∈N ,所以n 的最小值为14,则至少要过滤14次.故选:C.6.答案:D解析:由函数2lg[(2)1]y x m x =+-+的值域为R ,得2(2)1x m x +-+的值域包含正实数集,因此2(2)40m --≥,解得0m ≤或4m ≥,所以实数m 的取值范围是(,0][4,)-∞+∞ .故选:D.7.答案:C解析:由题知020θ=,180θ=,50θ=,所以()0.025*******e t -=+-,可得0.02e t -=所以10.02t ln ln22-==-,50ln 234.5t ∴=≈.即某物体的温度从80C 下降到50C 以下,至少大约需要35分钟.故选:C.8.答案:B 解析:设()ln f x x x =+,易知()f x 在(0,)+∞上单调递增.且()5ln 2f a a a =+=,()()522ln 222f f a =+>+==,所以2a <;设()lg g x x x =+,易知()g x 在(0,)+∞上单调递增.且()lg g b b b =+=()()522lg 222g g b =+<+==,所以2b <.综上:2a b <<.故选:B.9.答案:C 解析:设,又()f x 值域为R ,能取遍所有正数,2Δ4400a a a ⎧=-≥∴⎨>⎩,解得,故选:C.10.答案:C解析:3log 5b =比大小,先比较5与2与33的大小,2353<,.b a ∴<5logc =比大小,先比较8与2与35的大小,2385<,.c a ∴<5335log 5log 3125(7,8)b ==∈,5555log 8log 32768(6,7)c ==∈,55c b ∴<,即c b a <<,11.答案:C 解析:令t x =()f x 在[1,)+∞上单调递减,且1log2y t =是减函数,所以根据复合函数的单调性可得t x =上单调递增.当时,在,即,此时在上恒成立;当时,满足题意;当0a <时,a t x x =+在(0,)+∞上单调递增,则()f x 在区间[1,)+∞上单调递增,又需满足真数,所以,即,即.综上.12.答案:B解析:由已知,得2219x x --=-,即2280x x +-=,解得4x =-或2x =.经检验当2x =时,221950x x --=-=-<,舍去,所以原方程的根为4-,故选B.13.答案:D解析:由函数()7,42log (1),4a x x f x x x -+≤⎧=⎨+->⎩(其中0a >,且1a ≠)的最小值是3,221t ax ax =++t ∴1a ≥)+∞0a >a t x x=++∞1≤01a <≤0a x x +>[1,)+∞0a =t x =0a x x +>101a +>1a >-10a -<<11a -<≤当4x ≤时,函数()7f x x =-+为单调递减函数,所以()()min 43f x f ==,则当4x >时,函数()2log (1)a f x x =+-为单调递增函数,则1a >,且满足()()42log 33a f x f >=+≥,即log 31a ≥,解得13a <≤,综上可得,实数a 的取值范围为(1,3].故选:D.14.答案:A解析:由题意,()()()22lg 2lg 20lg 5lg 2lg 5lg 4lg 5+⨯=++⨯()()22lg 2lg 52lg 5lg 2=++⨯()()22lg 2lg 5lg101=+==.故选:A.15.答案:C解析:依题意一个数的首位数字是1的概率为lg 2,一个数的首位数字是5的概率为16lg 1lg 55⎛⎫+= ⎪⎝⎭,()lg 2lg 2lg 6lg 5lg 2lg 3lg10lg 2==-+--lg 20.301 3.82lg 2lg 3120.3010.4771=≈≈+-⨯+-.故选:C.16.答案:C解析:因为()()()log 4a f x x a x =--⎡⎤⎣⎦在()3,4上单调递减,则()()40x a x -->对任意的()3,4x ∈恒成立,可得03a <≤且1a ≠;且()()()()2444g x x a x x ax a =--=-++-开口向下,对称轴x =当01a <<时,则对称轴452,22a x +⎛⎫=∈ ⎪⎝⎭,可知()g x 在()3,4内单调递减,且log a y x =在定义域内单调递减,所以()f x 在()3,4上单调递增,不合题意;当13a <≤时,因为log a y x =在定义域内单调递增,可知()g x 在()3,4内单调递减,3≤,解得12a <≤;综上所述:a 的取值范围是(]1,2.故选:C.17.答案:B解析:由已知,得1e (ln 1)a a b b b +<-=ln e ln e a a b <()ln f x x x =,则()e e a b f f ⎛⎫< ⎪⎝⎭.因为0a >,所以e 1a >.因为1(ln 1)e 0a b b a +->>,0b >,所以ln 1b >,即b >1>.当1x >时,()ln 10f x x '=+>,则()f x 在(1,)+∞上单调递增,所以e a <1e a +>.18.答案:C解析:由51049N =⨯两边取常用对数,510lg lg(49)5lg 410lg 910lg 220lg 3 3.0109.54212.552N =⨯=+=+≈+=,则12.552121310(10,10)N =∈.故选:C.19.答案:B36183310==⨯360360883lg lg3lg10360lg383600.48816510M N ==-=-≈⨯-≈,16510≈.故选:B.20.答案:C解析:因为lg a 与lg b 互为相反数,则()lg lg lg 0a b ab +==,因此,1ab =.故选:C.。
高中数学一轮复习训练:函数(Ⅱ) Word版含答案

高三数学单元练习题:函数(Ⅱ)一、填空题: 1、函数y =的定义域为 ▲ 。
2、已知全集U =AB 中有m 个元素,()()u uC A C B ⋃中有n 个元素.若A B ⋂非空,则A B ⋂的元素个数为 ▲ 个。
3、设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ▲ 。
4、函数)86(log 221+-=x x y 的单调递增区间是 ▲ 。
5、函数21)(++=x ax x f 在区间()+∞-,2上是增函数,那么a 的取值范围是 ▲ 。
6、已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是▲ 。
7、()(21),f x a x b R =-+设函数是上的减函数则a 的范围为 . 8、已知二次函数f(x)=4x2-2(p -2)x -2p2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f(c)>0,则实数p 的取值范围是 ▲ 。
