人教版数学必修三-第二章-统计-单元测试

合集下载

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)
附:线性回归方程 中系数计算公式分别为: , ,其中 、 为样本均值.
20.孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在15~65岁的人群中随机抽取n人进行问卷调查,把这n人按年龄分成5组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的样本的频率分布直方图如右:
调查问题是“双峰山国家森林公园是几A级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第1组
[15,25)
5
0.5
第2组
[25,35)
18
x
第3组
[35,45)
y
0.9
第4组
[45,55)
9
a
第5组
[55,65]
7
b
(1)分别求出n,x,y的值;
“梅实初黄暮雨深”.请用样本平均数估计 镇明年梅雨季节的降雨量;
“江南梅雨无限愁”. 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量( /亩)与降雨量的发生频数(年)如 列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
①一组数据的标准差越大,则说明这组数据越集中;
②曲线 与曲线 的焦距相等;
③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;
④已知椭圆 ,过点 作直线,当直线斜率为 时,M刚好是直线被椭圆截得的弦AB的中点.
A.1B.2C.3D.4

人教版高中数学必修二第二章单元测试(二)- Word版含答案

人教版高中数学必修二第二章单元测试(二)- Word版含答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

人教版A数学必修三第二单元单元测试B卷:_用样本估计总体(有答案)

人教版A数学必修三第二单元单元测试B卷:_用样本估计总体(有答案)

