[高中数学必修一]2.3 《幂函数》测试
高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高中数学必修1幂函数试题月考卷

高中数学必修1幂函数试题月考卷一、选择题(每题1分,共5分)1. 下列函数中,哪一个不是幂函数?A. y = x²B. y = x³C. y = 2xD. y = x¹/²2. 当x>0时,函数y=x^α是增函数,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠03. 幂函数y=x^α的图象在第一象限,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠04. 已知幂函数y=x^α在区间(0,+∞)上是减函数,则α的值是?A. α<0B. α=0C. α>0D. α=15. 若幂函数y=x^α在区间(∞,0)上单调递增,则α的值是?A. α>0B. α<0C. α=0D. α=1二、判断题(每题1分,共5分)1. 所有幂函数的图象都过原点。
()2. 幂函数的图象一定关于y轴对称。
()3. 当α为负数时,幂函数的图象在第一象限。
()4. 幂函数y=x^α中,当α为正偶数时,函数为偶函数。
()5. 幂函数y=x^α中,当α为正奇数时,函数为奇函数。
()三、填空题(每题1分,共5分)1. 幂函数y=x^α的图象在第二象限,则α的取值范围是______。
2. 当α=______时,幂函数y=x^α为常数函数。
3. 幂函数y=x^α在区间(∞,0)上单调递减,则α的取值范围是______。
4. 若幂函数y=x^α的图象关于y轴对称,则α的值是______。
5. 幂函数y=x^α的图象在第一、三象限,则α的取值范围是______。
四、简答题(每题2分,共10分)1. 简述幂函数的定义。
2. 幂函数y=x^α的图象可能经过哪些象限?3. 请举例说明什么是偶函数。
4. 请举例说明什么是奇函数。
5. 简述幂函数的性质。
五、应用题(每题2分,共10分)1. 已知幂函数y=x^α,当x=2时,y=8,求α的值。
高中数学必修1幂函数测试卷

学校:___________姓名:___________班级:___________考号:___________
题号
一
二
三
总分
得分
评卷人
得 分
一.单选题(共__小题)
1.已知幂函数f(x)过点 ,则f(4)的值为( )
A.
B.1
C.2
D.8
答案:A
解析:
解:设幂函数f(x)=xa,x>0,
A.
B.
C.
D.
答案:C
解析:
解:∵函数y= 的定义域是[0,+∞),
∴排除选项A和B,
又∵ ,∴曲线应该是下凸型递增抛物线.
故选:C.
幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数 的图象经过的“卦限”是( )
答案:{x|-1≤x<2}
解析:
解:设幂函数f(x)=xα,α为常数.
由于图象过点(2, ),
代入可得: ,
解得 .
∴f(x)= .
可知:函数f(x)在[0,+∞)单调递增,
∵f(a+1)<f(3),
∴0≤a+1<3,
解得-1≤a<2.
∴关于a的不等式f(a+1)<f(3)的解集是{x|-1≤x<2}.
(2)∵f(x)= ,
∴f(25)=
=
=
= ;
(3)∵f(a)= =b,
∴ ,
∴a-1=b2,
∴a= .
答案:
解:(1)设幂函数f(x)=xt,
∵图象过点(9, ),∴ ;
即32t=3-1,∴ ,
高中数学必修1 必修一幂函数专项练习题

必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
高中数学-幂函数测试题及答案详解

-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。
高中数学必修一同步练习题库:幂函数(简答题:一般)

幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。
求满足的实数的取值范围。
10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。
11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。
人教新课标版数学高一-必修1测评 2.3幂函数

