华东师范大学数学系《数学分析》讲义重积分【圣才出品】
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
华东师范大学数学系《数学分析》(第4版)(下册)-第十五章至第十七章(圣才出品)

第15章傅里叶级数15.1复习笔记一、傅里叶级数1.三角级数·正交函数系(1)称(15-1)是由三角函数列(也称为三角函数系)1,cos x,sin x,cos2x,sin2x,…,cos nx.sin nx,…(15-2)所产生的一般形式的三角级数.(2)若级数收敛,则级数(15-1)在整个数轴上绝对收敛且一致收敛.(3)若两个函数与在[a,b]上可积,且则称函数与在[a,b]上是正交的.由此,三角函数系(15-2)在[-π,π]上具有正交性,或称(15-2)是正交函数系.2.以2π为周期的函数的傅里叶级数(1)若在整个数轴上(15-3)且等式右边级数一致收敛.则有如下关系式:(15-4)(2)若f是以2π为周期且在[-π,π]上可积的函数,则按公式(15-4)计算出的a n 和b n称为函数f(关于三角函数系)的傅里叶系数.以f的傅里叶系数为系数的三角级数称为f(关于三角函数系)的傅里叶级数,记作(15-5)3.收敛定理(1)傅里叶级数收敛定理若以2π为周期的函数f在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(4)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.(2)按段光滑若f的导函数在[a,b]上连续,则称f在[a,b]上光滑.但若定义在[a,b]上除了至多有有限个第一类间断点的函数f的导函数在[a,b]上除了至多有限个点外都存在且连续.在这有限个点上导函数f′的左、右极限存在,则称f在[a,b]上按段光滑.根据上述定义,若函数f在[a,b]上按段光滑,则有如下重要性质:①f在[a,b]上可积;②在[a,b]上每一点都存在f(x±0),且有③补充定义f′在[a,b]上那些至多有限个不存在点上的值后(仍记为f′),f′在[a,b]上可积.(3)若f是以2π为周期的连续函数,且在[-π,π]上按段光滑,则f的傅里叶级数在(-∞,+∞)上收敛于f.二、以2l为周期的函数的展开式1.以2l为周期的函数的傅里叶级数设f是以2l为周期的函数,则F的傅里叶级数展开式是(15-6)与(15-7)这里(15-7)式是以2l为周期的函数f的傅里叶系数,(15-6)式是f的傅里叶级数.若函数f在[-l,l]上按段光滑,则同样可由收敛定理知道(15-8)2.偶函数与奇函数的傅里叶级数(1)设f是以2l为周期的偶函数,或是定义在[-l,l]上的偶函数,则在[-l,l]上,f (x)cos nx是偶函数,f(x)sin nx是奇函数.因此,f的傅里叶系数(15-7)是(15-9)于是f的傅里叶级数只剩有余弦函数的项,即(15-10)(15-10)式右边的级数称为余弦级数.(2)同理,若f是以2l为周期的奇函数,或是定义在[-l,l]上的奇函数,则可推得(15-11)所以当f为奇函数时,它的傅里叶级数只含有正弦函数的项,即(15-12)(12)式右边的级数称为正弦级数.三、收敛定理的证明1.预备定理1(贝塞尔(Bessel)不等式)若函数f在[-π,π]上可积,则(15-13)其中a n,b n为f的傅里叶系数,(15-13)式称为贝塞尔不等式.2.推论①黎曼-勒贝格定理若f为可积函数,则(15-14)②若f为可积函数,则(15-15)3.预备定理2若f(x)是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和S n (x)可写成当t=0时,被积函数中的不定式由极限来确定.4.收敛定理若以2π为周期的函数,在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(15-5式)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.15.2课后习题详解§1傅里叶级数1.在指定区间内把下列函数展开成傅里叶级数:解:(1)(i)f(x)及其周期延拓的图像如图15-1所示,图15-1显然f(x)在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,因为。
华东师范大学数学系《数学分析》(第4版)(上册)(名校考研真题 不定积分)【圣才出品】

解:f(x)的原函数为
.当 x≤1 时,有
当 x>1 时,有
所以 f(x)的原函数为
.
5/6
圣才电子书
十万种考研考证电子书、题库视频学习平 台
6/6
un
n1
收敛,从而 un
0 ,即
f
(xn )
0 ,也即
f (xn ) 0 ,故对上述的 ,存在 N N¢ ,使得
当 n N 时,
f (xn )
2
.