人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意),已知1. 在样本频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的14样本容量是80,则该组的频数为()A.20B.16C.30D.352.已知某机器加工的1000件产品中次品数的频率分布如下表:则次品数的众数、平均数依次为()A.0,1.1B.0,1C.4,1D.0.5,23. 某班有50名学生,该班上学期期中考试的英语平均分为70分,标准差为s,后来发现两名学生的成绩记录有误:小明得了71分,却误记为46分;小刘得了70分,却误记为95分.更正后的标准差为s1,则s与s1之间的大小关系为()A.s1=sB.s1>sC.s1<sD.无法确定4. 某财经学院有n名学生参加2016年的全国会计从业资格考试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是12,则n等于()A.35B.40C.45D.505. 某赛季甲、乙两名篮球运动员12场比赛的得分情况如图所示,对这两名运动员的得分进行比较,下列四个结论中不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员的得分的平均数D.甲运动员的得分比乙运动员的得分稳定6. 某校5人参加头脑奥林匹克竞赛选拔考试,已知这5人的平均考试成绩为81分,其中4人的成绩分别为73分,82分,82分,84分,由这5人得分所组成的—组数据的中位数是()A.81B.82C.83D.847. 在某中学举办的爱国主题演讲比赛中,七位评委给甲、乙两位选手打分的茎叶图如图所示,但其中在△处数据丢失.按照规则,甲、乙各去掉一个最高分和一个最低分,用x和y分别表示甲、乙两位选手获得的平均分,则()A.x>yB.x<yC.x=yD.x和y之间的大小关系无法确定8.一个频数分布表(样本容量为20)不小心被损坏了一部分,部分数据如下表所示,若样本中数据在[20,60)内的频率为0.8,则样本中在[40,60)内的数据的个数为()C.7D.99. 一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.610. 为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e ,众数为m 0,平均值为x ¯,则( )A.m e =m 0=x ¯B.m e =m 0<x ¯C.m e <m 0<x ¯D.m 0<m e <x ¯二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图,估计这批产品的平均长度为________mm .如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的极差为a ,乙加工零件个数的平均数为b ,则a +b =________.如图是某校2016级的高一男生体重的频率分布直方图,已知图中从左到右的前三组的频率之比为1:2:3,则第二组的频率为________.某校高一年级有400名学生,随机抽查了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.给出结论:①该校高一年级学生1分钟仰卧起坐的次数的中位数为25;②该校高一年级学生1分钟仰卧起坐的次数的众数为24;③该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为80;④该校高—年级学生1分钟仰卧起坐的次数少于20的人数约为8.用样本估计总体,上述结论正确的是________.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)某游戏平台为了了解玩家对某款游戏的喜爱程度,随机采访10位经常玩这款游戏的用户,收集到他们每次登录的平均时长(单位:分钟)如下:6.27.07.65.96.77.36.58.17.87.9(1)根据以上数据,画出茎叶图;(2)求出中位数、平均数、方差.某面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.(1)求a的值,并估计在一个月(按30天算)内日销售量不低于95个的天数;(2)利用频率分布直方图估计每天销售量的平均数及方差(同一组中的数据用该组区间的中点值作代表).某高校为了解学生的体能情况,随机抽取部分学生进行一分钟跳绳测试,将所得数据整理后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为2:4:17:15:9:3,其中第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数不低于110为达标,试估计该高校全体学生的达标率.(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.对某校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天识记和晚上睡前识记.为了研究背单词的时间安排对记忆效果的影响,某社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是:使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图所示.试估计这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)将某班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:求全班学生的平均数和标准差.中秋佳节来临之际,小李准备销售一种农特产,这段时间内,每售出1箱该特产获利50元,未售出的,每箱亏损30元.经调查,市场需求量的频率分布直方图如图所示.小李购进了160箱该特产,以x(单位:箱,100≤x≤200)表示市场需求量,y (单位:元)表示经销该特产的利润.(1)根据频率分布直方图估计市场需求量的众数和平均数;(2)将y表示为x的函数;(3)根据频率分布直方图求利润不少于4800元的频率.参考答案与试题解析人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意)1.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】解:设该组的频数为x,则其他组的频数之和为4x.由样本容量是80,得x+4x=80,解得x=16,即该组的频数为16.故选B.2.【答案】A【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由于次品数为0的频率最大,所以众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1.故选A.3.【答案】C【考点】极差、方差与标准差独立性检验的基本思想【解析】此题暂无解析【解答】解:依题意,知虽然两名学生的成绩记录出错,但50名学生成绩的平均分没变化.由于(71−70)2+(70−70)2<(46−70)2+(95−70)2,根据方差的公式,可得s1<s.故选C.4.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】=0.005×20+0.010×20=0.3,解:由12n解得n=40.故选B.5.