9、二次函数f(x)的二次项系数为正,且对任意实数x 恒有f(2+x)=f(2-x),若 f(1-2x2)<f(1+2x -x2),则x 的取值范围是 ▲ 。
10、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ▲ 个。
11、设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为 ▲ 。
12、(2)k x ≤+[],a b ,且2b a -=,则k = ▲ 。
二、解答题:13、设函数()x e f x x=(1)求函数()f x 的单调区间; (2)若0k >,求不等式()(1)()0f x k x f x '+->的解集。
高中数学一轮复习基本初等函数:第1节 指数及运算

第1节 指数及运算【基础知识】1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数; 3. 1(0,,,)nm nm n a a m n N ma -+=>∈且为既约分数,=a a αβαβ(). 4.有理数指数幂(1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n个 (n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1a p (a ≠0,p ∈N *). ④正分数指数幂:a m n =n a m (a >0,m 、n ∈N *,且n >1). ⑤负分数指数幂:a -m n =1a m n=1n a m (a >0,m 、n ∈N *,且n >1). ⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①a r a s =a r +s (a >0,r 、s ∈Q ); ②(a r )s =a rs (a >0,r 、s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ).【规律技巧】指数幂的化简与求值(1)化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.(2)结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.【典例讲解】例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1;(2)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值. 【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45; (3)a 3b 23ab 2a 14b 124a -13b 13(a >0,b >0).【针对训练】1、化简34]的结果为( ) A .5 B .C .﹣D .﹣5 【答案】B2、1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________. 【答案】23、已知11223a a-+=,求下列各式的值. (1)11a a -+;(2)22a a -+;(3)22111a a a a --++++ 【答案】(1)7;(2)47;(3)6.4、已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【练习巩固】1【答案】22、1.5-13×76⎛⎫- ⎪⎝⎭0+80.25+)6 【答案】1103、已知12,9,x y xy +==且x y <,求11221122x yx y -+的值.【答案】4.设2a =5b =m ,且1a +1b=2,则m 等于 ( ) A.10B .10C .20D .100【答案】A 【解析】∵2a =5b =m ,∴a =log 2m ,b =log 5m ,∴1a +1b =1log 2m +1log 5m=log m 2+log m 5=log m 10=2.∴m =10.5、计算下列各式的值.(1(2;(3;(4)a b>.,||,a n a n ⎧=⎨⎩为奇数为偶数,不注意n 是导致错误出现的一个重要原因,要在理解的基础上,记准、记熟、会用、活用.温馨提醒:(1) n中实数a的取值由n的奇偶性确定,只要n有意义,其值恒等于a,即n a=;(2) n的奇偶性限制,a R∈n的奇偶性影响.6、已知11223a a-+=,求33221122a aa a----的值.温馨提醒:条件求值问题,化简已知条件、所求代数式是进一步代入计算的基础,熟记公式,准确化简是关键.。
高中数学第一轮复习(教师用)第二章函数导数及其应用之第五节指数与指数函数

第二章函数导数及其应用第五节指数与指数函数1.了解指数函数模型的实际背景.2.理解有理数指数幂的定义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.◆教材通关◆1.根式的概念(1)na n=⎩⎨⎧a,n为奇数,|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0),n为偶数;(2)(na)n=a(注意a必须使na有意义).[必记结论]在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.易忽视字母的符号.3.指数函数的图象与性质[1.画指数函数图象时应抓住图象上的三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . 2.底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.3.底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越高.4.指数函数的图象向左(或向右)平移不会与x 轴有交点,向上(或向下)平移a 个单位后,图象都在直线y =a (或y =-a )的上方.[小题诊断]1.化简的结果是( )A .-9B .7C .-10D .9解析:=-1=23-1=7.答案:B2.在同一直角坐标系中,函数f (x )=2x +1与g (x )=⎝⎛⎭⎫12x -1的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称解析:∵g (x )=21-x =f (-x ),∴f (x )与g (x )的图象关于y 轴对称. 答案:A3.