常用的巧算和速算方法

合集下载

第1讲 速算与巧算

第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。

1.加法巧算。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。

如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。

字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。

(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。

字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。

字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。

如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。

(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。

三年级速算与巧算

三年级速算与巧算

学科培优数学速算与巧算知识定位本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。

重点难点:找出题目中可以进行“凑整”的数。

利用运算律或者公式调整运算顺序。

考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。

适当调整运算顺序。

知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。

2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a +c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典一、加法速算巧算技巧1.去十法:将两位数相加,个位数保持不变,十位数去掉十位数的数再加1、例如:23+36=592.补数法:将两位数相加,若个位数相加等于10,则结果的十位数等于两个原数的十位数之和加1,个位数等于0。

例如:47+63=110。

3.同进法:将两个相同两位的数相加,在结果的十位数加1、例如:56+56=1124.十进法:将两个相邻的两位数相加,减10得到个位数,结果的十位数不变。

例如:56+57=10+56=1135.单位法:将两个相邻的两位数相加,结果的个位数等于个位数之和的个位数,结果的十位数等于个位数之和的十位数加上原来的十位数。

例如:54+67=(4+7)(5+6)=21+5=266.整十法:将个位数之和减去10,结果的个位数不变,结果的十位数加1、例如:56+49=(6+9)(5+4)=15+5=20+1=21二、减法速算巧算技巧1.补数法:相减的两个数差的绝对值等于减数加上被减数的补数,结果的符号取决于减数和被减数之间的关系。

例如:35-18=35+82=1172.同进法:减数的个位数与被减数的个位数相等,十位数大1,结果的个位数等于个位数之差,结果的十位数等于原数的十位数。

例如:57-25=323.进位借位法:被减数的个位数小于减数的个位数,从十位和百位依次向左借位。

例如:45-38=(40-8)(5-3)=74.破折法:将减数加上或减去10的倍数,使减数的个位数和百位数与被减数的个位数和百位数相等,然后计算,得到结果。

例如:147-86=147-80+6=675.近值法:如果两个数的个位数相等,差的绝对值为10的倍数,并且两个数的十位数的差不超过1,那么可以近似地认为差等于个位数之差乘以10。

例如:67-53≈(7-3)×10=40。

三、乘法速算巧算技巧1.移项法:将减数的个位数分别乘以被乘数的十位数和个位数,十位数的结果向左移动一位,个位数保持不变。

乘法中的速算和巧算

乘法中的速算和巧算

乘法中的速算和巧算1.直接利用乘法结合律的速算利用乘法结合律,可以把两个因数相乘积是整十、整百、整千的先进行计算,使计算简便。

为了计算迅速,可以把有些较常用的乘法算式记熟,例如:25×4=100,125×8=1000,12×5=60,……例1 计算236×4×25解:236×4×25=236×(4×25)=236×100=236002.乘法交换律、结合律同时运用的速算几个因数相乘,先交换因数的位置,使因数相乘积为整十、整百、整千的凑在一起,根据结合律分组计算比较简便。

例2 125×2×8×25×5×4解:原式=(125×8)×(25×4)×(5×2)=1000×100×10=10000003.直接利用乘法分配律的简算例3 计算:(1)175×34×175×66(2)67×12+67×35+67×52+67解:(1)根据乘法分配律:原式=175×(34+66)=175×100=17500(2)把67看作67×1后,利用乘法分配律简算。

原式=67×(12+35+52+1)=67×100=67004.把一个因数拆分成两个因数,利用交换律、结合律进行巧算。

例4 计算(1)28×25(2)48×125(3)125×5×32×5解:(1)原式=4×7×25=7×(4×25)=7×100=700(2)原式=6×8×125=6×(8×125)=6×1000=6000(3)原式=125×8×4×5×5=(125×8)×(4×25)=1000×100=1000005.间接利用乘法分配律进行巧算例5 计算(1)26×99(2)1236×199(3)713×101解:(1)由99=100-1,原式=26×(100-1)=26×100-26×1=2600-26=2574(2)由199=200-1,原式=1236×(200-1)=1236×200-1236×1=247200-1236=246000-36=245964(3)原式=713×(100+1)=713×100+713×1=71300+713=720136.几种常见的特殊因数乘积的巧算(1)任何一个自然数乘以0,其积都等于0。