【答案】D【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图可知甲运动员得分的极差大于乙运动员得分的极差,结论A正确;由图可知甲运动员的得分始终大于乙运动员的得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,甲运动员得分的平均数大于乙运动员得分的平均数,结论B,C正确;由图可知甲运动员得分波动性较大,乙运动员得分波动性较小,所以乙运动员的得分比甲运动员的得分稳定,结论D错误.故选D.6.【答案】B【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由题意可得,第五个人的得分为84分,将所有人的分数按从高到低进行排序为84,84,82,82,73,则这5人得分所组成的一组数据的中位数是82.故选B.7.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】解:∵ 2+5+5+4+△=△+16,2+5+6+7=26,△<10,∴ x<y.故选B.8.【答案】C【考点】用样本的频率分布估计总体分布【解析】此题暂无解析【解答】解:由图知,样本中数据在[20,40)内的频数为4+5=9,所以样本中数据在[20,40)内的频率为9÷20=0.45.所以样本中在[40,60)内的数据的频率为0.8−0.45=0.35,所以样本中在[40,60)内的数据的个数为20×0.35=7.故选C.9.【答案】D【考点】极差、方差与标准差众数、中位数、平均数【解析】此题暂无解析【解答】解:设原来的数据为x1,x2,⋯,x n,则所得的新数据为x1+60,x2+60,⋯,x n+60.由题意得x1+x2+⋯+x n=4.8n,(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2=3.6n,则新数据的平均数为1n[(x1+60)+(x2+60)+⋯+(x n+60)]=1n[(x1+x2+⋯+x n)+60n]=1n(4.8n+60n)=64.8,新数据的方差为1n[(x1+60−64.8)2+(x2+60−64.8)2+⋯+(x n+60−64.8)2]=1n[(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2]=1n×3.6n=3.6.所以新数据的平均数和方差分别为64.8,3.6.故选D.10.【答案】D【考点】频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图,可知30名学生的得分情况依次为2人得3分,3人得4分,10人得5分,6人得6分,3人得7分,2人得8分,2人得9分,2人得10分.中位数为得分由小到大排列后第15,16个数(分别为5,6)的平均数,即m e=5+62=5.5;由于5出现次数最多,故m0=5;x¯=130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m0<m e<x¯.故选D.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 【答案】22.75【考点】频率分布直方图【解析】此题暂无解析【解答】解:根据颜率分布直方图,估计这批产品的平均长度为(12.5×0.02+17.5×0.04+22.5×0.08+27.5×0.03+32.5×0.03)×5=22.75(mm).故答案为:22.75.【答案】40【考点】茎叶图【解析】此题暂无解析【解答】解:由茎叶图,知甲加工零件个数的极差a=35−18=17,乙加工零件个数的平均数b=1×(10×3+20×4+30×3+17+11+2)=23,10则a+b=40.故答案为:40.【答案】0.25【考点】频率分布直方图【解析】此题暂无解析【解答】解:由频率分布直方图知前三组的频率之和为1−(0.0125+(0.0375)×5=0.75,=0.25.所以第二组的频率为0.75×21+2+3故答案为:0.25.【答案】③【考点】频率分布直方图【解析】此题暂无解析【解答】解:第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,所以中位数在第三组内,设中位数为25+x,则x×0.08=0.5−0.1−0.3=0.1,解得x=1.25,所以所求中位数为26.25,①错误;最高矩形是第三个,又第三组数据的中间值为27.5,所以所求众数为27.5,②错误;样本中学生1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,则该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为400×0.2=80,③正确;样本中学生1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,则该校高一年级学生1分钟仰卧起坐的次数少于20的人数约为400×0.1=40,④错误.故答案为:③.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)【答案】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【答案】解:(1)由(0.006+0.008+a +0.026+0.038)×10=1,解得a =0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x ¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 日销售量的方差为s 2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【考点】频率分布直方图此题暂无解析【解答】解:(1)由(0.006+0.008+a+0.026+0.038)×10=1,解得a=0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.日销售量的方差为s2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【答案】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.【考点】随机抽样和样本估计总体的实际应用众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.【考点】古典概型及其概率计算公式频率分布直方图【解析】此题暂无解析【解答】解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、 证明过程或演算步骤)【答案】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【考点】极差、方差与标准差【解析】此题暂无解析【解答】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【答案】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150. 需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.【考点】离散型随机变量的期望与方差频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150.需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.。

