110序列检测器仿真报告

合集下载

11001序列检测器设计实训报告

11001序列检测器设计实训报告

电子技术设计实训报告指导教师:**小组成员:*201458244**201458244**201458244**201458244*成绩评定:教师签名:评定时间设计1.题目:“11001”序列检测器。

原始条件:逻辑器件:CMOS门电路集成芯片:74SL20 74LS00 74LS1122.要求完成设计的主要任务:1)能够运用数字逻辑的理论和方法,把时序逻辑电路设计和组合逻辑电路设计相结合,设计一个有实际应用的数字逻辑电路。

2)使用同步时序逻辑电路的设计方法,设计“11001”序列检测器。

写出设计中的过程。

画出课程设计图。

3)在试验设备上,使用74SL20 74LS00 74LS112集成电路连接、调试和测试“11001”序列检测器电路。

3.小组成员分工*设计序列*电子版实验报告,化简卡诺图*:画电路图、仿真电路图*:检查设计失误、物理机电路连线电路分析设计过程4.逻辑抽象:初始状态SS:11:11S2:110S3S:11004:11001S5根据任务书要求,设计的序列检测器有一个外部输入A 和一个外部输出 Y。

输入和输出的逻辑关系为:正常情况下Y=0,出现A=11001时,Y=15.状态转换图6.状态转换表表1由表1可知,S1和S5是等价状态,故可以合并。

下图为化简后的状态转换图。

''0101*1Q Q Q AQ Q +=7. 卡若图化简规定电路状态编码,电路需要5个状态。

需要3(2n-1<状态数≦2n )个触发器。

现取Q 2Q 1Q 0=001表示S 1,Q 2Q 1Q 0=010表示S 2,Q 2Q 1Q 0=011表示S 3,Q 2Q 1Q 0=100表示S 4 ,即可得到:S 0:000 S 1:001 S 2:010 S 3 :011 S 4:100由上述转换表可以转化为卡诺图下面即可分解卡诺图⎪⎩⎪⎨⎧++=+=0111*01010*1)''(''Q AQ AQ Q A Q Q Q Q AQ Q '''201201*2Q Q Q A Q Q Q A Q +=''''011001*0Q Q A Q AQ Q AQ Q ++=''0101*1Q Q Q AQ Q +='''201201*2Q Q Q A Q Q Q A Q +=''''011001*0Q Q A Q AQ Q AQ Q ++=2AQ Y =8. 逻辑函数式由上述的卡诺图得到状态方程和输出方程⎪⎩⎪⎨⎧2AQ Y =化简得到上式与JK 触发器的特性方程对照比较可以得出(Q *=JQ ’+K ’Q ))'()'(.....'''1001012.1101012AQ K Q K Q Q A K AQ Q A J AQ J Q Q A J ===⎪⎩⎪⎨⎧+=== 2AQ Y =9.JK 触发器具体实现电路图由上述的式子我们可以画出模拟电路图(完整电路图附页说明)10. 仿真软件仿真效果(截图说明)下面进行仿真实验,X3灯是为了显示0、1输入,X2灯是显示脉冲输入情况。

序列信号检测实验报告

序列信号检测实验报告

一、实验目的1. 理解序列信号检测的基本原理。

2. 掌握序列信号检测的方法和步骤。

3. 通过实验验证序列信号检测的准确性。

4. 分析实验结果,探讨影响序列信号检测准确性的因素。

二、实验原理序列信号检测是数字信号处理中的一个重要领域,主要研究如何从含有噪声的信号中检测出特定的序列信号。

本实验采用模拟信号检测的方法,通过设计序列信号发生器和检测器,实现对特定序列信号的检测。

三、实验器材1. 信号发生器2. 数据采集器3. 计算机及软件(如MATLAB等)4. 信号分析仪四、实验步骤1. 设计序列信号发生器:- 根据实验要求,设计特定的序列信号,如“1101”。

