3-7有理函数和三角函数有理式的积分法
4(4)有理函数及三角函数有理式的积分(1)

原式=
5u + 2 (u2 + 1)2
du
5 2
d(u2 + 1)
(u2 + 1)2 + 2
du (u2 + 1)2
51
u
- 2 u2 + 1 + u2 + 1 + arctanu + C
递推公式
回代
2x -7 2( x2 - 2x + 2) + arctan( x - 1) + C
书上无
Q( x)
部分分式的和, 如果分母多项式Q( x)在实数域
上的质因式分解式为:
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
, 为正整数, 则 P( x) 可唯一的分解为:
Q( x)
4
有理函数的积分
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
+ arctan x + C
说明:当被积函数是假分式时,应把它分为 一个多项式和一个真分式,分别积分.
9
有理函数的积分
例2 求
x+3 x2 - 5x + 6 dx
解
x2
x+3 -5x + 6
(x
x+3 - 2)( x - 3)
A+ x-2
B x-3
因式分解 x + 3 A(x - 3) + B(x - 2)
Ap
At + (B - )
2
有理函数的积分拆分方法

有理函数的积分拆分方法一、前言积分是高等数学中非常重要的概念。
而有理函数则是些基础的函数,其定义域是有理数的多项式函数。
在进行有理函数的积分时,我们有时可以通过拆分的方式,将原式转化为简单的形式,从而使求解变得更加容易。
本文将讨论有理函数的积分拆分方法,特别是常见的分式分解法和部分分式分解法。
二、分式分解法分式分解法是将原有理式拆分成若干个分式相加的形式。
下面我们将介绍一下分式分解法的具体步骤:1.将分母拆分成多项式的积。
例如:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{ B}{x+2}$其中 $A$,$B$ 是待定系数。
2.将原式中的分式分别乘上其对应的除数。
例如:$x^2+2x=A(x+2)+B(x+1)$3.利用待定系数的方法求解 $A$,$B$。
例如:在上式中将 $x$ 替换为 $x=-1$,可以得到 $A=-1$。
在上式中将 $x$ 替换为 $x=-2$,可以得到 $B=2$。
最终得到:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}$三、部分分式分解法部分分式分解法则是将有理式模拟成部分分式,之后进行求解。
下面我们将介绍部分分式分解法的具体步骤:1.将分母分解因式。
例如:$\frac{5x-1}{x^2-3x+2}=\frac{5x-1}{(x-1)(x-2)}$2.将各因式拆成单项式。
例如:$\frac{5x-1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$3.用待定系数法求解。
例如:$5x-1=A(x-2)+B(x-1)$4.解得系数 $A$,$B$。
例如:在上式中将 $x=1$,可以得到 $A=-4$。
在上式中将 $x=2$,可以得到 $B=9$。
最终得到:$\frac{5x-1}{x^2-3x+2}=\frac{-4}{x-1}+\frac{9}{x-2}$四、总结:通过上述两种方法,我们可以将有理函数的积分拆分为若干个简单的分式相加。
高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x
解
令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式
有理函数的不定积分

例5. 求
( x 2 x 2) (2 x 2) d x 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 x 2) 2 2 2 ( x 1) 1 ( x 2 x 2)
2
2
1 C arctan(x 1) 2 x 2x 2
2
2
例11. 求 解: 为去掉被积函数分母中的根式, 取根指数 2, 3 的最小公倍数 6, 令 x t , 则有 5 1 2 6 t d t 原式 3 2 6 ( t t 1 ) dt 1 t t t
6
6
2 1t 3 1 ln 1 t t t 3 2
2
例3. 求 解: 原式
x 2x 3 2 d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
1 ( 2 x 2) 3 2
例2. 求 解: 已知 1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
2 d(1 2 x) 1 d(1 x ) 1 dx 原式 2 2 5 5 1 2x 5 1 x 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
A(1 x 2 ) ( Bx C )(1 2 x) 2 (1 2 x)(1 x ) 2 1 A(1 x ) ( Bx C)(1 2x), 1 4 1 取x 得A , 取x 0得1 A C, C , 5 5 2 2 取x 1得1 2 A 3( B C), B
有理函数

(其中各系数待定); 其中各系数待定);
例1
x+3 x2 − 5x + 6
=
分母因式分解
=
x + 3 ( x − 2 )( x − 3 )
比( 较 系 数 法 )
部分分式之和
A B , + x−2 x−3
