美国环保署 EPA 方法8410
美国EPA快速评价体系

美国EPA快速评价体系
美国EPA快速评价体系:EPA是美国环境保护署(U.SEnvironmentalProtectionAgency)的英文缩写。
美国EPA快速评价体系的主要任务是保护人类健康和自然环境。
EPA总部设在华盛顿, 有 10 个地方办公室和几十个实验室。
在全美国有18000 名雇员。
他们半数以上是工程师 , 科学家和政策分析家。
负责对很多环境项目设立国家标准 , 监控强制性标准的执行和符合情况。
EPA 联合州和地方政府颁发一系列商业以及工业许可证。
EPA认证美国环保总署EPA的主要目的是保护人民健康、保护生态环境--空气、水和土地这些我们赖以生存的环境。
在成立之后的30多年,EPA一直在为给全美人民创造一个整洁的健康环境而努力。
如果符合EPA要求,则EPA会颁发符合证书。
EPA测试方法-目录

目录---------------------------第一卷A 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一部分分析测定方法第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第二章—选择正确的步骤2.1 目的2.2 需要的信息2.3 使用指南2.4 特性2.5 地表水2.6 参考文献第三章—无机物分析3.1 采样注意事项3.2 样品准备方法方法3005A 用于火焰原子吸收光谱(FLAA)或电感偶合等离子发射光谱(ICP)进行总可回收或可溶性金属离子检测水样的酸性消化方法。
方法3010A 用于火焰原子吸收光谱(FLAA)或电感偶合等离子体原子发射光谱(ICP)进行全金属分析的水溶液或萃取物的酸性消化方法。
方法3015 水溶液或萃取物的微波辅助酸性消化方法。
方法3020A 用于无火焰原子吸收光谱法(GFAA)进行全金属分析的水溶液或萃取物的酸性消化方法。
方法3031 用于原子吸收光谱(AAS)或电感偶合等离子体原子发射光谱(ICP进行油脂中金属分析的油样的酸性消化方法。
方法3040A 油、脂和石蜡的溶解方法。
方法3050B 沉积物、污泥和土壤的酸性消化方法。
方法3051 沉积物、污泥和土壤的微波辅助酸性消化方法。
方法3052 硅酸盐和有机物质的微波酸性消化方法。
方法3060A 六价铬的碱性消化。
3.3 无机物的测定方法6010B 电感耦合等离子发射光谱(ICP-AES)方法6020 电感耦合等离子体质谱(ICP-MASS)方法7000A 原子吸收法方法7020 铝(原子吸收,直接进样)方法7040 锑(原子吸收,直接进样)方法7041 锑(原子吸收,石墨炉法)方法7060A 砷(原子吸收,石墨炉法)方法7061A 砷(原子吸收,氢火焰法)方法7062 锑和砷(原子吸收,氢硼化钠还原法)方法7063 砷水溶液和萃取物的阳极溶出伏安法(ASV)方法7080A 钡(原子吸收,直接进样)方法7081 钡(原子吸收,石墨炉法)方法7090 铍(原子吸收,直接进样)方法7091 铍(原子吸收,石墨炉法)方法7130 镉(原子吸收,直接进样)方法7131A 镉(原子吸收,石墨炉法)方法7140 钙(原子吸收,直接进样)方法7190 铬(原子吸收,直接进样)方法7191 铬(原子吸收,石墨炉法)方法7195 铬,六价(共沉淀法)方法7196A 铬,六价(比色法)方法7197 铬,六价(螯合/萃取)方法7198 铬,六价(微分脉冲极谱法DPP)方法7199 饮用水、地表水和工业排放废水中六价铬的测定-离子色谱法方法7200 钴(原子吸收,直接进样)方法7201 钴(原子吸收,石墨炉法)方法7210 铜(原子吸收,直接进样)方法7211 铜(原子吸收,石墨炉法)方法7380 铁(原子吸收,直接进样)方法7381 