- 使用信号发生器产生该序列信号。

2. 设计序列信号检测器:- 设计一个检测器,用于检测序列信号。

- 检测器可以采用状态机或有限状态机(FSM)实现。

3. 实验设置:- 将信号发生器产生的序列信号输入到数据采集器。

- 将数据采集器采集到的信号输入到计算机进行后续处理。

4. 信号处理:- 使用MATLAB等软件对采集到的信号进行预处理,如滤波、去噪等。

- 对预处理后的信号进行序列信号检测。

5. 结果分析:- 分析实验结果,比较检测器检测到的序列信号与原始序列信号是否一致。

- 分析影响序列信号检测准确性的因素,如噪声水平、信号带宽等。

五、实验结果与分析1. 实验结果:- 通过实验,成功检测到了设计的序列信号“1101”。

- 检测到的序列信号与原始序列信号基本一致。

2. 结果分析:- 实验结果表明,所设计的序列信号检测器能够有效地检测出特定序列信号。

- 影响序列信号检测准确性的因素主要包括:- 噪声水平:噪声水平越高,检测难度越大。

- 信号带宽:信号带宽越窄,检测难度越大。

- 序列长度:序列长度越长,检测难度越大。

六、实验结论1. 序列信号检测实验验证了序列信号检测的基本原理和方法。

2. 通过实验,掌握了序列信号检测的步骤和技巧。

3. 实验结果表明,所设计的序列信号检测器能够有效地检测出特定序列信号。

序列检测器实验报告

序列检测器实验报告

序列检测器设计实验内容:设计一个1110010序列检测器,即检测器检测到序列1110010时,输出为1,否则输出为0。

输入信号:一个时钟输入信号clk;一个输入端x以输入序列来检测;一个输入y用来选择是检测序列1110010或是检测自己输入的序列;一个输入k(7..0)用来输入想要检测器检测的序列;输出信号:一个7位输出信号q,用来输出正在检测的7位序列;一个1位输出信号unlk,当被检测序列符合时,输出unlk为1否则为0;中间信号:再定义两个7位的中间信号a和combination;执行操作:在上升的时钟沿时候,将从x输入的序列赋给7位a,在y等于1的情况下,令中间信号combination为1110010,否则,在y等于0的情况下,令中间信号combination为从k输入的七位长序列。

最后把a的值赋给q,如果a与combination输出unlk等于1否则等于0。

(1)序列检测器语言设计:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;USE IEEE.STD_LOGIC_ARITH.ALL;entity xulie2 isport (clk,x:in std_logic;y:in std_logic;k:in std_logic_vector(7 downto 1);unlk:out std_logic;q:out std_logic_vector(7 downto 1)); end xulie2;architecture art of xulie2 issignal a:std_logic_vector(7 downto 1);signal combination: std_logic_vector(7 downto 1);beginprocess(clk)beginif clk'event and clk='1' thena<=a(6 downto 1)&x;if y='1' thencombination<="1110010";else combination<=k;end if;end if;q<=a;end process;unlk<='1' when(a=combination) else '0';end art;序列检测器波形图:其中ENDTIME=10.0us GRIDSIZE=100.0ns波形图分析:如图,选择输入端y输入为1时,q对应着输出从x输入的7位序列,如果从x输入的待检测的7位序列为1110010时,unlk为1,否则为0,当选择输入端y输入为0时,q依旧对应着输出从x输入的待检测的当前7为序列,但是只有当从x输入的7为序列与从k输入的7位序列一致时,输出端unlk才为1,否则为0。

EDA序列检测器实验报告

EDA序列检测器实验报告

《实验七序列检测器实验》实验报告杨丽斌计科二班学号:20080810218一、实验内容及相关描述:设计一个1110010 序列检测器,即检测器连续收到一组串行码“1110010”后,输出检测标志1,否则输出0。

代码序列检测器是一种同步时序电路,它用于搜索,检测输入的二进制代码串中是否出现指定的代码序列,001 序列检测器的原理图如下:CPX 0 1 0 0 1 0 1 0 1 1 0 1Y 0 0 0 0 1 0 0 0 0 0 0 0二、设计思路:本实验依然采用模块化的设计方法,用VHDL语言设计每一个模块,在顶层图上用图形化模式调用相应模块,组成相关的功能总共用到的模块有:1、分频器:将时钟信号进行十分频2、串行并出序列检测器3、串行并行并出序列检测器4、时钟信号扫描端口:用于扫描时钟信号,并根据信号使能相应的数码管5、数码管驱动模块:用于选择数码管6、其他小模块三、相关主要子模块的设计:1、分频器(clk_div):将时钟信号进行十分频:(1)、VHDL语言(2)、波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns2、串行并出序列检测器:用时序电路设计方法,先做出其状态转移表,再根据状态转移表编写VHDL程序(1)、状态转移表:(2)VHDL语言程序:功能说明:根据所画的状态转移表,编写状态转移的VHDL语言,当输入的串行序列为:1110010时。

