机器人自动寻迹控制系统程序流程图
轮式移动机器人的循迹设计

轮式移动机器人的循迹设计刘驰;杨风;刘海龙【摘要】本智能小车采用简单明了的设计方案.通过循迹传感器模块(由光电晶体管和红外光电二极管所构成)来判别黑色线路径,再通过STC89C52单片机控制L298N电机驱动模块从而实现对两个直流电机进行控制,最终完成小车的循迹.所设计的轮式移动机器人能沿黑色路径进行自主行驶,既具备机械本体、直流电机驱动器、检测传感装置和控制器,又是一种可以进行重复编程、自动控制、仿人操作及在三维空间完成灵活运动的电子自动化的生产设备.【期刊名称】《山西电子技术》【年(卷),期】2015(000)004【总页数】3页(P5-7)【关键词】智能电动小车;单片机;自动控制【作者】刘驰;杨风;刘海龙【作者单位】中北大学计算机与控制工程学院,山西太原030051;中北大学计算机与控制工程学院,山西太原030051;中北大学计算机与控制工程学院,山西太原030051【正文语种】中文【中图分类】TP2421 智能循迹小车总体设计方案1.1 整体设计方案1)根据设计要求,确定控制方案。
2)利用Proteus设计合理的硬件原理图。
3)画出程序流程图,使用C语言进行编程。
4)在洞洞板上焊接元器件,然后往单片机内烧录程序。
5)进行调试以实现控制功能。
1.2 整体控制方案确定图1为智能循迹小车的系统控制框图。
黑色引导线是小车进行跟踪的目标,循迹传感器对目标轨迹进行检测,然后将得到的信息反馈给单片机进行处理,单片机处理后给电机驱动发出控制信号对两个直流电机进行控制,从而确保小车可以沿预定的路线正确行驶。
图1 智能小车系统控制框图本设计使用两节3.7 V充电电池对整个系统进行供电,主控芯片为 STC公司的89C52,直流电机的驱动模块为L298N,它可改变芯片控制端的输入电平,利用TTL进行控制,从而完成电机的正反转以及停止操作。
用光敏电阻组成光敏循迹传感器。
这样就组成了一个如图所示的带有反馈信号的系统。
自动寻迹避障轮式机器人--综合实验设计报告

专业综合实验设计报告项目:自动寻迹避障轮式机器人班级:电133姓名:学号:1312021067同组同学:学期:2016-2017-1一、实验目的和要求1.1实验目的自动循迹、智能避障机器人是一个与电气工程专业有着密切关系的实际工程装备,本综合实验以此为依托,把轮式机器人能够沿设置的道路路线运动作为控制目标,完成从模型建立、控制方案确定、控制参数仿真分析、硬件线路设计到实物机械安装、硬件安装调试、控制程序编写集成、系统调试等步骤过程的训练。
本实验涉及到《电路分析》、《电子技术》、《电力电子技术》、《电机学》、《电力拖动》、《自动控制原理》、《传感器与检测技术》、《电机控制技术》等课程的理论和实验知识。
是学生接触实际电气工程专业复杂工程问题的重要及关键途径。
通过实验培养学生实践动手能力,运用现代工程工具和信息技术工具的能力,分析和解决实际工程问题的能力。
从而使学生初步能够解决主要涉及电气工程专业知识的复杂工程问题。
1.2实验要求要求同学综合运用课程的理论和实验知识,以轮式机器人能够以一定的速度沿设置的道路路线运动作为控制目标(技术指标为:机器人行走速度≥1m/s,行走偏离导航线程度≤2/3车身宽度),要求完成从模型建立、控制方案确定、控制参数仿真分析、硬件线路设计到实物机械安装、硬件安装调试、控制程序编写集成、系统调试等实验步骤。
具体要求为:1)检索资料,对轮式机器人的发展状况,当前的研究热点,技术发展的现状,发展趋势有所了解,查阅工程规范文件、产品样本、使用说明,了解实际系统运行时必须遵守的工程规范和系统实现时所受到的商用产品的实际限制。
2)理解轮式机器人的机械结构,用CAD软件绘制机械零部件的加工图纸,安装轮式机器人。
3)综合运用物理特性分析法和实验参数测定法建立轮式机器人的数学模型,必要时在工作点附近近似线性化,以获得线性数学模型。
4)设计轮式机器人控制系统的硬件系统,包括控制芯片的选型,外围电路的设计,传感器类型型号的选择、功率驱动电路的选择、人机交互部件的选择,掌握所选择元器件、部件的性能、用法。
循迹机器人控制系统设计