x + 3 = A( x − 3 ) + B ( x − 2 ),
通分后分子相等
⇒
∴ x + 3 = ( + B ) x − ( 3 A + 2 B ),
3、有理函数积分法
(1) 假分式
多项式除法
→
多项式 + 真分式;
x3 + x + 1 1 如 = x+ 2 2 x +1 x +1
(2) 真分式
待定系数法
→
: 部分分式之和
P( x ) 化为部分分式之和的步骤: 有理真分式 化为部分分式之和的步骤: Q( x ) 在实数系作标准分解: (1)对分母 Q ( x )在实数系作标准分解: b0 ( x − λ1 )α1 L( x − λk )α k ( x 2 + p1 x + q1 ) β1 L( x 2 + ph x + qh ) β h
(其中 x 2 + p i x + q i , i = 1, L , h 为 不可约因式 )
( x − a ) k ,对应的部分分式为 (2)分母中因式 ) A1 A2 Ak , + + L+ k k −1 ( x − a) ( x − a) x−a
都是待定 常数. 待定的 其中 A1 , A2 ,L , Ak 都是待定的常数
有理函数积分法

第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm mn n n xxx x x Q x P x R βββααα++++++==-- 110110)()()(, (1)其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()tt t s q p x q x p xa x a x x Q μμλλ++++--=21121121, (2)其中()t iji ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj ji =-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是 ()();221kka x A a x A ax A -++-+-对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk q px xC x B q px xC x B qpx x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x C Bx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I ka x dx)()(;()⎰<-+++I I )04()(22q p dx q px x M Lx k.对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k对于()II ,只要作适当换元(令2p x t +=),便化为()⎰⎰++=+++dt rtNLt dx q px xMLx kk222)(⎰⎰+++=,)()(2222kkr t dt N dt r t t L (5)其中.2,422L p M N pq r-=-=.当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt rtt)ln(212222,.a r c t a n 122C rtr rtdt+=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t tk k++-=+⎰-12222))(1(21)(.对于第二个不定积分,记 ,)(122⎰-+=k k r tdtI 可用分部积分法导出递推公式如下:dt r t t r t rI kk ⎰+-+=)()(1222222⎰+-=-dt r ttrI rkk )(11222212⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r.)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r tI (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就II )的计算.例2 求.)22(1222dx x xx ⎰+-+解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x xx dx x xx ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x xx x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=tdtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222tdtt t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到.)1a r c t a n (23)22(23)22(12222C x x x x dx x xx +-++--=+-+⎰二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。
有理函数及三角函数有理式的积分

2. 特殊类型的积分按上述方法虽然可以积出, 但不一定 简便 , 要注意综合使用基本积分法 , 简便计算 .
思考与练习
如何求下列积分更简便 ?
解:
备用题 1. 求不定积分
x6
1 (1
x2
)
dx
.
分母次数较高, 宜使用倒代换.