在时钟上升沿,输出Q变为1,并行输出的序列sequence为串行序列的并行输出(3)、波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns3、并入置数的序列检测器:设计说明;该序列检测器使用的是比较器的原理,(1)VHDL语言:功能描述:该序列检测器使用的是比较器的原理,在使能端en有效时,当输入序列为1110010时,输出Q=1,其他情况下Q=0(2)波形仿真图波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns4、时钟信号扫描模块:(1)VHDL语言:功能描述:用高频时钟信号作为扫描信号,将时钟信号通过计数器计数之后,以7个信号作为一次循环,从而将信号每次一位din扫描到数码管上(2)、波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns5、数码管驱动模块用于将时钟信号计数,从而选择驱动相应的数码管(1)VHDL语言:功能说明:通过设置7个状态,以时钟信号为标记,时钟信号到来时在每一个状态,选择驱动相应的数码管(2)波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns7、其他小模块:(1)、序列寄存器功能说明:在串行比较时将序列用用寄存器存储,并通过时钟信号的驱动依次输出波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns(2)、串行、并行检测器选择模块:VHDL语言:波形仿真:波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns四、顶层图:1、顶层图电路设计:功能描述及主要管脚说明:重要的管脚输入:din[6..0]:并行输入数据的序列比较En:串行输入数据Clk:数据输入时钟信号(低频)Clk2:扫描时钟信号(高频)Cho:串行、并行选择(0为串行,1为并行)输出:A-G:数码管管脚S[6..0]:连接相应数码管Q:序列检测结果(1为检测到序列1110010,0为没有检测到)2、波形仿真(注:由于时间端总长过小,仿真时会将分频模块先去掉以便能很好的观察到仿真结果,在器件测试时再加上分频模块):波形仿真参数设置:网格时间:100ns,总时间:3us;时钟信号长度:100ns五、实验总结:这次实验的设计、以及相应的编写VHDL语言有以前做计算器的经验,很多模块还是很相似的,因此编写VHDL语言及相关的模块设计除了花了一点时间、并没有遇到多大的阻碍,但是在器件验证过程中却出现了一些问题:主要是高低频时钟信号选择的问题,在这个问题上花了比较多的时间。

序列检测器_实验报告

序列检测器_实验报告

一、实验目的1. 理解序列检测器的工作原理和设计方法;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 通过实验验证序列检测器的功能。

二、实验原理序列检测器是一种同步时序电路,用于检测输入的一串二进制编码。

当输入序列与预设的编码相匹配时,输出高电平;否则,输出低电平。

序列检测器在数字通信、安全防盗、密码认证等领域有着广泛的应用。

序列检测器的基本工作原理如下:1. 预设一个编码序列,称为目标序列;2. 当输入序列与目标序列相匹配时,输出高电平;3. 当输入序列与目标序列不匹配时,输出低电平。

三、实验器材1. PC机一台;2. EDA教学实验系统一台;3. 下载电缆一根(已接好);4. 导线若干。

四、实验步骤1. 设计序列检测器的Verilog代码;2. 在EDA教学实验系统上编译、仿真和下载Verilog代码;3. 连接实验电路,下载Verilog代码;4. 通过逻辑分析仪观察输出波形,验证序列检测器的功能。

五、实验内容1. 设计一个长度为4位的序列检测器,目标序列为1001;2. 设计一个长度为8位的序列检测器,目标序列为11001001;3. 通过实验验证序列检测器的功能。

六、实验代码```verilogmodule seqdet(input clk, // 时钟信号input rst, // 复位信号input [3:0] din, // 输入序列output reg out // 输出信号);// 定义状态localparam [1:0] IDLE = 2'b00,MATCH = 2'b01,NOMATCH = 2'b10;// 状态寄存器reg [1:0] state, nextstate;// 输出函数always @(posedge clk or posedge rst) beginif (rst) beginstate <= IDLE;out <= 1'b0;end else beginstate <= nextstate;out <= (state == MATCH) ? 1'b1 : 1'b0; endend// 激励函数always @() begincase (state)IDLE: beginif (din == 4'b1001) beginnextstate = MATCH;end else beginnextstate = NOMATCH;endendMATCH: beginnextstate = IDLE;endNOMATCH: beginnextstate = IDLE;enddefault: beginnextstate = IDLE;endendcaseendendmodule```七、实验结果与分析1. 长度为4位的序列检测器:当输入序列为1001时,输出高电平;当输入序列不为1001时,输出低电平。

(整理)实验三序列发生器与序列检测器实验报告.