2020学年高中数学 第二章 统计单元测试 新人教A版必修3 精品

2020学年高中数学 第二章 统计单元测试 新人教A版必修3 精品
第二章统计测试
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题 给出的四个选项中,有且只有一项是符合题目要求的)
1.某商场想通过检查发票及销售记录的2%来快速估计每月
的销售总额.采取如下方法:从某Fra bibliotek50张的发票存根中随机抽
一张,如15号,然后按顺序往后将65号,115号,165号,…发票上
8.将容量为100的样本数据,按从小到大的顺序分成8个组,如 下表:
组数 1 频数 9
23456 14 14 13 12 x
78 13 10
则第6组的频率为( )
A.0.14
B.14
C.0.15
D.15
解析:第6组的频数为100-(9+14+14+13+12+13+10)=15,∴频
率为15÷100=0.15.5
答案:C
9.有甲、乙两种水稻,测得每种水稻各10穴的分蘖数后,计算出 样本方差分别为 s甲2 11,s乙2 3.4, 由此可以估计( ) A.甲种水稻比乙种水稻分蘖整齐 B.乙种水稻比甲种水稻分蘖整齐 C.甲、乙两种水稻分蘖整齐程度相同 D.甲、乙两种水稻分蘖整齐程度不能比较 解析:∵ s甲2 s乙2 ,∴乙种水稻比甲种水稻分蘖整齐. 答案:B
错误.
答案:B
7.已知数据x1、x2、x3的中位数为k,众数为m,平均数为n,方 差为p,则下列说法中,错误的是( ) A.数据2x1、2x2、2x3的中位数为2k B.数据2x1、2x2、2x3的众数为2m C.数据2x1、2x2、2x3的平均数为2n D.数据2x1、2x2、2x3的方差为2p 解析:2x1、2x2、2x3的方差应为4p,∴选项D错. 答案:D