设a =22.5,b =2.50,c =⎝⎛⎭⎫12 2.5,则a ,b ,c 的大小关系是( ) A .a >c >b B .c >a >b C .a >b >cD .b >a >c解析:因为a =22.5>1,b =2.50=1,c =⎝⎛⎭⎫12 2.5<1,所以a >b >c . 答案:C4.(2018·邯郸质检)已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )解析:由函数y =kx +a 的图象可得k <0,0<a <1,又因为与x 轴交点的横坐标大于1,所以k >-1,所以-1<k <0.函数y =a x +k 的图象可以看成把y =a x 的图象向右平移-k 个单位得到的,且函数y =a x +k 是减函数,故此函数与y 轴交点的纵坐标大于1,结合所给的选项,应该选B.答案:B5.指数函数y =f (x )的图象经过点(m,3),则f (0)+f (-m )=________. 解析:设f (x )=a x (a >0且a ≠1),∴f (0)=a 0=1. 且f (m )=a m =3.∴f (0)+f (-m )=1+a -m =1+1a m =43.答案:436.已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3), 所以函数f (x )在定义域上单调递增, 所以1a >1,解得0<a <1. 答案:(0,1)◆ 易错通关 ◆1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[小题纠偏]1.判断正误(请在括号中打“√”或“×”). (1)n a n =(na )n =a .( )(2)分数指数幂a m n 可以理解为mn个a 相乘.( )( )答案:(1)× (2)× (3)×2.若函数y =(a -1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 答案:(1,2)考点一 指数幂的运算 自主探究 基础送分考点——自主练透[题组练通]1.求值:解析:原式==1+14×23-110=1+16-110=1615.2.化简:解析:原式=-54·1ab 3=-5ab4ab 2.3.化简:解析:.指数幂运算的4个原则(1)有括号的先算括号里面的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.考点二 指数函数的图象及应用 互动探究 重点保分考点——师生共研[典例] (1)函数y =a x -1a(a >0,a ≠1)的图象可能是( )(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:(1)函数y =a x -1a 由函数y =a x 的图象向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.故选D. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].故b 的取值范围是[-1,1].答案:(1)D (2)[-1,1]与指数函数有关的图象问题的求解方法1.已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.2.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到,特别地,当底数a 与1的大小关系不确定时应注意分类讨论.3.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.[即时应用]1.(2018·唐山模拟)当x ∈[1,2]时,函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是( )A.⎣⎡⎦⎤12,2B.⎣⎡⎭⎫12,1∪(]1,2 C.⎣⎡⎦⎤14,2D.⎣⎡⎦⎤14,2解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12×12 ≤a 1,即12≤a <1,综上可知,a ∈⎣⎡⎭⎫12,1∪(]1,2.答案:B2.若函数y =|3x -1|在(-∞,k ]上单调递减,则k 的取值范围为________.解析:函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围是(-∞,0].答案:(-∞,0]考点三指数函数的性质及应用多维探究题点多变考点——多角探明[锁定考向]高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题.常见的命题角度有:(1)比较指数式的大小;(2)与指数函数有关的函数值域问题;(3)探究指数型函数的性质.角度一比较指数式的大小1.(2018·滕州模拟)下列各式比较大小正确的是()A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1解析:A中,∵函数y=1.7x在R上是增函数,2.5<3,∴1.72.5<1.73.B中,∵y=0.6x在R上是减函数,-1<2,∴0.6-1>0.62.C中,∵0.8-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小.∵y=1.25x在R上是增函数,0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2.D中,∵1.70.3>1,0<0.93.1<1,∴1.70.3>0.93.1.答案:B比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.角度二 与指数函数有关的函数值域问题2.已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析:令t =2x ,∵0≤x ≤2,∴1≤t ≤4,又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.角度三 探究指数函数性质的问题3.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.答案:B4.已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.解析:令t =|2x -m |,则t =|2x -m |在区间⎣⎡⎭⎫m 2,+∞上单调递增,在区间⎝⎛⎦⎤-∞,m2上单调递减,而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].答案:(-∞,4]与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成,要注意数形结合思想的运用.[即时应用]1.