(整理)实验三序列发生器与序列检测器实验报告.

南昌大学实验报告姓名: 学号:6100210173 专业班级:中兴通信101实验类型:验证□综合■设计□创新□实验日期:2012、11、16实验四序列信号发生器与检测器设计一、实验目的1、.学习VHDL文本输入法2、学习有限状态机的设计3、设计序列信号发生器和检测器二.实验内容与要求1. 设计序列发生器,完成序列为0111010011011010的序列生成器2.用有限状态机设计序列检测器,实现串行序列11010的检测器3. 若检测到符合要求的序列,则输出显示位为“1”,否则为“0”4. 对检测到的次数计数三.设计思路1.设计分频器因为最终要把待检测序列的检测次数在数码管上显示出,所以必须设计一个分频器,将起始频率作为数码管的扫描频率,而将分频后的频率作为序列发生器的移位频率,所以在程序中设置10KHZ进行分频分成1HZ脉冲(10KHZ的扫描频率是为了让数码管的动态显示更加清晰)2.设计序列发生器在这次的设计序列发生器时没有用状态转移的方法来来形成一个16位的序列,而是通过直接设计一串16位的序列,通过对最高位的输出与并置来形成一串循环的16位序列,这样设计简单方便,易于操作与控制,也减少了在状态转移产生的误差,其主要的核心程序为:architecture bhv of p2 issignal bs: std_logic_vector(15 downto 0):="0111010011011010";beginxlout<=bs(15);process (clk1hz)beginif (clk1hz'event and clk1hz='1') thenbs<= bs(14 downto 0)&bs(15);先将序列最高位输出至序列检测器中,然后在一个脉冲作用下,将此时最高位变成最低位,其余14位不变,使序列循环移动,最终形成一个16位循环序列。

实验5 序列检测器

实验5 序列检测器

数字系统设计与PLD应用实验报告实验名称:实验5序列检测器学院:大数据与信息工程学院专业:电子信息工程姓名:李晓雪学号:1108040198年级:大四任课教师:尉学军2014 年 12 月 7 日实验5 序列检测器一.实验目的(1)了解用状态机的方法设计序列检测器(2)实验一个11010串行序列检测器,用VHDL语言描述该电路二、实验原理序列检测器的示意图如图一所示11010序列检测器的状态转换图如图二所示三、实验内容(1)用VHDL语言编写11010序列检测器源程序。