速算巧算公式大全

速算巧算公式大全

速算巧算公式大全一、加法速算。

1. 凑整加法。

- 公式:如果两个数相加,其中一个数接近整十、整百、整千等,就把这个数看作整十、整百、整千等与一个较小数的和或差,然后再进行计算。

- 例如:计算28 + 97。

- 把97看作100 - 3。

- 则28+97 = 28+(100 - 3)=28 + 100-3 = 128 - 3 = 125。

2. 互补数加法。

- 定义:两个数相加,若能恰好凑成整十、整百、整千等,就称这两个数互为互补数。

- 公式:如果a和b是互补数(a + b = c,c为整十、整百、整千等),在加法算式中有a + b + d=(a + b)+d = c + d。

- 例如:13+87+56。

- 因为13和87是互补数,13+87 = 100。

- 所以13+87+56 = 100+56 = 156。

二、减法速算。

1. 凑整减法。

- 公式:当减数接近整十、整百、整千等时,把减数看作整十、整百、整千等与一个较小数的和或差,然后进行计算。

- 例如:计算132 - 98。

- 把98看作100 - 2。

- 则132−98 = 132-(100 - 2)=132 - 100+2 = 32 + 2 = 34。

2. 同尾相减。

- 公式:被减数与减数的尾数相同,先把被减数和减数同时减去这个相同的尾数,再进行计算。

- 例如:计算234 - 134。

- 先同时减去134的尾数4,得到230 - 130。

- 230 - 130 = 100。

三、乘法速算。

1. 乘法分配律。

- 公式:a×(b + c)=a× b+a× c,a×(b - c)=a× b - a× c。

- 例如:计算12×(10 + 5)。

- 根据乘法分配律,12×(10 + 5)=12×10+12×5 = 120+60 = 180。

- 再如:计算15×(20 - 3)。

速算与巧算大全

速算与巧算大全

速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

【解答】原式=464+836-545-455=1300—(545+455)=300思考:4。

75÷0.25-4。

75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400例:73.15×9。

9【分析】把9.9看作10减0。

1的差,然后用乘法分配率可简化运算。

【解答】原式=73。

15×(10—0.1)=73.15×10—73。

15×0。

1=731。

5-7.315=724.185速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便.例:8.1+8。

四年级速算、巧算方法

四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。

运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。

1、加法“凑整”。

利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。

利用减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。

利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。

末尾是一个或几个0的数,运算起来比较简便。

若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。

一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。

把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。

小学生注意:10种最常见的速算与巧算方法!请收藏

小学生注意:10种最常见的速算与巧算方法!请收藏

小学生注意:10种最常见的速算与巧算方法!请收藏
数学速算法指利用数与数之间的特殊关系进行较快的加减乘除运算,这种运算方法称为速算法、心算法。

巧算或简算包括乘法,除法的分配律,结合律,交换律,加法交换、结合等,这需要在某个算式中找出,找到了可以应用的定律,及每个数的分解数,就可以巧妙地算出答案了。

让孩子学会速算和巧算,不仅可以提高孩子做题的准确度,更能让孩子的大脑反应明锐!今天,我特意整理了十种孩子们在学习过程中最常见的速算和巧算方法,希望各位家长抽空让孩子学习学习!
一、顺逆相加:用“顺逆相加”算式可求出若干个连续数的和。

二、凑整巧算:用“凑整方法”,常常能使计算变得比较简便、快速。

三、恒等变形:是一种重要的思想和方法,也是一种重要的解题技巧。

四、拆数加减:在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往
往可大大地简化运算。

(1)拆成两个分数相减。

例如:
(2)拆成两个分数相加。

例如:
五、先借后还:“先借后还”是一条重要的数学解题思想和解题技巧。

六、由小推大:一种数学思维方法,也是一种速算、巧算技巧。

七、巧妙试商:除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。

八、同分子分数加减
九、个数折半:下面的几种情况下,可以运用“个数折半”的方
法, 巧妙地计算出题目的得数
十、两分数相除:有些分数相除,可以采用以下的巧算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的巧算和速算方法小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+ (44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2) 53+36+47=53+47+36 =(53+47 ) +36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47 的和算岀来.2.计算:(1 ) 96+15(2) 52+69解:(1 ) 96+15=96+ ( 4+11 )=(96+4 ) +11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2) 52+69= ( 21+31 ) +69=21+ (31+69 ) =21+100=121这样想:因为69+3仁100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1 ) 63+18+19(2) 28+28+28解:(1) 63+18+19=60+2+1+18+19=60+ (2+18 ) + (1+19 )=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2) 28+28+28=(28+2 ) + (28+2 ) + (28+2 ) -6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、-'”号的混合算式中,运算顺序可改变计算:(1) 45-18+19(2) 45+18-19解:( 1 ) 45-18+19=45+19-18=45+ (19-18 ) =45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2, 3,4, 5,6,7,8,91,3, 5,7, 92,4, 6,8,103,6, 9, 12, 154,8, 12 , 16 , 20等等都是等差连续数.1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1 )计算:1+2+3+4+5+6+7+8+9=5X9中间数是5=45共9个数(2)计算:1+3+5+7+9=5X5中间数是5=25共有5个数(3)计算:2+4+6+8+10=6X5中间数是6=30共有5个数(4)计算:3+6+9+12+15=9X5中间数是9=45共有5个数(5)计算:4+8+12+16+20=12X5中间数是12=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1 )计算:1+2+3+4+5+6+7+8+9+10=(1+10 ) X5=11X5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17 ) X4=20X4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20 ) X5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1 )计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上, 把多算的减去.23+20+19+22+18+21=20X6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20X6=120.23按20计算就少加了“3”所以再加上“3” 19按20计算多加了“1”所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1 :仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100X 5+2+0-1+1-2=500方法2 :仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100X 5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的补数”。