解:令 t 1 , 则
,故
x
x6
1 (1
x
t6
(
1 t2
讨论积分
(
x
Mx 2 px
N q
)n
dx,
x2
px
q
x
p2
2
q
p2 4
,
令 x pt
2
记 x2 px q t 2 a2 , Mx N Mt b,
则 a2 q p2 , b N Mp ,
4
2
(
x
Mx 2 px
N q)n
dx
(t2
Mt a2 )n
dt
(t2
b a2 )n
特殊地:k
1,
分解后为
x
Mx 2
N px
q
;
真分式化为部分分式之和的待定系数法
例1
x
2
x
3 5x
6
(
x
x 2)(
3 x
3)
A x2
B, x3
x 3 A( x 3) B( x 2),
x 3 ( A B)x (3A 2B),
A (3
B A
1, 2B)
3,
A B
5 ,
x sin2 2
x 2
1 tan2 x
1
tan2
有理函数积分法

第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm m nn n x x x x x Q x P x R βββααα++++++==-- 110110)()()(, (1) 其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()t t t s q p x q x p xa x a x x Q μμλλ++++--=21121121 , (2)其中()t i j i ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj j i=-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是()();221kk a x A a x A a x A -++-+- 对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk qpx xC x B qpx x C x B q px x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x CBx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R 上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I k a x dx )()(; ()⎰<-+++II )04()(22q p dx q px x M Lx k. 对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k 对于()II ,只要作适当换元(令2px t +=),便化为()⎰⎰++=+++dt r t NLt dx q px x M Lx kk 222)(⎰⎰+++=,)()(2222k k r t dt N dt r t t L (5)其中.2,422L pM N p q r -=-=. 当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt r t t )ln(212222, .arctan 122C rtr r t dt +=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t t k k++-=+⎰-12222))(1(21)(. 对于第二个不定积分,记 ,)(122⎰-+=k k r t dtI 可用分部积分法导出递推公式如下:dt r t t r t r I k k ⎰+-+=)()(1222222⎰+-=-dt r t t r I r kk )(11222212 ⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r .)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r t I (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就完成了对不定积分(II )的计算.例2 求.)22(1222dx x x x ⎰+-+ 解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x 现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x x x dx x x x ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x x x x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=t dtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222t dt t t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到 .)1arctan(23)22(23)22(12222C x x x x dx x x x +-++--=+-+⎰ 二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-7 阅读(有理函数和三角函数有理式的积分法)在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分.在那里,因为被积函数都很特殊,所以用“拼凑的方法”就求出了它们的积分.这一节讨论的是一般情形下,如何求它们的积分.当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了.1.有理函数的积分法 有理函数的积分()d ()p x x q x ⎰[其中()p x 和()q x 都是多项式] 总可以积出来,即可把它表示成初等函数.