取 X a N ,则当 x X 时,因
x a, Ua (k 1) ,a k k 0
故存在惟一的 k N¢ ,使得 x a (k 1) , a k ,易见 k N ,且
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 8 章 不定积分
1.设 f (x) d x 收敛,且 f (x) 在 a,上一致连续,证明 lim f (x) = 0. [上海
a
x
交通大学 2004 研]
证明:因 f (x) 在 a,上一致连续,故对于 0 , 0 ,使得当
十万种考研考证电子书、题库视频学习平 台
4.求不定积分 解:
[华东师范大学研]
5.求不定积分 解:令 t=lnx,则
[四川大学研]
6.求
(a 为常数).[西安交通大学研]
解:(1)当 a=-1 时,
(2)当 a≠-1 时,
3/6
圣才电子书
x2
x台2 )
dx
ln(1 x2 )d 1 x
ln(1 x2 )
1
2x dx
x
x 1 x2
ln(1 x2 ) 2 1 dx
x
21-9——华东师范大学数学分析课件PPT

第3步: D J(u,v)dudv.
第4步: D J (u,v)dudv.
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
第1步的证明 设(u0,v0 ) int , 0,取正数
J u0,v0 满足1 2 J u0,v0 J u0,v0 .
v
dudv
4n
,
由定理16.2,存在u0,v0 In int . 于是 0,
J u0,v0 I
J u,vdudv I .
I
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
第2步的证明 若有正方形I int 使
T I J u,vdudv 0,
I
将I等分为4个小正方形,则4个小正方形中必有一个
a xu,v x u,v b yu,v y u,v
a b a b .
2 2M 2 2M 2M 2M 2
同理
v1
v
2
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
设 I1 是与 I同中心的正方形,边长是1 ,从而
(u1,v1) I .于是
u1 v1
u v
,
由此
u1 v1
u v
a c
b d
x y
u1 u1
, ,
v1 v1
x y
u, u,
v v
.
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
于是
u1 u a x u1,v1 x u,v b y u1,v1 y u,v a xu,v xu,v b yu,v yu,v
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割
,
必在某个小区域 上无界.
当 i≠k 时,任取
令
由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割
当
时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而
若
=0,则由上式
若
则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书
为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
由于
因此
所以
,同理可证
得
到
7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令
则
故
4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书
体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面
有
2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,
则
D 为 S 在 xOy 面投影
所以质心坐标为
华东师范大学数学系《数学分析》讲义-第二十章至第二十二章【圣才出品】

第20章曲线积分[视频讲解]20.1本章要点详解本章要点■第一型曲线积分的定义■第一型曲线积分的性质■第一型曲线积分的计算■第一型曲线积分的几何意义■第二型曲线积分的定义■第二型曲线积分的主要性质■第二型曲线积分的计算■两类曲线积分的联系重难点导学一、第一型曲线积分1.第一型曲线积分的定义设L 为平面上可求长度的曲线段,f (x ,y )为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i =1,2,…,n ),L i 的弧长记为Δs i ,分割T 的细度为1max i i nT S ≤≤=∆,在L i 上任取一点(ζi ,ηi )(i =1,2,…,n ),若有极限且J 的值与分割T 与点(ζi ,ηi )的取法无关,则称此极限为f (x ,y )在L 上的第一型曲线积分,记作(,)d L f x y s⎰若L 为空间可求长曲线段,f (x ,y ,z )为定义在L 上的函数,则可类似地定义f (x ,y ,z )在空间曲线L 上的第一型曲线积分,并且记作(,,)d Lf x y z s ⎰2.