给出正确仿真波形图。

(2)用VHDL分别设计一个包含(11010)和不包含的序列发生器。

(3)将上述两个序列发生器分别和序列检测器结合成一个文件(级联),并编译、模拟获得正确的仿真波形。

四、实验结果1、序列检测器(检测11010)根据状态转换通过VHDL语言实现序列检测器:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY jc11010 ISPORT(DIN,CLK,RST:IN STD_LOGIC;SOUT:OUT STD_LOGIC);END jc11010 ;ARCHITECTURE BEHA V OF jc11010 ISTYPE STATES IS (S0,S1,S2,S3,S4);SIGNAL ST,NST:STA TES:=S0;BEGINCOM:PROCESS(ST,DIN) BEGINCASE ST ISWHEN S0=>IF DIN='1'THEN NST<=S1;ELSE NST<=S0;END IF; WHEN S1=>IF DIN='1'THEN NST<=S2;ELSE NST<=S0;END IF; WHEN S2=>IF DIN='1' THEN NST<=S2;ELSE NST<=S3;END IF; WHEN S3=>IF DIN='1' THEN NST<=S4;ELSE NST<=S0;END IF; WHEN S4=>IF DIN='1' THEN NST<=S2;ELSE NST<=S0;END IF; WHEN OTHERS=>NST<=S0;END CASE;END PROCESS;REG:PROCESS (CLK,RST)BEGINIF RST='1' THEN ST<=S0;ELSIF CLK'EVENT AND CLK='1' THEN ST<=NST;END IF;END PROCESS REG;SOUT<='1' WHEN ST=S4 ELSE '0';END BEHA V;波形仿真结果:2.采用状态机方法设计序列发生器11010序列产生器的VHDL语言:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY csq11010 ISPORT(CLK:IN STD_LOGIC;Z :OUT STD_LOGIC);END csq11010 ;ARCHITECTURE RTL OF csq11010 ISTYPE STATE_TYPE IS(S0,S1,S2,S3,S4,S5);SIGNAL CURRENT_STATE,NEXT_STATE:STATE_TYPE; BEGINSYNCH: PROCESSBEGINWAIT UNTIL CLK'EVENT AND CLK='1'; CURRENT_STATE<=NEXT_STATE;END PROCESS;STATE_TRANS:PROCESS(CURRENT_STATE)BEGINCASE CURRENT_STATE ISWHEN S0=>NEXT_STATE<=S1;Z<='1';WHEN S1=>NEXT_STATE<=S2;Z<='1';WHEN S2=>NEXT_STATE<=S3;Z<='0';WHEN S3=>NEXT_STATE<=S4;Z<='1';WHEN S4=>NEXT_STATE<=S5;Z<='0';WHEN S5=>NEXT_STATE<=S0;Z<='1';END CASE;END PROCESS;END RTL;仿真波形结果:(产生的11010序列串)3、随机序列产生器(产生序列1100101)VHDL语言:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SY4 ISPORT(CLK:IN STD_LOGIC;Z :OUT STD_LOGIC);END SY4 ;ARCHITECTURE RTL OF SY4 ISTYPE STATE_TYPE IS(S0,S1,S2,S3,S4,S5,S6);SIGNAL CURRENT_STATE,NEXT_STA TE:STA TE_TYPE; BEGINSYNCH: PROCESSBEGINWAIT UNTIL CLK'EVENT AND CLK='1';CURRENT_STATE<=NEXT_STA TE;END PROCESS;STA TE_TRANS:PROCESS(CURRENT_STATE)BEGINCASE CURRENT_STATE ISWHEN S0=>NEXT_STATE<=S1;Z<='1';WHEN S1=>NEXT_STATE<=S2;Z<='1';WHEN S2=>NEXT_STATE<=S3;Z<='0';WHEN S3=>NEXT_STATE<=S4;Z<='0';WHEN S4=>NEXT_STATE<=S5;Z<='1';WHEN S5=>NEXT_STATE<=S6;Z<='0';WHEN S6=>NEXT_STATE<=S0;Z<='1';END CASE;END PROCESS;END RTL;波形仿真结果:3、11010序列产生器与11010序列检测器级联后的电路图:波形仿真结果:4、不包含11010的任意序列产生器与11010序列检测器级联后的电路图:波形仿真结果:。

lab10_0101序列检测器仿真(ModelSim)

lab10_0101序列检测器仿真(ModelSim)

0101序列检测器仿真(ModelSim)1.实验目的熟悉Modelsim仿真软件的使用方法,了解状态机的建模方法,使用ModelSim仿真QuartusII工程。

2.实验内容●用HDL语言的输入方式,实现0101/110序列检测器。

●用modelsim进行仿真●下载至DE0开发板上观察实验结果3.代码分析(以0101序列检测器为例)1)状态图如下:图3.1 0101(左)/110(右)序列检测状态图2)主模块中首先定义了本次实验的所有输入输出接口及各个状态。

其中,因为有4种状态,所以current为2位。

//0101 Sequential detectormodule lab1a (vin,cp,ncr,vout);input vin,cp,ncr;output vout;reg vout;reg [1:0] current,next;parameter s0=2'b00,s1=2'b01,s2=2'b10,s3=2'b11;3)然后设置异步清零,在cp上升沿则沿触发器状态翻转。

always @(posedge cp or negedge ncr)beginif (~ncr)current <= s0;elsecurrent <= next;end4)接着编写组合逻辑部分,设定下一状态产生和输出的信号。

always @(current or vin)beginnext=2'bxx;case (current)s0:begin next = (vin==1)?s0:s1; ends1:begin next = (vin==1)?s2:s1; ends2:begin next = (vin==1)?s0:s3; ends3:begin next = (vin==1)?s2:s1; endendcaseend5)最后为输出部分,本程序中设置让输出信号经过一个寄存器再输出,可以消除vout信号中的毛刺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lab 110序列检测器仿真
1.实验目的
学会序列检测的设计,学会modelsim的使用,熟悉用Quartus编译Verilog语言的方法,熟悉DEO板的操作。