如: 1+9=10,3+7=10,2+8=10 ,4+6=10 ,5+5=10 。

又如:11+89=100,33 + 67=100,22+78=100 ,44+56=100 ,55+45=100 ,在上面算式中,1叫9的补数”;89叫11的补数”,11也叫89的补数”也就是说两个数互为补数”。

对于一个较大的数,如何能很快地算岀它的补数”来呢?一般来说,可以这样凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

女口:87655^12345 ,46802^53198 ,87362^12638 ,…下面讲利用补数”巧算加法,通常称为凑整法”。

2.互补数先加。

例1巧算下面各题:①36+87+64 ②99+136 + 101③ 1361 + 972 + 639 + 28解:①式=(36 + 64)+ 87=100 + 87=187②式=(99 + 101 )+ 136=200+136=336③式=(1361 + 639) + ( 972 + 28)=2000+1000=30003.拆出补数来先加。

例2 ① 188 + 873 ② 548 + 996 ③9898 + 203解:①式=(188+12 ) + ( 873-12 )(熟练之后,此步可略)=200+86仁1061②式=(548-4 ) + ( 996 + 4)=544+1000=1544③式=(9898 + 102 ) + ( 203-102 )=10000+101=101014.竖式运算中互补数先加。

如:二、减法中的巧算1.把几个互为补数"的减数先加起来,再从被减数中减去。

例3① 300-73-27②1000-90-80-20-10解:①式=300- (73 + 27)=300-100=200②式=1000- ( 90 + 80 + 20 + 10)=1000-200 = 8002.先减去那些与被减数有相同尾数的减数。

例4① 4723- ( 723+ 189)②2356-159-256解:①式=4723-723-189=4000-189=3811②式=2356-256-159=2100-159=19413.利用补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

例5 ① 506-397②323-189③467 + 997④987-178-222-390解:①式=500 + 6-400+3 (把多减的3再加上)=109②式=323-200+11 (把多减的11再加上)=123+11 =134③式=467 + 1000-3 (把多加的3再减去)=1464④式=987- (178 + 222 ) -390=987-400-400+10=197三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是牛”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+‘变-",变“ +"即:a +(b +c + d) = a+ b + c + da- (b + a + d) = a-b-c-da- (b-c ) = a-b+c例6 ① 100 +( 10 + 20 + 30)②100- ( 10 + 20+30 )③100- ( 30-10 )解:①式=100 + 10 +20 + 30=160②式=100-10-20-30=40③式=100-30 + 10=80例7计算下面各题:①100 + 10 + 20 + 30②100-10-20-30③100-30 + 10解:①式=100 十(10+20+30 )=100 + 60=160②式=100- (10 + 20+30 )=100-60=40③式=100- (30-10 )=100-20=802.带符号搬家”例8 计算325 + 46-125 + 54解:原式=325-125 + 46+54=(325-125 ) + (46 + 54 )=200+100 =300注意:每个数前面的运算符号是这个数的符号.如+46 , -125 , +54.而325前面虽然没有符号,应看作是+325 。

3.两个数相同而符号相反的数可以直接抵消”掉例9计算9+2-9 + 3解:原式=9-9 + 2+3=54.找基准数”法几个比较接近于某一整数的数相加时,选这个整数为基准数”。

例10 计算78+76 + 83 + 82+77 + 80 + 79 + 85=6401.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5X2=1025X4=100125X8=1000例1计算①123X4X25② 125X2X8X25X5X4解:①式=123X ( 4X25)=123X 100 = 12300②式=(125X8) X (25X4) X ( 5X2)=1000X 100X10=10000002.分解因数,凑整先乘。

例2计算①24X25②56X125③125X5X32X5解:①式=6X (4X25)=6X100=600②式=7X8X125=7X ( 8X125 )=7X1000=7000③式=125X 5X4X8X5= (125X 8) X (5X5X4)=1000X 100=1000003•应用乘法分配律。

例3 计算① 175X34 + 175X 66②67X12+67X 35 + 67X52+6解:①式=175X ( 34+66 )=175X 100=17500②式=67X (12 + 35 + 52 + 1)=67X100 = 6700(原式中最后一项67可看成67X1)例4计算①123X101②123X99解:①式=123X ( 100 + 1) =123X 100 + 123 =12300 +123=12423②式=123X ( 100-1 )=12300-123=121774.几种特殊因数的巧算。

相关文档
最新文档