设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >a >bD .c >b >a解析:∵a =21.6,b =21.38,c =21.2,函数y =2x 在R 上单调递增,且1.2<1.38<1.6,∴21.2<21.38<21.6,即c <b <a .答案:A2.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:根据题意可知,对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,∴K ≥1,故选D.答案:D3.(2018·皖南八校联考)对于给定的函数f (x )=a x -a -x (x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是________(只需写出所有真命题的编号).①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.解析:∵f (-x )=-f (x ),∴f (x )为奇函数,f (x )的图象关于原点对称,①真;当a >1时,f (x )在R 上为增函数,当0<a <1时,f (x )在R 上为减函数,②假;y =f (|x |)是偶函数,其图象关于y 轴对称,③真;当0<a <1时,y =f (|x |)在(-∞,0)上为增函数,在[0,+∞)上为减函数,∴当x =0时,y =f (|x |)的最大值为0,④真;当a >1时,f (x )在(-∞,0)上为减函数,在[0,+∞)上为增函数,∴当x =0时,y =f (x )的最小值为0,⑤假,综上,真命题是①③④.答案:①③④课时作业单独成册 对应学生用书第201页A 组——基础对点练1.函数f (x )=2|x -1|的大致图象是( )解析:f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,所以f (x )的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数.答案:B2.(2018·广州市模拟)设a =0.70.4,b =0.40.7,c =0.40.4,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <c <b C .b <c <aD .c <b <a解析:∵函数y =0.4x 在R 上单调递减,∴0.40.7<0.40.4,即b <c ,∵y =x 0.4在(0,+∞)上单调递增,∴0.40.4<0.70.4,即c <a ,∴b <c <a .答案:C 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )解析:故选C.答案:C4.设x >0,且1<b x <a x ,则( ) A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b解析:∵1<b x ,∴b 0<b x ,∵x >0,∴b >1,∵b x <a x ,∴⎝⎛⎭⎫a b x >1,∵x >0,∴ab >1⇒a >b ,∴1<b <a .故选C. 答案:C5.已知函数f (x )=a x ,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2解析:∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0. 又∵f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 答案:A6.已知则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵y =⎝⎛⎭⎫25x 为减函数,35>25,∴b <c . 又∵y =在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a ,故选D. 答案:D7.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )解析:由函数f (x )的图象可知,-1<b <0,a >1,则g (x )=a x +b 为增函数,当x =0时,g (0)=1+b >0,故选C.答案:C8.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}解析:因为一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >12,所以可设f (x )=a (x +1)·⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)·⎝⎛⎭⎫10x -12<0,即10x <12,x <-lg 2,故选D. 答案:D9.函数y =⎝⎛⎭⎫122x -x 2的值域为( ) A.⎣⎡⎭⎫12,+∞ B .⎝⎛⎦⎤-∞,12 C.⎝⎛⎦⎤0,12 D .(0,2]解析:∵2x -x 2=-(x -1)2+1≤1, 又y =⎝⎛⎭⎫12t 在R 上为减函数, ∴y =⎝⎛⎭⎫122x -x 2≥⎝⎛⎭⎫121=12, 即值域为⎣⎡⎭⎫12,+∞. 答案:A10.(2018·哈尔滨模拟)函数f (x )=e 2x +1e x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 解析:f (x )=e 2x +1e x =e x +1e x ,∵f (-x )=e -x +1e -x =e x +1e x =f (x ),∴f (x )是偶函数,∴函数f (x )的图象关于y 轴对称.答案:D11.(2018·北京丰台模拟)已知奇函数y ={ f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A.⎝⎛⎭⎫12-x B .-⎝⎛⎭⎫12xC .2-xD .-2x解析:由题图知f (1)=12,∴a =12,f (x )=⎝⎛⎭⎫12x , 由题意得g (x )=-f (-x )=-⎝⎛⎭⎫12-x =-2x ,故选D. 答案:D12.关于x 的方程⎝⎛⎭⎫32x =2+3a 5-a 有负数根,则实数a 的取值范围为________. 解析:由题意,得x <0,所以0<⎝⎛⎭⎫32x <1, 从而0<2+3a 5-a <1,解得-23<a <34.答案:⎝⎛⎭⎫-23,34 13.不等式2x 2-x <4的解集为________.解析:不等式2x 2-x <4可转化为2x 2-x <22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.