积分方法的要点是:第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式.在这种情形下,就用多项式除法(见下面例27),先把它变成一个多项式与一个真分式之和,即()()()()()p x r x s x q x q x =+ [其中分子()r x 的次数低于分母()q x 的次数] 于是,()d ()p x x q x ⎰()()d d ()r x s x x x q x =+⎰⎰右端第一项是多项式的积分(用分项积分法可以积出来),所以就变成求有理函数真分式的积分()d ()r x x q x ⎰. 关于多项式除法,请看下面的例题.例27 例如求有理函数假分式的积分522d 36x x x x -++⎰首先像做整数除法那样,做多项式除法:由此可得63225++-x x x 3212323336x x x x +⎛⎫=-+ ⎪+⎝⎭其次再逐项积分,即(余式)23+x (被除式)(除式) 255336000202x x x x x ++++-+++xx x x 40220233-+-+-+-(商式) 31233x x -5342222212321132d d d d 33123363636x x x x x x x x x x x x x x x -+++⎛⎫=-+=-+⎪+++⎝⎭⎰⎰⎰⎰这样就变成求(右端最后一个)有理函数真分式的积分.第二,对于真分式()()r x q x ,先把分母上的多项式()q x 分解成一次因式或没有实根的二次因式的乘积(根据代数基本定理,这是可能的).然后用待定系数法(或拼凑方法)把()()r x q x 化成不超出下面这些“最简分式”的和:22,,,()()n mA B Cx D Ex F x a x b x px q x rx s ++--++++(n 和m 为正整数) (分子比分母上的基因式低一次)这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分. 我们用例子来说明上述方法.⑴分母为一次重因式的真分式的积分法例28 例如求2353d (2)x x x ++⎰,可令 2323532(2)(2)(2)x A B Cx x x x +=++++++将右端通分,并比较两端分子,即C x B x A x ++++≡+)2()2(3522,则得三元线性方程组⎪⎩⎪⎨⎧=++=+=(常数项)的系数)(的系数)(3240452C B A x B A x A , 解得⎪⎩⎪⎨⎧=-==23205C B A于是得3232)2(23)2(2025)2(35+++-+=++x x x x x因此,2353d (2)x x x ++⎰2352023d d d 2(2)(2)x x x x x x =-++++⎰⎰⎰220235ln 222(2)x x x =++-++ 【注1】上面求待定系数的方法是比较两端x 的同次项系数,下面是求待定系数的另一个方法:根据2253(2)(2)x A x B x C +≡++++,则第一步,让2x =-,得23C =;第二步,在2253(2)(2)x A x B x C +≡++++两端关于x 求导数,得102(2)x A x B ≡++. 再令2x =-,得20B =-;第三步,在102(2)x A x B ≡++两端关于x 求导数,则得102A =,即5A =.【注2】把真分式2353(2)x x ++化成最简分式之和的另一个方法是依次用多项式除法:25323(510)22x x x x +=-+++,22253510232023522(2)(2)(2)x x x x x x x +-=+=-++++++ 232353520232(2)(2)(2)x x x x x +=-+++++ (你看懂了吗?)⑵分母为不同一次因式乘积的真分式的积分法例如求d ()()cx dx x a x b +--⎰,可令bx Ba x Ab x a x d cx -+-=--+))(((A 和B 为待定系数)然后根据恒等式()()cx d A x b B x a +≡-+-,求出待定系数A 和B .于是,d ()()cx dx x a x b +=--⎰d d ln ||ln ||ABx x A x a B x b x ax b+=-+---⎰⎰例29 求2d (3)(5)x x x x ---⎰.解 设53)5)(3(2-+-=---x Bx A x x x (B A ,为待定常数) 则得)3()5(2-+-≡-x B x A x ,即2)35()(-≡+-+x B A x B A比较两端常数项和x 的系数,则得线性方程组⎩⎨⎧=+=+1235B A B A 解得23,21=-=B A (求B A 和的另一个方法见下注).因此, 523321)5)(3(2-+--=---x x x x x从而得2d (3)(5)x x x x ---⎰113113d(3)d(5)ln 3ln 5232522x x x x x x =--+-=--+---⎰⎰【注】在式2(5)(3)x A x B x -≡-+-中,让3x =,则得12A =-,所以12A =-;再让5x =,则得32B =,所以32B =.⑶分母为二次多项式(没有实根)的真分式的积分法 例如[注意,分母没有实根2(40)p q -<],22222111(1)d d d 424x x u x px qu Ap q px ==+++-⎛⎫++ ⎪⎝⎭⎰⎰⎰,2p u x A ⎛ =+ ⎝⎭(套用积分公式)arctan A A== 2222(2)(2)d (0)d d 2b b x p p x ax b a a a x a a x x x px q x px qx px q⎛⎫++-+⎪+⎝⎭≠==++++++⎰⎰⎰222d()21d 22a x px q a bp x a x px qx px q++⎛⎫=+- ⎪++++⎝⎭⎰⎰2221ln()d 22a a b x px q p x ax px q⎛⎫=+++- ⎪++⎝⎭⎰(套用前一题的结果).⑷分母为二次重因式的真分式的积分法例30 例如求积分322221d (1)x x x x x -+++⎰.