人教版数学必修三统计单元测试

人教版数学必修三统计单元测试

第二章 必修三统计单元测试一、选择题(本大题共12小题,每小题5分,共60分) 1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( )A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.12(1+x 2) B.12(x 2-x 1) C.12(1+x 5) D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13B .2,1C .4,23D .4,36.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ) A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A .相关关系的两个变量不一定是因果关系B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y^=4.75x+257,则施肥量x=30时,对产量y的估计值为( )A.398.5 B.399.5 C.400 D.400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 10.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而高一高二高三跑步a b c登山x y z其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取( )A.36人 B.60人 C.24人 D.30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A.19,13 B.13,19 C.20,18D.18,2012.从一堆苹果中任取了20个,并得到它们的质量(单位:克)分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031A.题号123456789101112答案二、填空题(13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则选送决赛的最佳人选应是14.一组数据23,27,20,18x是________.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)平均支出________线性相关关系.16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得回归直线方程y=b x+a中b=-2,据此预测当气温为5℃时,用电量的度数约为______.三、解答题(本大题共6小题,共70分)17.(10分)一批产品中,有一级品100个,二级品60个,三级品40个,用分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程.18.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?19.(12分)为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹高峰日(y)的关系,某地区观察了已知x 与y 之间具有线性相关关系,据气象预测该地区在2010年三月下旬平均气温为27℃,试估计2010年四月化蛹高峰日为哪天?20.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y .(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)21.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm) 甲:9,10,11,12,10,20 乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.22.(12分)从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.第二章 统 计1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.]2.C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).] 3.B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.]4.C [由点的分布知x 与y 负相关,u 与v 正相关.]5.D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1 (x i -2)2=13,因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i -2=4, 方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.]6.D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7.D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.]8.B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9.D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.]10.A [由题意知高一、高二、高三的人数分别为667,667,666. 设a =2k ,b =3k ,c =5k ,则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.]11.A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.]12.B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]13.乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 14.2215.13 正 16.40解析 ∵x =14(14+12+8+6)=10,y =14(22+26+34+38)=30,∴a ^=y -b ^x =30+2×10=50.∴当x =5时,y ^=-2×5+50=40. 17.解 分层抽样方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数∶样本容量为10∶1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就可得到一个容量为20的样本.18.解 (1)∵前三组的频率和为2+4+1750=2350<12,前四组的频率之和为2+4+17+1550=3850>12,∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08,又∵频率=第二小组频数样本容量,∴样本容量=频数频率=120.08=150.(3)由图可估计所求良好率约为:17+15+9+32+4+17+15+9+3×100%=88%.19.解 由题意知:x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6, ∴b ^=∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2≈-2.2,a ^ =y -b ^x ≈71.6,∴回归方程为y ^=-2.2x +71.6.当x =27时,y ^ =-2.2×27+71.6=12.2,据此,可估计该地区2010年4月12日或13日为化蛹高峰日.20.解(1)散点图如下:(2)x=3+4+5+64=4.5,y=2.5+3+4+4.54=3.5,∑4i=1x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑4i=1x2i=32+42+52+62=86,∴b^=∑4i=1x i y i-4x y∑4i=1x2i-4x2=66.5-4×3.5×4.586-4×4.52=0.7,a^=y-b^x=3.5-0.7×4.5=0.35.∴y^=0.7x+0.35.∴所求的回归直线方程为y^=0.7x+0.35. (3)现在生产100吨甲产品用煤y^=0.7×100+0.35=70.35,∴90-70.35=19.65.∴生产能耗比技改前降低约19.65吨标准煤.21.解(1)茎叶图如图所示:(2)x甲=9+10+11+12+10+206=12,x乙=8+14+13+10+12+216=13,s2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x甲<x乙,所以乙种麦苗平均株高较高,又因为s2甲<s2乙,所以甲种麦苗长的较为整齐.22.解(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应位于第四个小矩形内.设其底边为x,高为0.03,∴令0.03x=0.2得x≈6.7,故中位数约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点值乘以每个小矩形的面积即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)≈74.。