答案:{x |-1<x <2}14.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.解析:设t =12x ,当x ≥0时,2x ≥1,∴0<t ≤1,f (t )=-t 2+t =-⎝⎛⎭⎫t -122+14,∴0≤f (t )≤14,故当x ≥0时,f (x )∈⎣⎡⎦⎤0,14.∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈⎣⎡⎦⎤-14,0.故函数的值域为⎣⎡⎦⎤-14,14.答案:⎣⎡⎦⎤-14,14 B 组——能力提升练1.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则有( )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32 D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13解析:∵函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x ),∴f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫2-13=f ⎝⎛⎭⎫53,f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫2-23=f ⎝⎛⎭⎫43,又∵x ≥1时,f (x )=3x -1为单调递增函数,且43<32<53,∴f ⎝⎛⎭⎫43<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫53, 即f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13.选B. 答案:B2.已知实数a ,b 满足等式2 017a =2 018b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个解析:设2 017a =2 018b =t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:B3.(2018·莱西一中模拟)函数y =a x -a -1(a >0,且a ≠1)的图象可能是( )解析:函数y =a x -1a 是由函数y =a x 的图象向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a >1,平移距离大于1,所以C 项错误,故选D.答案:D4.(2018·日照模拟)若x ∈(2,4),a =2x 2,b =(2x )2,c =22x ,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >a >c解析:∵b =(2x )2=22x ,∴要比较a ,b ,c 的大小,只要比较当x ∈(2,4)时x 2,2x,2x 的大小即可.用特殊值法,取x =3,容易知x 2>2x >2x ,则a >c >b .答案:B5.已知a >0,且a ≠1,f (x )=x 2-a x .当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A.⎝⎛⎦⎤0,12∪[2,+∞) B .⎣⎡⎭⎫12,1∪(1,2] C.⎝⎛⎦⎤0,14∪[4,+∞) D .⎣⎡⎭⎫14,1∪(1,4]解析:当x ∈(-1,1)时,均有f (x )<12,即a x >x 2-12在(-1,1)上恒成立,令g (x )=a x ,m (x )=x 2-12,当0<a <1时,g (1)≥m (1),即a ≥1-12=12,此时12≤a <1;当a >1时,g (-1)≥m (1),即a -1≥1-12=12,此时1<a ≤2.综上,12≤a <1或1<a ≤2.故选B.答案:B6.(2018·菏泽模拟)若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n 的值是( )A .0B .1C .2D .4解析:∵f (x )=1+2·2x2x +1+sin x=1+2·2x +1-12x +1+sin x=2+1-22x +1+sin x=2+2x -12x +1+sin x .记g (x )=2x -12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,则g (x )在[-k ,k ]上的最大值与最小值互为相反数,∴m +n =4. 答案:D7.若x log 52≥-1,则函数f (x )=4x -2x +1-3的最小值为( )A .-4B .-3C .-1D .0解析:∵x log 52≥-1,∴2x ≥15,则f (x )=4x -2x +1-3=(2x )2-2×2x -3=(2x -1)2-4.当2x =1时,f (x )取得最小值-4.答案:A8.若x >1,y >0,x y +x -y =22,则x y -x -y 的值为( )A. 6 B .-2 C .2D .2或-2解析:∵x >1,y >0,∴x y >1,0<x -y <1,则x y -x -y >0.∵x y +x -y =22,∴x 2y +2x y ·x -y +x -2y =8,即x 2y +x -2y =6,∴(x y -x -y )2=4,从而x y -x-y =2,故选C.答案:C9.已知实数a ,b 满足12>⎝⎛⎭⎫12a >⎝⎛⎭⎫22b >14,则( )A .b <2b -aB .b >2b -aC .a <b -aD .a >b -a解析:由12>⎝⎛⎭⎫12a,得a >1;由⎝⎛⎭⎫12a >⎝⎛⎭⎫22b ,得⎝⎛⎭⎫222a >⎝⎛⎭⎫22b ,进而2a <b ; 由⎝⎛⎭⎫22b >14,得⎝⎛⎭⎫22b >⎝⎛⎭⎫224,进而b <4. ∴1<a <2,2<b <4. 取a =32,b =72,得b -a =72-32=2,有a >b -a ,排除C ;b >2b -a ,排除A ;取a =1110,b =3910,得b -a =3910-1110=145,有a <b -a ,排除D.故选B.答案:B10.已知函数f (x )=⎝⎛⎭⎫2x -12x ·,m ,n 为实数,则下列结论中正确的是( )A .若-3≤m <n ,则f (m )<f (n )B .若m <n ≤0,则f (m )<f (n )C .若f (m )<f (n ),则m 2<n 2D .