若用待定系数法,就令322222221(1)1(1)x x Ax B Cx Dx x x x x x -+++=+++++++ 若不用待定系数法,可依次用多项式除法:第一步,3222212(2)(3)11x x x x x x x x -++=-+++++;第二步,32222222132(2)(1)1(1)x x x x x x x x x x -+-+=+++++++ 于是,32222222132(2)d d d (1)1(1)x x x x x x x x x x x x x -+-+=+++++++⎰⎰⎰其中右端第一个积分22222231(21)71d(1)7d d d 12121212x x x x xx x x x x x x x x -+-++==-++++++⎛⎫++ ⎪⎝⎭⎝⎭⎰⎰⎰⎰217ln(1)22x x =++-而第二个积分2222222222(2)(21)3d(1)1d d 3d (1)(1)(1)(1)x x x x x x x x x x x x x x x +++++==+++++++++⎰⎰⎰⎰2222113d (1)12x x x x =-+++⎡⎤⎛⎫⎢⎥++ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰[套积分公式⒇]⑸分母为一次因式与二次因式乘积的真分式的积分法例如,求22d ()()bx cx dx x a x px q ++-++⎰时,可令qx p x C x B a x Aq x p x a x d x c x b ++++-=++-++222))(( 然后根据恒等式22()()()bx cx d A x px q Bx C x a ++≡++++-求出待定系数A 、B 和C . 于是,22d ()()bx cx dxx a x px q ++-++⎰2ln ||d Bx C A x a x x px q +=-+++⎰(注意2x px q ++没有实根,即240p q -<)2.三角函数有理式的积分法 所谓“三角函数有理式”,是指由常数和简单三角函数x sin 与x cos 经过有限次的有理运算(加、减、乘、除)得到的函数,记成)cos ,(sin x x R .下面介绍的是形如积分(sin ,cos )d R x x x ⎰的积分法.例如积分2cos d 2sin cos x x x x +⎰,1d 2sin cos 1x x x -+⎰,1d (0)cos x ab a b x≠+⎰等. 实际上,我们在前面几节中曾多次遇到这种类型的积分.这里介绍的是一般方法.你在做题时.....,还是要具体问题具体分析...........,未必就一定要用这里介绍的方法..............(因为一般情形下,这里介绍的方法要麻烦一些).令2tan x t =(称它为半角替换或万能替换),则2222122tan12tan22sec 2tan22cos 2tan 22cos 2sin 2sin t t x xx x x x x x x +=+==== 22222222112tan12tan 1)2tan 1(2cos 2sin 2cos cos t t x xx x x x x +-=+-=-=-= t tt x d 12)arctan 2(d d 2+== 于是,(sin ,cos )d R x x x ⎰2222212,d 111t t R t t t t -⎛⎫= ⎪+++⎝⎭⎰这样,三角函数有理式的积分就变成有理函数的积分.在有些情形下,像前面做过的那样,不必用半角替换,而用其它三角替换会更简单.例如()i 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令cos t x =; ()ii 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令sin t x =; ()iii 当(sin ,cos )(sin ,cos )R x x R x x --=时,令tan t x =.习题1.求下面的原函数:⑴25d (3)x x x --⎰; ⑵325d (2)x x x --⎰; ⑶23354d (1)x x x x -+-⎰; ⑷3223242d 21x x x x x x -++-+⎰.答案:⑴323ln -+-x x ;⑵2)2(2122-+--x x ;⑶2)1(1111ln 3-----x x x ; ⑷171ln 94232---++x x x x . 2.求下面的原函数:⑴x x x x d )3)(2(73⎰---; ⑵x x x x d 2152⎰-++; ⑶x x x x x x d )2)(2(2342⎰+---. 答案:⑴3ln 22ln -+-x x ;⑵1ln 22ln 3-++x x ;⑶2ln 252ln ln 21++-+x x x .3.求下面的原函数:⑴x x x x x d )1)(2(23222⎰++-+; ⑵x x x x x d )32)(1(2⎰+++; ⑶x x x d 134⎰+. 答案:⑴x x arctan )1ln(2-+;⑵21arctan 21)32ln(411ln 212++++++-x x x x ;⑶312arctan 311)1(ln 6121222--+-++x x x x x .4.根据提示,请把下面的演算做到底:⑴tan 21d 2sin cos 1x t x x x ⎛⎫= ⎪⎝⎭====-+⎰⑵(cos )1d (2cos )sin t x x x x======+⎰⑶2(sin )cos d 2sin cos t x xx x x======+⎰ ⑷3(tan )3sin d sin cos t x xx x x======+⎰答案:⑴22tan2tan ln21+x x ;⑵32)cos 1()cos 1()cos 2(ln 61x x x +-+;⑷⎪⎪⎭⎫ ⎝⎛---+-x x x x x x x sin 3sin cos 2arctan 31cos sin 1)cos (sin ln 612.。