2.实验内容
1)用HDL语言的输入方式,实现110序列检测器。

2)用modelsim进行仿真。

3)用DE0下载并进行测试。

3.代码分析
1)该实验使用状态机进行设计,使用两个always语句,一个作为时序逻辑,另一个作为组合逻辑,其结构图为
2)首先定义输入输出变量和中间变量:
module test110(data_in,data_out,Q,cp,en);
output data_out,Q; //定义输出变量;
input data_in,cp,en; //定义输出变量;
reg data_out; //定义中间变量;
reg[1:0]pres_state,next_state; //定义两个时态;
wire Q; //定义wire型中间变量;
parameter s0=2'd0,s1=2'd1,s2=2'd2; //指定状态编码;
3)第一个always语句实现时序逻辑功能:
fenpinqi(Q,cp); //调用分频器,改变时钟信号;
always@(posedge Q or negedge en) //采用边沿触发;
if(~en)pres_state<=s0; //清零;
else pres_state<=next_state; //在Q上升沿触发器状态翻转;
4)第二个always语句实现组合逻辑功能:
always@(pres_state or data_in) //电平触发事件
Begin
next_state<=2' xx; //定义输出为零
data_out=1'b0;
case(pres_state) //判断条件为现态的状态,对各状态值惊醒判断,并输出值s0:next_state<=(data_in==1)?s1:s0;
s1:next_state<=(data_in==1)?s2:s0;
s2:begin
next_state<=(data_in==1'b1)?s2:s0;
if(data_in==1'b0)data_out=1'b1;
end
endcase
end
endmodule
5)所调用的分频器的模块:
module fenpinqi(Q,CP);
output Q; //定义输出端口
input CP; //定义输入端口
wire [32:0]A; //定义中间变量
counter(A,CP); //调用计数器进行计数
D_FF(Q,~Q,CP,A); //调用D触发器是信号发生翻转endmodule
module counter(Q,CP); //计数器,每第25M个信号发生一次变化output Q[32:0]; //定义输出端口
input CP; //定义信号输入端口
reg[32:0]Q; //定义中间变量
always@(posedge CP) //采用边沿触发
if(Q==33'd2*******)Q<=33'd0;//每25M作为一个计数周期
else Q<=Q+1'd1; //Q自增并输出
endmodule
module D_FF(Q,D,CP,CR); //D触发器
output Q; //定义输出端
input D,CP; //定义输入端及D信号输入
input [32:0]CR; //定义输入变量
reg Q; //定义中间变量
always@(posedge CP) //采用边沿触发
if(CR==0)Q<=D; //将D值赋给Q
else Q<=Q; //Q保持不变
endmodule
4.实验步骤
1)打开Quartus软件,选择“File=>New Project Wizard”,在弹出的窗口中输入项目的名称
和存储位置。

2)单击两次Next后,选择实验板的具体型号,本次使用EP3C16F484C6。

3)继续单击Next,确认信息无误后,单击Finish完成项目的创建。

将文件保存在与项目文件同样的位置即可。

5)选择“Processing=》Start Compilation”开始编译,编译通过后可以查看生成的Report。

6)新建“Vector Waveform File”,并导入所有引脚。

7设置仿真类型为功能仿真。

导入网络表。

进行功能仿真。

仿真效果如下:
8)打开modelsim,创建工程
9)写入程序源代码:
10)创建用于书写测试波形的源文件
11)添加文件并编译
12)创建仿真设定
13)添加测试端口并开始测试
14)选择“assignment=》pins”进行引脚设置,设置如下:
15)再次进行编译。

16)将程序下载到DEO实验板进行测试。

5.实验结果的测试和分析
将程序下载到DE0实验板上进行测试:
将开关置1,时钟信号灯闪烁两次后将开关置0,可以看到输出对应的LED灯点亮,而后熄灭,说明改程序能过检测110序列。

6.实验总结
通过这个实验我学会了序列检测器的设计,学会了modelsim的使用,掌握了Verilog HDL语言编程的基本语法以及Quartus软件的一些常用操作,熟悉了与DEO实验板相关的一系列实验流程。

7.参考文献
[1] 罗杰. Verilog HDL与数字ASIC设计基础武汉:华中科技大学出版社,2008.
[2]康华光. 电子技术基础(数字部分)[数字部分][M]. 5版. 北京:高等教育出版社,2006.。

相关文档
最新文档