循迹机器人控制系统设计循迹机器人可用于自动导航、物流、清洁等多种场合,其控制系统设计是其操作的关键。
本文将介绍一种循迹机器人控制系统的设计。
一、硬件设计1.电路板设计循迹机器人需要安装多个传感器来检测运动方向,而且要通过电路板将传感器信息传输到控制单元。
因此,将电路板的布局设计在机器人的主控制中心,并且根据传感器位置安装,以保证数据传输的稳定性和准确性。
2.传感器循迹机器人与地面之间会存在一些差异,如线路的颜色、亮度,因此无论使用什么样的传感器都需要调节灵敏度,以便捕捉到信号能力。
使用红外线传感器(Infrared Sensor)可以检测出黑色线路与白色线路之间的差异,而应答传感器(Resistant Sensors)可以将机器人向左或向右侧的移动量控制在合适的位置。
3.电池由于循迹机器人需要大量的能量,所以Batteries应该被设计成高容量和低消耗能量。
Lithium Polymer Battery即为一例,具有较高的能量密度和低电压消耗。
因此,机器人可以保持长时间的运行而不会对电池造成的过度耗损。
二,软件设计1.控制算法循迹机器人的控制算法需要能够控制机器人上下左右的移动,并忽略极其不必要的信息(如噪音)。
其中,控制算法核心为PID(Proportional-Integral-Derivative)控制器。
该控制器使用传感器输入和设定值(循迹线)之间的误差来计算输出,输出将用于控制循迹机器人的制动,方向等。
PID控制器能够准确地调整输出,以使传感器的误差最终收敛到0。
2.编程语言为了实现PID控制器,需要使用一种编程语言来编写循迹机器人的控制程序。
C语言被认为是循迹机器人控制系统中的最佳选择之一,因为它具有高效性、可靠性和能够实现嵌入式系统控制的强大功能。
三、总结循迹机器人控制系统应包括硬件和软件的两个部分,其中硬件包括电路板、传感器和电池,软件包括控制算法和编程语言。
这些组件的设计和实现可以使循迹机器人能够自动寻找路径,并避免一些障碍物,从而实现其无人驾驶的目标。
寻迹小车智能控制系统的设计方案

寻迹小车智能控制系统的设计方案1 绪论进入二十一世纪,随着计算机技术和科学技术的不断进步,机器人技术较以往已经有了突飞猛进的提高,智能循迹小车即带有视觉和触觉的小车就是其中的典型代表。
1.1 智能循迹小车概述智能循迹小车又被称为Automated Guided Vehicle,简称AGV,是二十世纪五十年代研发出来的新型智能搬运机器人。
智能循迹小车是指装备如电磁,光学或其他自动导引装置,可以沿设定的引导路径行驶,安全的运输车。
工业应用中采用充电蓄电池为主要的动力来源,可通过电脑程序来控制其选择运动轨迹以及其它动作,也可把电磁轨道黏贴在地板上来确定其行进路线,无人搬运车通过电磁轨道所带来的讯息进行移动与动作,无需驾驶员操作,将货物或物料自动从起始点运送到目的地。
AGV的另一个特点是高度自动化和高智能化,可以根据仓储货位要求、生产工艺流程等改变而灵活改变行驶路径,而且改变运行路径的费用与传统的输送带和传送线相比非常低廉。
AGV小车一般配有装卸机构,可与其它物流设备自动接口,实现货物装卸与搬运的全自动化过程。
此外,AGV小车依靠蓄电池提供动力,还有清洁生产、运行过程中无噪音、无污染的特点,可用在工作环境清洁的地方。
1.1.1 循迹小车的发展历程回顾随着社会的不断发展,科学技术水平的不断提高,人们希望创造出一种来代替人来做一些非常危险,或者要求精度很高等其他事情的工具,于是就诞生了机器人这门学科。
世界上诞生第一台机器人诞生于1959年,至今已有50多年的历史,机器人技术也取得了飞速的发展和进步,现已发展成一门包含:机械、电子、计算机、自动控制、信号处理,传感器等多学科为一体的性尖端技术。
循迹小车共历了三代技术创新变革:第一代循迹小车是可编程的示教再现型,不装载任何传感器,只是采用简单的开关控制,通过编程来设置循迹小车的路径与运动参数,在工作过程中,不能根据环境的变化而改变自身的运动轨迹。
支持离线编程的第二代循迹小车具有一定感知和适应环境的能力,这类循迹小车装有简单的传感器,可以感觉到自身的的运动位置,速度等其他物理量,电路是一个闭环反馈的控制系统,能适应一定的外部环境变化。
课程设计报告循迹小车的设计