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

人教版高一数学必修三第二章统计目录简单随机抽样(新讲课)系统抽样(新讲课)分层抽样(新讲课)2用样本的频次散布预计整体散布(2 课时 ) (新讲课)用样本的数字特色预计整体的数字特色(2 课时 ) (新讲课)变量之间的有关关系(新讲课)两个变量的线性有关(第一课时)(新讲课)两个变量的线性有关(第二课时)(新讲课)生活中线性有关实例(第三课时)(新讲课)第二章统计单元检测题(一)第二章统计单元检测题(一)参照答案第二章统计单元检测题(二)第二章统计单元检测题(二)参照答案第二章统计单元检测题(三)第二章统计单元检测题(三)参照答案第二章统计一、课程目标:本章主要介绍最基本的获得样本数据的方法,以及集中从样本数据中提守信息的统计方法,此中包含用样本预计整体散布、数字特色和线性回归等内容。

本章经过实质问题,进一步介绍随机抽样、样本预计整体、线性回归的基本方法。

二、学习目标:1、随机抽样(1)能从现实生活或其余学科中提出拥有一订价值的统计问题。

(2)联合详细的实质问题情境,理解随机抽样的必需性和重要性。

(3)在参加解决统计问题的过程中,学会用简单随机抽样从整体中抽取样本;经过对实例的剖析,认识分层抽样和系统抽样方法。

(4)经过试验、查阅资料、设计检盘问卷等方法采集数据。

2、用样本预计整体(1)经过实例领会散布的意义和作用,在表示样本数据的过程中,学会列频次散布彪、花频次散布直方图、频次折线图、茎叶土,领会它们各自的特色。

(2)经过实例理解样本数据标准差的意义和作用,学会计算数据样本差。

(3)能依据实质问题的需求合理地选用样本,从样本数据中提取基本的数字特色,并做出合理的解说。

(4)进一步领会用样本预计整体的思想。

(5)会用随机抽样的基本方法和样本预计整体的思想,解决一些简单的实质问题。

(6)形成对数据办理过程进行初步评论的意识。

3、变量的有关性(1)经过采集现实问题中两个有关系变量的数据作出散点图,并利用散点图直观认识变量间的有关关系。

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页

最新人教版必修三高中数学配套习题第二章 统计 2.2.2 及答案

最新人教版必修三高中数学配套习题第二章 统计 2.2.2 及答案

2.2.2 用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,xn,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=______________________________________________________________________ __.(2)方差的求法:标准差的平方s2叫做方差.s2=______________________________________________________________________ __.一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A.甲B.乙C.甲、乙相同D.不能确定4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )A.13s2B.s2C.3s2D.9s25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )A.84,4.84 B.84,1.6C.85,1.6 D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为xA和xB ,样本标准差分别为sA和sB则( )A.xA >xB,sA>sBB.xA<xB,sA>sBC.xA >xB,sA<sBD.xA<xB,sA<sB7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________. 8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a 2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11.下面是一家快餐店所有工作人员(共7人)一周的工资表:(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2 用样本的数字特征估计总体的数字特征知识梳理1.(1)最多(2)中间①中间位置的②平均数(3)①x1+x2+…+xnn②总体中样本中2.(1)1n[(x1-x)2+(x2-x)2+…+(xn-x)2] (2)1n[(x1-x)2+(x2-x)2+…+(xn-x)2]作业设计1.B[A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]2.D[由题意a=110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b=16,c=18,∴c>b>a.]3.B[方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.]4.D[s20=1n[9x21+9x22+…+9x2n-n(3x)2]=9·1n(x21+x22+…+x2n-n x2)=9·s2(s2为新数据的方差).]5.C[由题意x=15(84+84+86+84+87)=85.s2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6.B[样本A数据均小于或等于10,样本B数据均大于或等于10,故x A<x B,又样本B波动范围较小,故sA >sB.]7.91解析由题意得8.甲解析x甲=9,2S甲=0.4,x乙=9,2S乙=1.2,故甲的成绩较稳定,选甲.9.0.19解析这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19.10.解由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7010=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.根据以上的分析与计算填表如下:2 S 甲<2S乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元). (2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410) =16×2 250=375(元). 这个平均工资能代表一般工作人员一周的收入水平. 12.解 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20) =140(90×20+80×20)=85; 又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s2=140(x21+x22+…+x220+y21+y22+…+y220-40z2)=140(20s21+20x2+20s22+20y2-40z2)=12(62+42+902+802-2×852)=51.s=51.所以全班同学的平均成绩为85分,标准差为51.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 必修三统计单元测试一、选择题(本大题共12小题,每小题5分,共60分)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( )A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( )A.12(1+x 2)B.12(x 2-x 1)C.12(1+x 5)D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( ) A .7,11,19 B .6,12,18 C .6,13,17 D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13B .2,1C .4,23D .4,36.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( )A .在每个饲养房各抽取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C.从4个饲养房分别抽取3,9,4,8只D.先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y^=4.75x+257,则施肥量x=30时,对产量y的估计值为( )A.398.5 B.399.5 C.400 D.400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为310.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:高一高二高三跑步 a b c登山x y z.为了了解学生对本次活动的满意程度,从中抽取其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的5一个200人的样本进行调查,则高二参与跑步的学生中应抽取( )A.36人B.60人C.24人D.30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A.19,13 B.13,19 C.20,18 D.18,2012分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数123103 1则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( )A.30% B二、填空题(本大题共413.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则选送决赛的最佳人选应是________.14.一组数据23,27,20,18,x,1215.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:________线性相关关系.16.某单位为了了解用电量y.由表中数据得回归直线方程y^=b^x+a^中b^=-2,据此预测当气温为5℃时,用电量的度数约为______.三、解答题(本大题共6小题,共70分)17.(10分)一批产品中,有一级品100个,二级品60个,三级品40个,用分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程.18.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?19.(12分)为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹高峰日(y)的关系,某地区观察了2003年至2008已知x与y27℃,试估计2010年四月化蛹高峰日为哪天?20.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归直线方程y^=b^x+a^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)21.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.22.(12分)从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.第二章 统 计1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.]2.C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).]3.B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.]4.C [由点的分布知x 与y 负相关,u 与v 正相关.]5.D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1 (x i -2)2=13,因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i -2=4,方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.]6.D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7.D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.]8.B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9.D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.] 10.A [由题意知高一、高二、高三的人数分别为667,667,666. 设a =2k ,b =3k ,c =5k , 则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.] 11.A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.]12.B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.] 13.乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 14.22 15.13 正 16.40解析 ∵x =14(14+12+8+6)=10,y =14(22+26+34+38)=30,∴a ^=y -b ^x =30+2×10=50. ∴当x =5时,y ^=-2×5+50=40. 17.解 分层抽样方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数∶样本容量为10∶1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就可得到一个容量为20的样本. 18.解 (1)∵前三组的频率和为2+4+1750=2350<12,前四组的频率之和为2+4+17+1550=3850>12,∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08,又∵频率=第二小组频数样本容量,∴样本容量=频数频率=120.08=150.(3)由图可估计所求良好率约为: 17+15+9+32+4+17+15+9+3×100%=88%.19.解 由题意知:x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6,∴b ^=∑6i =1x i y i -6x y ∑6i =1x 2i -6x2≈-2.2,a ^=y -b ^x ≈71.6,∴回归方程为y ^=-2.2x +71.6.当x =27时,y ^ =-2.2×27+71.6=12.2,据此,可估计该地区2010年4月12日或13日为化蛹高峰日. 20.解 (1)散点图如下:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5, ∑4i =1x 2i =32+42+52+62=86,∴b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x2=66.5-4×3.5×4.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35.∴y ^=0.7x +0.35.∴所求的回归直线方程为y ^=0.7x +0.35. (3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴90-70.35=19.65.∴生产能耗比技改前降低约19.65吨标准煤. 21.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67, s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐. 22.解 (1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5, ∴中位数应位于第四个小矩形内. 设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7,故中位数约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点值乘以每个小矩形的面积即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)≈74.。

相关文档
最新文档