铁(原子吸收,石墨炉法)方法7420 铅(原子吸收,直接进样)方法7421 铅(原子吸收,石墨炉法)方法7430 锂(原子吸收,直接进样)方法7450 镁(原子吸收,直接进样)方法7460 锰(原子吸收,直接进样)方法7461 锰(原子吸收,石墨炉法)方法7470A 废液中的汞(冷蒸汽原子吸收光谱法)方法7471A 固体或半固体废弃物中的汞(冷蒸汽原子吸收光谱法)方法7472 阳极溶出伏安法测定水溶液和萃取物中的汞方法7480 钼(原子吸收,直接进样)方法7481 钼(原子吸收,石墨炉法)方法7520 镍(原子吸收,直接进样)方法7521 镍(原子吸收,石墨炉法)方法7550 锇(原子吸收,直接进样)方法7580 白磷(P4)的溶剂萃取-气相色谱法(GC)方法7610 钾(原子吸收,直接进样)方法7740 硒(原子吸收,石墨炉法)方法7741A 硒(原子吸收,氢火焰法)方法7742 硒(原子吸收,氢硼化钠还原法)方法7760A 硅(原子吸收,直接进样)方法7761 硅(原子吸收,石墨炉法)方法7770 钠(原子吸收,直接进样)方法7780 锶(原子吸收,直接进样)方法7840 铊(原子吸收,直接进样)方法7841 铊(原子吸收,石墨炉法)方法7870 锡(原子吸收,直接进样)方法7910 钒(原子吸收,直接进样)方法7911 钒(原子吸收,石墨炉法)方法7950 锌(原子吸收,直接进样)方法7951 锌(原子吸收,石墨炉法)附件—公司推荐---------------------------第一卷B 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第四章—有机物分析4.1 采样注意事项4.2 样品准备方法4.2.1 萃取和准备方法3500B 有机物的萃取和样品准备方法3510C 分液漏斗液--液萃取方法3520C 连续液--液萃取方法3535 固相萃取(SPE)方法3540C 索氏萃取方法3541 自动索氏萃取方法3542 使用方法0010(改进后的采样教程方法5)萃取半挥发性有机物方法3545 加压液体萃取(PFE)方法3550B 超声波萃取方法3560 超临界流体萃取总可回收石油烃方法3561 超临界流体萃取多环芳烃方法3580A 固废分解方法3585 挥发性有机物固废样品的分解方法5000 挥发性有机物样品准备方法5021 用顶空法准备土壤中或其他固体物质中的挥发性有机物方法5030B 水溶液样品的吹扫捕集方法5031 共沸蒸馏法提取挥发性、不可吹出、水溶性有机化合物方法5032 挥发性有机物的真空蒸馏方法5035 封闭体系的吹扫捕集和萃取提取土壤和固废样品中的挥发性有机物方法5041A 挥发性有机物采样系统(VOST)吸附柱解吸物的分析4.2.2 净化方法3600C 净化方法3610B 铝氧土净化方法3611B 铝氧土柱的净化以及石油类废物的分离方法3620B Florisil柱的净化方法3630C 硅胶净化方法3640A 凝胶色谱柱净化方法3650B 酸性层析柱的净化方法3660B 硫的净化方法3665A 硫酸/高锰酸钾净化4.3 有机物的测定4.3.1 气相色谱法方法8000B 分析性的色谱分离方法8011 微萃取-气相色谱分析1,2-二溴乙烷和1,2-二溴-3-氯丙烷方法8015B 气相色谱-氢火焰离子检测器(GC-FID)测定非卤代有机物方法8021B 气相色谱法分析芳香族化合物和卤代挥发性有机物—使用光电离检测器(PID)和/或电导检测器(ELCD)方法8031 气相色谱分析丙烯腈方法8032A 气相色谱分析丙烯酰胺方法8033 气相色-氮磷检测器(GC-NPD)分析乙腈方法8041 气相色谱分析酚类方法8061A 气相色谱-电子捕获检测器(GC-ECD)分析邻苯二甲酸酯类方法8070A 气相色谱分析亚硝胺方法8081A 