循迹小车的设计摘要智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。
智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。
该技术已经应用于汽车制造业、仓储业,食品加工业等多个行业。
本设计是基于单片机控制的电动小车,小车能够识别地上黑色轨迹线,实现循迹行走,包括电源模块、单片机模块、循迹模块、电机驱动模块。
其中单片机模块作为控制器模块以STC89C52单片机为控制核心,用单片机产生PWM波,控制小车速度。
利用红外光电传感器RPR220型光电对管对路面黑色轨迹进行检测,并将路面检测信号反馈给单片机。
单片机对采集到的信号进行分析判断,及时控制由芯片L298N驱动的电机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。
在此基础利用E18-D80NK 3-80cm可调红外避障传感器进行小车的避障扩展,还选用PT2262/PT2272组成的无线遥控模块对小车进行无线遥控。
本设计不仅给出了硬件设计流程、完整的硬件电路图和控制程序,还用PROTEUS实现了小车电机控制仿真。
关键词:自动循迹;单片机;Proteus仿真Design on Automated Guided VehicleAbstractIntelligent tracking is based on automatic guided robot system, used to make the car line, and choosing the right route. Automated Guided Vehicle is a use of sensor, microcontroller, motor drive and automatic control technology to achieve according to the preset mode, without human management can achieve automatic tracking navigation technology. This technology has been applied in the automobile manufacturing industry, warehousing industry, food processing industry and other industries.The design is based on SCM control electric trolley, trolley can be identified on the black line, achieve the tracking of walking, including driving module power supply module, microcontroller module, tracking module, motor. The MCU module as the controller module with STC89C52 as control core, using microcontroller PWM wave, control car speed. The tube is used for tracing the use of infrared photoelectric sensor RPR220 type photoelectric, and road test signals back to the scm. Analysis and judgment of the collected signal microcontroller, timely control of motor driven by the chip L298N to adjust the car steering, so that the car can travel along the black path automatically, realize the purpose of automatic tracing. Based on E18-D80NK 3-80cm tunable infrared sensors for obstacle avoidance of car obstacle avoidance, also use wireless remote control module composed of PT2262/PT2272 for wireless remote control car.This design not only gives the hardware circuit diagram and program control hardware design flow, complete, we also use PROTEUS to achieve the car motor control simulation.Key words:tracking,microcontroller, Proteus simulation西华大学课程设计目录摘要 (Ⅰ)ABSTRACT (Ⅱ)1 绪论 (1)1.1智能循迹小车概述 (1)1.1.1循迹小车的发展历程回顾 (1)1.1.2 智能循迹分类 (2)1.1.3 智能循迹小车的应用 (3)1.2 智能循迹小车研究中的关键技术 (4)2 自动循迹小车系统方案设计 (5)2.1 自动循迹小车基本原理 (5)2.2 总体方案设计 (5)2.2.1 系统总体方案的设计 (5)2.2.2 方案选择与论证 (5)3 硬件电路的设计 (8)3.1 自动循迹小车硬件设计.................................. 错误!未定义书签。
智能循迹机器人控制系统设计

智能循迹机器人控制系统设计1、设计方案本设计通过红外光电二极管和光电晶体管组成的传感器循迹模块判断黑线路径,然后由STC89C52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现机器人循迹,机器人采用前轮驱动,从动轮采用万向轮,左右前轮各用一个直流减速电机驱动,通过调制前面两个轮子的转速从而达到控制转向的目的,在机器人最前端装有左中右4个红外反射式传感器,当机器人左边的传感器检测到黑线时,说明机器人向右边偏移,这时主控芯片控制左轮电机减速,机器人向左边偏正。
同理,当机器人的右边传感器检测到黑线时,主控芯片控制右轮电机减速,机器人向右边偏正,当黑线在机器人的中间,中间的传感器一直检测到黑线,这样机器人就会沿着黑线一直行走。
图1.1.1 智能循迹小车控制系统结构框图2.各部分系统设计2.1循迹系统机器人小车在贴有黑胶带的地上行驶,不断向地面发射红外光,根据接收到的反射光的强弱来判断道路,用四只红外对管,两只置于轨道中间,两只置于轨道外侧,当机器人脱离轨道时,即当置于中间的两只只光电开关脱离轨道时,等待外面任一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道)再恢复正向行驶2.2避障系统采用红外对管置于机器人小车正前方,可以检测到障碍物是否存在,以做出相应的判断。
2.3主控系统我们采用单片机作为整个智能机器人的核心,来对机器人进行自动控制。
单片机有着简单、方便、快捷、价格低廉、较为强大的控制功能以及可位寻址操作功能等优点,符合整体设计方案。
2.4驱动系统采用功率三极管作为电机驱动芯片。
电机驱动芯片驱动能力强、操作方便,稳定性好,性能优良。
功率三极管的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。
另外,驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。
采用L298N作为功率放大器的输出控制直流电机。
机器人巡线教程