若f (m )<f (n ),则m 3<n 3解析:∵f (x )的定义域为R ,其定义域关于原点对称,f (-x )===f (x ),∴函数f (x )是一个偶函数,又x >0时,2x -12x 与是增函数,且函数值为正,∴函数f (x )=⎝⎛⎭⎫2x -12x ·在(0,+∞)上是一个增函数,由偶函数的性质知,函数f (x )在(-∞,0)上是一个减函数,此类函数的规律是:自变量离原点越近,函数值越小,即自变量的绝对值越小,函数值就越小,反之也成立.对于选项A ,无法判断m ,n 离原点的远近,故A 错误;对于选项B ,|m |>|n |,∴f (m )>f (n ),故B 错误;对于选项C ,由f (m )<f (n ),一定可得出m 2<n 2,故C 是正确的;对于选项D ,由f (m )<f (n ),可得出|m |<|n |,但不能得出m 3<n 3,故D 错误.综上可知,选C.答案:C11.(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C.12D .1解析:由f (x )=x 2-2x +a (e x -1+e -x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e -(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e -x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a =12.故选C.答案:C12.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.解析:因为f (1+x )=f (1-x ),所以函数f (x )关于直线x =1对称,所以a =1,所以函数f (x )=2|x -1|的图象如图所示,因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.答案:113.(2018·眉山模拟)已知定义在R 上的函数g (x )=2x +2-x +|x |,则满足g (2x -1)<g (3)的x 的取值范围是________.解析:∵g (x )=2x +2-x +|x |,∴g (-x )=2x +2-x +|-x |,2x +2-x +|x |=g (x ),则函数g (x )为偶函数,当x ≥0时,g (x )=2x +2-x +x ,则g ′(x )=(2x -2-x )·ln 2+1>0,则函数g (x )在[0,+∞)上为增函数,而不等式g (2x -1)<g (3)等价于g (|2x -1|)<g (3),∴|2x -1|<3,即-3<2x -1<3,解得-1<x <2,即x 的取值范围是(-1,2).答案:(-1,2)14.(2018·信阳质检)若不等式(m 2-m )2x -⎝⎛⎭⎫12x <1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.解析:(m 2-m )2x -⎝⎛⎭⎫12x <1可变形为m 2-m <⎝⎛⎭⎫12x +⎣⎡⎦⎤⎝⎛⎭⎫12x 2,设t =⎝⎛⎭⎫12x ,则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立,显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3.答案:(-2,3)。
高中数学一轮复习之函数的奇偶性

第7节 函数的奇偶性【基础知识】1. 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数,;如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f(x)是奇函数.2.若一个函数既是奇函数又是偶函数,则解析式为()f x =0,但既是奇函数又是偶函数的函数不唯一,任意一个关于原点对称的区间都可以成为其定义域.3.奇函数的图象关于原点对称,反之亦然;偶函数的图象关于y 轴对称,反之亦然.4.奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.5.若f (x )为偶函数,则f (-x )=f (x )=f (|x |),若函数()f x 是奇函数,且在0x =处有定义,则(0)0f =.6.在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积是偶函数;③一个奇函数,一个偶函数的积是奇函数.【规律技巧】1.利用定义判断函数奇偶性的步骤:2.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式()x (x)0f f +-= (奇函数)或()x (x)0f f --= (偶函数))是否成立.3.通过函数图象的对称关系也可以判断奇偶性.若图象关于原点对称,则函数是奇函数;若图象关于y 轴对称,则函数是偶函数.4.抽象函数奇偶性的判断方法:(1)利用函数奇偶性的定义,找准方向(想办法出现()()f x f x -,);(2)巧妙赋值,合理、灵活地变形配凑;(3)找出()f x -与()f x 的关系,得出结论.5.已知函数的奇偶性求函数的解析式.抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.6.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.7.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.【典例讲解】例1、判断下列函数的奇偶性:(1) f (x )=9-x 2+x 2-9;(2)f (x )=(x +1) 1-x 1+x ; (3)f (x )=4-x 2|x +3|-3. 【解析】(1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3. ∴f (x )的定义域为{-3,3}.又f (3)+f (-3)=0,f (3)-f (-3)=0.即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数.【拓展提高】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;(2)判断f (x )与f (-x )是否具有等量关系.【变式探究】 下列函数:①f (x )=1-x 2+x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2+1);④f (x )=3x -3-x 2;⑤f (x )=lg 1-x 1+x. 