第一型曲线积分的性质(1)线性性质设L 为平面上可求长度曲线,f (x ,y )、g (x ,y )在L 上的第一型曲线积分存在,k 1、k 2为常数,则k 1f (x ,y )+k 2g (x ,y )在L 上的第一型曲线积分也存在,且1212(,)(,)d (,)d (,)d L L Lk f x y k g x y s k f x y s k g x y s +=+⎰⎰⎰(2)可加性设L 1,L 2为平面上可求长度的曲线,且L 1的终点是L 2的起点(两条曲线首尾相接),f (x ,y )在L 1,L 2上的第一型曲线积分存在,则f (x ,y )在12L L L =⋃上的第一型曲线积分存在,且12(,)d (,)d (,)d L L L f x y s f x y s f x y s =+⎰⎰⎰(3)积分不等式若(,)d L f x y s ⎰与(,)d Lg x y s ⎰都存在,且f (x ,y )≤g (x ,y ),则(,)d L f x y s ⎰≤(,)d L g x y s ⎰(4)绝对值不等式若(,)d L f x y s ⎰存在,则(,)d Lf x y s ⎰也存在,且(,)d (,)d L L f x y s f x y s ≤⎰⎰(5)若(,)d L f x y s ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)d L f x y s cs=⎰这里(,)(,)sup inf L Lf x y c f x y ≤≤3.第一型曲线积分的计算(1)设有光滑曲线L ,其参数方程为如果函数f (x ,y )在L 上连续,则f (x ,y )在L 上的第一型曲线积分一定存在,且(2)设曲线L 由直角坐标系的方程()y x φ=表示,其中()x φ在[],a b 具有连续的导函数,则[][]2(,)d ,()1()d b L a f x y s f x x x x φφ'=+⎰⎰(3)设曲线L 由直角坐标系的方程()x y φ=表示,其中()y φ在[],c d 具有连续的导函数,则[][]2(,)d ,()1()d b L a f x y s f y y y y φφ'=+⎰⎰(4)设有空间光滑曲线L ,其参数方程为(),(),()()x x t y y t z z t t b a ≤=≤==如果f (x ,y ,z )在L 上连续,则f (x ,y ,z )在L 上的第一型曲线积分一定存在,且[][][][]222(,,)d (),(),()()()()d b L a f x y z s f x t y t z t x t y t z t t '''=++⎰⎰4.第一型曲线积分的几何意义设L 为xOy 面上的光滑曲线,其方程为(,)00x y z φ=⎧⎨=⎩在L 上定义连续函数f (x ,y )≥0,它的图形是空间曲线(,):(,)0z f x y x y φ=⎧Γ⎨=⎩在柱面(,)0x y φ=上介于L 与Γ之间的曲面的面积是(,)d L f x y s ⎰.二、第二型曲线积分1.第二型曲线积分的定义设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L:上,对L的任一分割T,它把L分成n个小弧段(i=1,2,…,n)其中M0=A,M n=B.记各小弧段的弧长为Δs,分割T的细度又设T的分点M i的坐标为(x i,y i),并记.在每个小弧段上任取一点(ζi,ηi),若极限存在且与分割T与点(ζi.ηi)的取法无关,则称此极限为函数P(x,y),Q(x,y)沿有向曲线L上的第二型曲线积分.记为(20-1)积分(20-1)也可写作或为书写简洁起见积分(20-1)常简写成2.第二型曲线积分的主要性质(1)若(i =1,2,…,k )存在,则也存在,且其中c i (i =1,2,…,k )为常数.(2)若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且d d i L P x Q y +⎰(i =1,2,…,k )存在,则d d L P x Q y +⎰也存在,且3.第二型曲线积分的计算设平面曲线。
华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 实数的完备性)【圣才出品】

§1 关于实数集完备性的基本定理1.证明数集有且只有两个聚点和解:令数集数列则数列都是各项互异的数列,根据定义2,1和-1是S的两个聚点.对任意且令由得取,则当n>N时,或者有或者有总之由定义2知x0不是S的聚点,故数集有且只有1和-1两个聚点.2.证明:任何有限数集都没有聚点.证明:用反证法.设S是一个有限数集.假设ζ是S的一个聚点,按照定义2,在ζ的任何邻域内都含有S中无穷多个点,这个条件是不可能满足的,因为S是一个有限集.故任何有限集都没有聚点.3.设是一个严格开区间套,即满足且证明:存在惟一的一点ξ,使得证明:由题设知,是一个闭区间套.由区间套定理知,存在惟一的点ξ,使n以…,即4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.解:(1)设则S是有界集,并且但故有理数集S在Q内无上、下确界,即确界原理在有理数集内不成立.