第二章 2.3(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析: 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确; 因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但在它的定义域上不是减函数,故选项D 不正确.答案: C2.下列幂函数中过点(0,0),(1,1)的偶函数是( )A .y =x 12B .y =x 4C .y =x -2D .y =x 13解析: 函数y =x 12定义域为(0,+∞),既不是奇函数也不是偶函数,故A 不正确;函数y =x 4是过点(0,0),(1,1)的偶函数, 故B 正确;函数y =x -2不过点(0,0),故C 不正确;函数y =x 13是奇函数,故D 不正确.答案: B3.设a =⎝⎛⎭⎫1234 ,b =⎝⎛⎭⎫1534 ,c =⎝⎛⎭⎫1212,则( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析: 由y =x 34是[0,+∞)上的增函数,∴⎝⎛⎭⎫1534 <⎝⎛⎭⎫1234 ,由y =⎝⎛⎭⎫12x 是R 上的减函数, ∴⎝⎛⎭⎫1234 <⎝⎛⎭⎫1212 .∴b <a <c . 答案: D4.已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b解析: 由幂函数的图象特征知,c <0,a >0,b >0.由幂函数的性质知,当x >1时,幂指数大的幂函数的函数值就大,则a >b . 综上所述,可知c <b <a . 答案: A二、填空题(每小题5分,共10分) 5.已知幂函数f (x )=x m2-1(m ∈Z )的图象与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.解析: ∵函数的图象与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1; ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 答案: f (x )=x -16.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2的解集是解析: 由表中数据知22=⎝⎛⎭⎫12α,∴α=12,∴f (x )=x 12,∴|x |12≤2,即|x |≤4,故-4≤x ≤4. 答案: {x |-4≤x ≤4}三、解答题(每小题10分,共20分) 7.已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.求函数f (x )的解析式.解析: ∵f (x )在区间(0,+∞)上是单调增函数,∴-m 2+2m +3>0,即m 2-2m -3<0,-1<m <3.又m ∈Z ,∴m =0,1,2,而m =0,2时,f (x )=x 3不是偶函数,m =1时,f (x )=x 4是偶函数,∴f (x )=x 4.8.已知幂函数f (x )=x a 的图象经过点A ⎝⎛⎭⎫12,2. (1)求实数a 的值;(2)用定义证明f (x )在区间(0,+∞)内的单调性. 解析: (1)∵f (x )=x a 的图象经过点A ⎝⎛⎭⎫12,2, ∴⎝⎛⎭⎫12a=2,即2-a =212,∴a =-12.(2)证明:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 2-12 -x 1-12=1x 2-1x 1=x 1-x 2x 1x 2=x 1-x 2x 1x 2·(x 1+x 2).∵x 2>x 1>0,∴x 1-x 2<0,且x 1x 2·(x 1+x 2)>0, 于是f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),所以f (x )=x -12在区间(0,+∞)内是减函数.(10分)已知幂函数f (x )=(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数还经过(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围.解析: (1)∵m ∈N *, ∴m 2+m =m ×(m +1)为偶数.令m 2+m =2k ,k ∈N *,则f (x )=x 12k =2k x ,∴定义域为[0,+∞),在[0,+∞)上f (x )为增函数. (2)∵2=,∴m 2+m =2,解得m =1或m =-2(舍去),∴f (x )=x 12,令2-a >a -1≥0,可得1≤a <32.。
人教版高中数学必修一《幂函数》综合练习题含答案