处理复杂路况
对于竞赛类的场地,轨迹的图形形式多样化,这样需要 采用多个光电传感器的方式来解决。以三个光电传感器为 例。
三个光电的基本循迹控制方式 三光电循迹的基本处
理如右图所示。
对于复杂图形的循迹,
程序需要分段操作,对 不同的路口进行判断处 理。
三个光电解决复杂路口情况
对于类似上速图示的路口情况,需要同时通过几个光电的 状态来判断小车该做出的动作。
循迹小车初级入门教程
要点
循迹基本常识 光电循迹举例
循迹基本常识
循迹的基本过程:通过光电传感器判断出是否遇到黑线, 然后控制马达做出对应的动作。
1、识别黑线
(1)认识光电传感器:光电传感器可以检测其照射到的面 的亮度值。光电照射到白色面时亮度较大,黑色面时亮度 较小。 (2)区分黑白:通过光电检测到的亮度大小便可以区分黑 白。
PID中的比例控制
重新认识光电传感器
光电检测的值是一个可变值,离黑线近时值比较小, 离黑线远时值大。即:
光电值越大→光电离黑线越远
光电值越小→光电离黑线越近 而在小车处理上: 离黑线越远→小车转的弯越大→左右马达速度差越大 离黑线越近→小车转的弯越小→左右马达速度差越小
因此:光值差--对应--左右马达速度差。
(1)仍然采用双光电,增加脱离轨迹的情况
下列两种情况无法根据光电的亮度值判断,但可以根据之前脱离轨道时是哪 个光电最后检测到黑线来判断。在程序中可以添加一个变量,用来记录脱离轨 道时哪个光电检测到车子
情况1
情况2程序采用上述方法时,车子可以简单走一条没有交叉路口的路 线。 但程序中没有直走的情况,车子在循迹过程中抖的比 较厉害。想要车子走的更好,甚至要走交叉路口等情况, 就要对车子进行进一步处理。
机器人巡线教程

2021/6/7
12
在实际循迹中,要保证车子走的又好又稳定一般方式是 通过增加光电的个数来保证车子的行走质量。
循迹的算法并不单一,下面拓展简述一种较高级的算法 ,PID的控制方式。
2021/6/7
13
PID中的比例控制
重新认识光电传感器 光电检测的值是一个可变值,离黑线近时值比较小,
离黑线远时值大。即: 光电值越大→光电离黑线越远 光电值越小→光电离黑线越近
2021/6/7
9
处理复杂路况
对于竞赛类的场地,轨迹的图形形式多样化,这样需要 采用多个光电传感器的方式来解决。以三个光电传感器为 例。
2021/6/7
10
三个光电的基本循迹控制方式
三光电循迹的基本处 理如右图所示。
对于复杂图形的循迹, 程序需要分段操作,对 不同的路口进行判断处 理。
2021/6/7
11
三个光电解复杂路口情况
对于类似上速图示的路口情况,需要同时通过几个光电的 状态来判断小车该做出的动作。
以第一个图片的直角处理为例:
行走中判断第2个和第3个光电是否检测到黑线→是的 话控制其右转→在右转过程中判断第1个或者第2个光电是 否检测到黑线→停
后面三个或者其他路口都可以以第一个图示的情况来 处理。具体程序处理可查看例子程序。
2021/6/7
6
2、完善程序 上一步的程序中,存在一个问题,即: 转弯速度设置太小:车子遇到大弯时转不回来 转弯速度设置太大:车子剧烈抖动
解决办法:增加判断的情况数:
(1)仍然采用双光电,增加脱离轨迹的情况 (2)采用多光电,不同光电转弯的速度不同
2021/6/7
7
(1)仍然采用双光电,增加脱离轨迹的情况