(2)由的不足近似值形成数列这个数列是单调有上界的,2是它的一个上界.它的上确界为于是它在有理数集内没有上确界.因此,单调有界原理在有理数集内不成立.(3)设M是由的所有不足近似值组成的集合.则1.4是M的一个下界,2是M 的一个上界.即M是一个有界无限集,但它只有一个聚点故在有理数集内不存在聚点.因此,聚点定理在有理数集内不成立.(4)的不足近似值形成的数列满足柯西条件(因为当m,n>N时,但其极限是而不是有理数,于是这个满足柯西条件的数列在有理数集内没有极限.因此,柯西收敛准则在有理数集内不成立.5.设问(1)H能否覆盖(0,1)?(2)能否从H中选出有限个开区间覆盖(i)解:(1)有有所以即故H 能覆盖(0,1).(2)设从H 中选出m 个开区间,它们是令则并集的下确界为于是的子集,实际上故不能从H 中选出有限个开区间来覆盖从H 中选出98个开区间因为所以这些开区间覆盖了故可以从H 中选出有限个开区间覆盖6.证明:闭区间的全体聚点的集合是本身.证明:设的全体聚点的集合是M .设不妨设则由实数集的稠密性知,集合中有无穷多个实数,故a 是的一个聚点.同理,b也是的一个聚点.设不妨设则故x 0的任意邻域内都含有中的无穷多个点,故x 0为的一个聚点.总之设令则即不是的聚点,即故M.综上所述,M=,即闭区间的全体聚点的集合是本身.7.设为单调数列.证明:若存在聚点,则必是惟一的,且为的确界.证明:设是一个单调递增数列.假设ξ,η是它的两个不相等的聚点,不妨设ξ<η.令δ=η-ξ,则δ>0,按聚点的定义,中含有无穷多个中的点,设则当n>n1时,x n 于是中只能含有{x n }中有穷多个点,这与ξ是聚点矛盾.因此,若存在聚点,则必是惟一的.假设无界,则即任给M>0,存在正整数N,当n>N时,x n>M,于是小于M 的只有有限项,因此不可能存在聚点,这与已知题设矛盾,故有界.对任给的ε>0,由聚点定义,必存在x N,使按上确界定义知综上,若有聚点,必惟一,恰为的确界.8.试用有限覆盖定理证明聚点定理.证明:设S 是实轴上的一个有界无限点集,并且假设S没有聚点,则任意都不是S 的聚点,于是存在正数使得中只含有S中有穷多个点.而开区间集是的一个开覆盖.由有限覆盖定理知,存在的一个有限覆盖,设为它们也是S的一个覆盖.因为每一个中只含有S 中有穷多个点,故S 是一个有限点集.这与题设矛盾.故实轴上的任一有界无限点集S至少有一个聚点.9.试用聚点定理证明柯西收敛准则.证明:设收敛,令于是,对任给的ε>0,存在正整数N,使得当n,m >N时,有于是设数列满足柯西收敛准则的条件.如果集合只含有有限多个不同的实数,则从某一项起这个数列的项为常数,否则柯西条件不会成立.此时,这个常数就是数列的极限.如果集合含有无限多个不同的实数,则由柯西条件容易得知它是有界的.于是由聚点定理,集合至少有一个聚点假如有两个不等的聚点ξ,η,不妨设η>ξ,令δ=η-ξ,则与都含有集合中无限多个点.这与取,存在正整数N ,当n ,m >N 时,有矛盾.故的聚点是惟一的,记之为ξ.对于任意ε>0,存在N ,使得当n ,m >N 时,又因为ξ是的聚点,所以存在n0>N ,使得因而,当n >N 时,故数列收敛于ξ.10.用有限覆盖定理证明根的存在性定理.证明:根的存在定理:若函数f 在闭区间上连续,且f (a )与f (b )异号,则至少存在一点,使得f (x 0)=0.假设方程f (x )=0在(a ,b )内无实根,则对每一点有由连续函数的局部保号性知,对每一点存在x 的一个邻域,使得f (x )在内保持与f (x )相同的符号.于是,所有的形成的一个开覆盖.根据有限覆盖定理,从中可以选出有限个开区间来覆盖.把这些开区间的集合记为S ,则点a 属于S 的某个开区间,设为它的右端点x 1+δ1又属于S的另一个开区间,设为以此类推,经过有限次地向右移动,得到开区间,使得δn )这n 个开区间显然就是的一个开覆盖.f (x )在每一个内保持同一个符号.在内f (x )与f (a )具有相同的符号.因为所以f (x )在内也具有f (a )的符号.以此类推,f (b )与f (a )具有相同的符号.这与f (a )与f (b )异号矛盾.故至少存在一点,使得f (x 0)=0.11.用有限覆盖定理证明连续函数的一致连续性定理.证明:一致连续性定理:若函数f 在闭区间上连续,则f 在上一致连续.因为f 在上连续,所以任绐任意ε>0,存在对任意有取.则H 是的无限开覆盖.由有限覆盖定理,从中可以选出有限个开区间来覆盖不妨设选出的这有限个开区间为取对任意不妨设,即当时,由于因此由一致连续定义,f 在上一致连续.§2 上极限和下极限1.求以下数列的上、下极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章重积分
21.1本章要点详解
本章要点
■二重积分的概念
■二重积分的定义、存在性及性质
■格林公式
■曲线积分与路径无关的定义
■二重积分的变量替换
■三重积分的定义、计算
■重积分的应用
重难点导学
一、二重积分的概念
1.平面图形的面积
(1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类
①Δi上的点都是P的内点;
②Δi上的点都是P的外点,即;
③Δi上含有P的边界点.