数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2。
3幂函数
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号
填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是 ( ) A . B . C . D . 2.函数2
-=x y
在区间]2,2
1
[上的最大值是
( )
A .
4
1 B .1-
C .4
D .4- 3.下列所给出的函数中,是幂函数的是
( )
A .3
x y -=
B .3
-=x
y
C .3
2x y = D .13
-=x y 4.函数3
4x y =的图象是
( )
A .
B .
C .
D .
5.下列命题中正确的是
( )
A .当0=α时函数α
x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点
C .若幂函数αx y =是奇函数,则α
x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限
6.函数3
x y =和3
1x y =图象满足
( )
A .关于原点对称
B .关于x 轴对称
C .关于y 轴对称
D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足
( )
A .是奇函数又是减函数
B .是偶函数又是增函数
C .是奇函数又是增函数
D .是偶函数又是减函数 8.函数2422
-+=
x x y 的单调递减区间是( )
A .]6,(--∞
B .),6[+∞-
C .]1,(--∞
D .),1[+∞-
9. 如图1—9所示,幂函数α
x y =在第一象限的图象,
1α
3α
4α
2α
比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<
10. 对于幂函数5
4)(x x f =,若210x x <<,则
)2(
21x x f +,
2)
()(21x f x f +大小关系是( ) A .)2(21x x f +>2)
()(21x f x f + B . )2(
21x x f +<2
)
()(21x f x f + C . )2(
21x x f +=2
)
()(21x f x f +
D . 无法确定
二、填空题:请把答案填在题中横线上(每小题6分,共24分)。
11.函数的定义域是 。
12.的解析式是 。
13.9
42
--=a a
x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .
14.幂函数),*,,,()1(互质n m N k n m x y m
n
k
∈=-图象在一、二象限,不过原点,则n m k ,,的
奇偶性为 .
三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) 。
15.(12分)比较下列各组中两个值大小
(1)
16.(12分)已知幂函数 轴对称,试确定的解析式。
17.(12分)求证:函数3
x y =在R 上为奇函数且为增函数。
18.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.
.
6543212
1
323
23
12
3
---======x y x y x y x y x y x y );();()(;);();()(
(A ) (B ) (C) (D ) (E) (F )
19.(14分)由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x
),涨
价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设
售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.
20.(14分)利用幂函数图象,画出下列函数的图象(写清步骤)。
(1).
参考答案(8)
一、CCBAD DCADA 二、11. ; 12.
)0()(3
4≥=x x x f ; 13.5; 14.k m ,为奇数,n 是偶数;
三、15. 解:(1)+∞<<<+∞=7.06.00),0(11
6
上是增函数且在函数x y
11
611
67.06
.0<∴ (2)函数),0(3
5+∞=在x y 上增函数且89.088.00<<
.)89.0()88.0(,89.088.089
.088.03
53535353
53
5-<-∴->-∴<∴即
16. 解:由.3,1,1320
3222⎪⎩
⎪⎨
⎧∈-=--≤--Z m m m m m m 得是偶数
.)(1,)(3140-===-=x x f m x x f m 时解析式为时解析式为和
17.解: 显然)()()(33x f x x x f -=-=-=-,奇函数;
令21
x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-,
其中,显然021
<-x x ,
2
2
212
1x x x x ++=2
22214
3)21(x x x ++
,由于0)21(221≥+x x ,04322≥x ,
且不能同时为0,否则021
==x x ,故04
3)2
1(22221>++x x x 。
从而0)()(21<-x f x f . 所以该函数为增函数. 18.解:六个幂函数的定义域,奇偶性,单调性如下:
(1)
3
2
3
x x y =
=定义域[0,,既不是奇函数也不是偶函数,在[0,是增函数;
.)
,0(1
6),0(1
5),0(1
4),0[3),0[221332
23232
33
1上减函数函数,在既不是奇函数也不是偶定义域为)(是减函数;
是奇函数,在定义域)(是减函数;是偶函数,在定义域)(是增函数;
,是偶函数,在定义域为)(是增函数;,是奇函数,在定义域为)(+∞==+∞==+∞=
=+∞==+∞==+--+--+-R x
x y UR R x x y UR R x x y R x x y R x x y
通过上面分析,可以得出(1)
(A ),(2)
(F ),(3)
(E),(4)
(C ),(5)
(D),(6)
(B ).
19.解:设原定价A 元,卖出B 个,则现在定价为A(1+
10
x
), 现在卖出个数为B (1-
10bx
),现在售货金额为A(1+10x ) B (1-10
bx )=AB(1+10x )(1-10bx ),
应交税款为AB(1+
10
x )(1-10bx
)·10a ,
剩余款为y = AB (1+
10x
)(1-10
bx ))101(a -= AB )1101100)(101(2+-+--x b x b a , 所以b
b x )1(5-=时y 最大 要使y 最大,x 的值为b
b x )1(5-=.
20.解:(1)1)
1(1
11211
2222
22
2
++=+++=
++++=x x x x x x x y 把函数2
1
,x y =
的图象向左平移1个单位,
再向上平移1个单位可以得到函数1
22
222++++=x x x x y 的图象。
(2)1)
2(3
5--=-x y 的图象可以由3
5-
=x y 图象向右平移2个单位,再向下平移
1个单位而得到.图象略。