其中奇函数的个数是( ) A .2 B .3 C .4 D .5【答案】D③由x +x 2+1>x +|x |≥0知f (x )=ln(x +x 2+1)的定义域为R ,又f (-x )=ln(-x + -x 2+1)=ln1x +x 2+1=-ln(x +x 2+1)=-f (x ),则f (x )为奇函数;④f (x )=3x -3-x2的定义域为R , 又f (-x )=3-x -3x 2=-3x -3-x2=-f (x ), 则f (x )为奇函数;⑤由1-x 1+x>0得-1<x <1, f (x )=ln 1-x 1+x的定义域为(-1,1), 又f (-x )=ln1+x 1-x =ln ⎝ ⎛⎭⎪⎫1-x 1+x -1 =-ln 1-x 1+x=-f (x ), 则f (x )为奇函数,∴奇函数的个数为5.【针对训练】1、判断下列函数的奇偶性:(1)(f x ;(2)()=(f x x +;()(3)f x 【答案】(1)()f x 既是奇函数,又是偶函数;(2)()f x 既不是奇函数,也不是偶函数;(3)奇函数.2、 已知函数()2m f x x-=是定义在区间2[3]m m m --,-上的奇函数,则f (m )=________.【答案】1-3、已知函数()f x 为奇函数,且当0x >时,21()f x x x =+,则(1)f -等于( ) A .-2B .0C .1D .2 【答案】A4、已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,则()f x 为( )A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数【答案】B【综合点评】判断函数奇偶性,首先判断函数的定义域是否关于原点对称.若定义域关于原点对称,则在定义域的条件下对函数式进行适当的化简最后判断f (-x )与f (x )间的关系(相等还是互为相反数);若定义域不关于原点对称,则不具有奇偶性.对于分段函数的奇偶性应分段判断.5、已知定义域为R 的函数()122x x a f x b+-+=+是奇函数,求,a b 的值. 【答案】12a b =⎧⎨=⎩【练习巩固】1、判断下列函数的奇偶性:(1)2lg(1)()22x f x x -=--; (2)222,0,()0,0,2,0,x x f x x x x ⎧+>⎪==⎨⎪--<⎩ 【答案】(1)()f x 为奇函数;(2) ()f x 为奇函数2、已知函数()x f y =是定义在R 上的任意不恒为零的函数,则下列判断:②()()x f x f y -+=为非奇非偶函数; ③()()x f x f y --=为奇函数; ④()[]2x f y = 为偶函数. 其中正确判断的个数有A .1个B .2个C .3个D .4个【答案】B3、设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称【答案】C4、设2()2f x ax bx =++是定义在[]1,2a +上的偶函数,则)(x f 的值域是( ). A .[10,2]- B .[12,0]- C .[12,2]- D .与,a b 有关,不能确定【答案】A5、若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有( )A .()()()230f f g <<B .()()()032g f f <<C .()()()203f g f <<D .()()()023g f f <<【答案】D6、已知偶函数()f x 在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且αβ>,则下列结论正确的是( )A .(cos )(cos )f f αβ>B .(sin )(sin )f f αβ<C .(sin )(cos )f f αβ>D .(sin )(cos )f f αβ<【答案】C。
高中数学一轮复习之分段函数

第3节分段函数【基础知识】1.在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.2.分段函数是一个函数,而不是几个函数;3.分段函数的定义域是各段“定义域”的并集,其值域是各段“值域”的并集.【规律技巧】1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则.3.研究分段函数的性质,需把求函数的定义域放在首位,即遵循“定义域优先”的原则.4. 含绝对值的函数是分段函数另一类表现形式.【典例讲解】例1、设函数f(x)=2-x,x ∈-∞,1,x 2,x ∈[1,+,若f(x)>4,则x 的取值范围是______.【方法技巧】求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.【变式探究】已知f(x)的图象如图,则f(x)的解析式为________.例2已知实数0a ,函数1,21,2x a x x a x xf ,若a f a f 11,则a 的值为()A .B .C .D.【答案】A例3在2014年APEC 会议期间,北京某旅行社为某旅行团包机去旅游,其中旅行社的包机费为12000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行团的人数在30人或30人以下,每张机票收费800元;若旅行团的人数多于30人,则给予优惠,每多1人,旅行团每张机票减少20元,但旅行团的人数最多不超过45人,当旅行社获得的机票利润最大时,旅行团的人数是A. 32人B. 35人C. 40人D. 45 人【答案】B 【针对训练】1、作出函数||()x f x xx的图象.【答案】见解析2、已知函数1,1(),1xex f x x x,那么(2)f 的值是()A .0 B. C.21eD .2【答案】D3、设函数,0,22xxx x xxf 若2af f ,则实数a 的取值范围是______【答案】2a 4、设函数246,0()6,0xx xf x x x,则不等式()(1)f x f 的解集是()A.B. C. D.【答案】A5、已知函数2log ,0,()3,0,xx x f x x ≤,则14ff.【答案】19【练习巩固】1.设)10()],6([)10(,2)(xxf f x x x f 则5f 的值为()A .10B .11C .12 D.13【答案】B【解析】这是分段函数,求值时一定注意自变量所在的范围,不同范围选用不同的表达式.(5)119151311f f f f f f f ,故选B .2.设()f x 是定义在R 上且周期为2的函数,在区间[11],上,0111()201xx ax f x bxx ≤≤≤,,,,其中a bR ,.若1322ff,则3a b 的值为.