图21-1
将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ).
由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记
显然有
通常称I P 为P 的内面积,P I 为P 的外面积.
(2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积.
(3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得
S p (T )-s p (T )<ε
(4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的
小矩形所覆盖.
(5)平面有界图形P可求面积的充要条件是:P的边界K的面积为零.
(6)若曲线K为定义在[a,b]上的连续函数f(x)的图像,则曲线K的面积为零.(7)参数方程所表示的光滑曲线K的面积为零.
(8)由平面上分段光滑曲线所围成的有界闭区域是可求面积的.
2.二重积分的定义及其存在性
(1)设f(x,y)是定义在可求面积的有界闭区域D上的函数,J是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D的任何分割T,当它的细度时,属于T的所有积分和都有
则称f(x,y)在D上可积,数J称为函数f(x,y)在D上的二重积分,记作
其中f(x,y)称为二重积分的被积函数,x,y称为积分变量,D称为积分区域.
(2)f(x,y)在D上可积的充要条件是:.(3)f(x,y)在D上可积的充要条件是:对于任给的正数ε,存在D的某个分割T,使得S(T)-s(T)<ε.
(4)有界闭区域D上的连续函数必可积.
(5)设ε在有界闭域D上有界,且其不连续点集E是零面积集,则f(x,y)在D上可积.
3.二重积分的性质
(1)若f (x ,y )在区域D 上可积,k 为常数,则kf (x ,y )在D 上也可积,且
(,)d (,)d D D
kf x y k f x y σσ
=⎰⎰⎰⎰(2)若f (x ,y ),g (x ,y )在D 上都可积,则f (x ,y )±g (x ,y )在D 上也积,且
(3)若f (x ,y )在D 1和D 2上都可积,且D 1与D 2无公共内点,则f (x ,y )在D 1∪D 2上也可积,且
(4)若f (x ,y )与g (x ,y )在D 上可积,且
f (x ,y )≤
g (x ,y ),(x ,y )∈D
则
(5)若f (x ,y )在D 上可积,则函数|f (x ,y )|在D 上也可积,且
(6)若f (x ,y )在D 上可积,且
则
这里S D 是积分区域D 的面积.
(7)中值定理
若f (x ,y )在有界闭区域D 上连续,则存存(ξ,η)∈D ,使得
这里S D 是积分区域D 的面积.
二、直角坐标系下二重积分的计算
1.定义在矩形区域D =[a ,b ]×[c ,d ]上二重积分计算问题
(1)设f (x ,y )在矩形区域D =[a ,b ]×[c ,d ]上可积,且对每个x ∈[a ,b ],积分(,)d d
c f x y y ⎰存在,则累次积分
d (,)d b d
a c x f x y y ⎰⎰也存在,且(,)d d (,)d
b d
a c D f x y x f x y y σ=⎰⎰⎰⎰(2)设f (x .y )在矩形区域D =[a ,
b ]×[
c ,
d ]上可积,且对每个y ∈[c ,d ],积分(,)d b
a f x y x
⎰存在,则累次积分d (,)d d
b
c a y f x y x ⎰⎰也存在且(,)
d d (,)d d b
c a D f x y y f x y x σ=⎰⎰⎰⎰2.定义在一般区域的二重积分计算问题
若f (x ,y )在x 型区域D 上连续,其中y 1(x ),y 2(x )在[a ,b ]上连续,则
21()()(,)d d (,)d b y x a y x D f x y x f x y y
σ=⎰⎰⎰⎰即二重积分可化为先对y ,后对x 的累次积分.
三、格林公式、曲线积分与路线的无关性
1.格林公式
(1)设区域D 的边界L 中一条或几条光滑曲线所组成边界曲线的正方向规定为:当人
沿边界行走时,区域D总在它的左边;如图21-2所示,与上述规定的方向相反的方向称为负方向,记为-L.
图21-2
(2)若函数P(x,y),Q(x,y)在闭区域D上连续,且有连续的一阶偏导数,则有
(21-1)这里L为区域D的边界曲线,分段光滑,并取正方向.
(3)格林公式沟通了沿闭曲线的积分与二重积分之间的联系.格林公式(21-1)也可写成下述形式
2.曲线积分与路线的无关性
(1)若对于平面区域D上任一封闭曲线,皆可不经过D以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域.否则称为复连通区域.
(2)设D是单连通闭区域,若函数P(x,y),Q(x,y)在D内连续,且具有一阶连续偏导数,则以下四个条件等价
①沿D内任一按段光滑封闭曲线L,有。