【答案】10 【解析】∵()f x 是定义在R 上且周期为2的函数,∴11f f ,即21=2b a ①.又∵311=1222ff a ,1322f f,∴141=23b a ②. 联立①②,解得,=2. =4a b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一轮函数(第二章) 函数的单调性1.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数.由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))2.下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x |解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④3.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0. ∴⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 4.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916.答案:(0,916]5.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①6.(20XX 年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时, 在x =2取得最大值1.答案:16.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1],∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:137.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)8.试讨论函数y =2(x 21log )2-2x 21log +1的单调性.解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.9.已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}. 10.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <?,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (xx ∈R ,x 2-bx +b=(-b )2-4bb <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎨⎧m 2≤0-255≤m ≤255-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m2≥1,则x 1≤0.⎩⎪⎨⎪⎧m 2≥1F (0)=1-m 2≤0m ≥2.若m2≤0,则x 2≤0, ⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.函数的性质11.定义在R 上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.解析:f(x)为奇函数,且x ∈R ,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x +2)=f(x),令x =-1得f(1)=f(-1)=-f(1)⇒f(1)=0,所以f(1)+f(4)+f(7)=0.答案:012.已知定义在R 上的函数f(x)是偶函数,对x ∈R ,f(2+x)=f(2-x),当f(-3)=-2时,f(2011)的值为________.解析:因为定义在R 上的函数f(x)是偶函数,所以f(2+x)=f(2-x)=f(x -2),故函数f(x)是以4为周期的函数,所以f(2011)=f(3+502×4)=f(3)=f(-3)=-2.答案:-213.已知定义在R 上的函数f(x)满足f(x)=-f(x +32),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+…+f(2009)+f(2010)=________.解析:f(x)=-f(x +32)⇒f(x +3)=f(x),即周期为3,由f(-2)=f(-1)=-1,f(0)=2,所以f(1)=-1,f(2)=-1,f(3)=2,所以f(1)+f(2)+…+f(2009)+f(2010)=f(2008)+f(2009)+f(2010)=f(1)+f(2)+f(3)=0.答案:014.已知f(x)是定义在R 上的奇函数,且f(1)=1,若将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=________.解析:f(x)是定义在R 上的奇函数,所以f(-x)=-f(x),将f(x)的图象向右平移一个单位后,得到一个偶函数的图象所以有f (x-1)=f (-x-1)⇒f (x-1)=-f (x+1)⇒f (t+2)=-f (t )⇒f (t+4)=f (t ),所以周期为4,∴f (3)=f (-1)=-f (1)=-1;f (2)=-f (0)=0;f (4)=f (0)=0,所以f(1)+f(2)+f(3)+f(4)=0,则f(1)+f(2)+f(3)+…+f(2010)=f(4)×502+f(2)=0.答案:015.(20XX 年江苏苏州模拟)已知函数f(x)是偶函数,并且对于定义域内任意的x ,满足f(x+2)=-1f(x),若当2<x<3时,f(x)=x ,则f(2009.5)=________.解析:由f(x +2)=-1f(x),可得f(x +4)=f(x),f(2009.5)=f(502×4+1.5)=f(1.5)=f(-2.5)∵f(x)是偶函数,∴f(2009.5)=f(2.5)=52.答案:5216.(20XX 年高考山东卷)已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m >0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.解析:因为定义在R 上的奇函数,满足f(x -4)=-f(x),所以f(x-2)=-f(x+2),f(2-x)=f(2+x)因此,函数图象关于直线x =2对称且f(0)=0.由f(x -4)=-f(x)知f(x -8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8.答案:-8。