气相色谱分析有机氯杀虫剂方法8082 气相色谱分析多氯联苯方法8091 气相色谱分析硝基芳香烃和环酮方法8100 多核(多环)芳烃方法8111 气相色谱分析卤代醚类方法8121 气相色谱检测氯代烃:毛细管法方法8131 气相色谱法检测苯胺及其衍生物方法8141A 气相色谱分析有机磷化合物:毛细管法方法8151A 甲基化和氟代醇苯甲基化气相色谱法检测氯代除草剂4.3.2 气质联用法(GC-MASS)方法8260B 气质联用法测定挥发性有机物(VOCs)方法8270C 气质联用法测定半挥发性有机物方法8275A 热提取-气质联用法(TE/GC/MS)测定土壤、污泥和固废中的半挥发性有机物(多环芳烃PAHs和多氯联苯PCBs)方法8280A 高分辨率色谱/低分辨率质谱(HRGC/LRMS)法测定多氯二苯并对二英和多氯二苯并呋喃方法8290 高分辨率色谱/高分辨率质谱(HRGC/HRMS)法测定多氯二苯并二恶英(PCDDs)和多氯二苯并呋喃(PCDFs)附件A:实验室进行的擦拭实验的采集、处理、分析和报告步骤4.3.3 高效液相色谱法(HPLC)方法8310 多环芳烃方法8315A 高效液相色谱法测定碳酰(羰基)化合物附录A:2,4-二硝基苯肼的重结晶方法8316 丙烯酰胺、丙烯腈和丙烯醛的测定—高效液相色谱法方法8318 高效液相色谱分析N-氨基甲酸甲酯方法8321A 高效液相色谱/热喷雾/质谱法(HPLC/TS/MS)测定非挥发性有机物的可溶性提取物方法8325 高效液相色谱/粒子束/质谱法(HPLC/PB/MS)测定非挥发性有机物的可溶性提取物方法8330 硝基芳烃和硝胺的测定—高效液相色谱法方法8331 反相高效液相色谱法测定四氮烯方法8332 硝化甘油的测定—高效液相色谱法4.3.4 红外法方法8410 半挥发性有机物的测定—气相色谱/傅立叶变换红外光谱法(GC/FT-IR):毛细管柱方法8430 水溶液直接进样气相色谱/傅立叶变换红外光谱法(GC/FT-IR)分析双氯甲醚及其水解产物方法8440 红外光谱法分析总可回收石油烃4.3.5 多光谱分析法方法8520 环境空气中甲醛的连续免疫测定4.4 免疫测定法方法4000 免疫测定方法4010A 用免疫测定法进行五氯苯酚的筛检方法4015 用免疫测定法进行2,4-二氯苯氧基乙酸的筛检方法4020 用免疫测定法进行多氯联苯的筛检方法4030 用免疫测定法对土壤中石油烃进行筛检方法4035 用免疫测定法对土壤中多环芳烃进行筛检方法4040 用免疫测定法对土壤中毒杀芬进行筛检方法4041 用免疫测定法对土壤中氯丹进行筛检方法4042 用免疫测定法对土壤中DDT进行筛检方法4050 用免疫测定法对土壤中TNT爆炸性物质进行筛检方法4051 用免疫测定法对土壤中黑索今(环三亚甲基三硝胺RDX)进行筛检4.5 多种筛选法方法3810 顶空法方法3820 可清除有机物的十六烷提取和筛检法方法8515 土壤中TNT物质的比色筛检法方法9078 土壤中多氯联苯的筛选法方法9079 变压器油中多氯联苯的筛选法附件—公司推荐---------------------------第一卷C 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第五章—其它各种测试方法方法5050 固废爆炸的预防方法方法9010C 总可测定氰化物:蒸馏法方法9012B 总可测定氰化物(手动蒸馏,自动比色)方法9013 固废和土壤中氰化物的萃取方法方法9014 滴定和手动分光光度法测定氰化物方法9020B 总有机卤素(TOX)方法9021 挥发性有机卤素(POX)方法9022 中子活法分析法测定总有机卤素(TOX)方法9023 土壤中的可萃取有机卤素(EOX)方法9030B 酸溶性和非酸溶性硫化物:蒸馏法方法9031 可萃取硫化物方法9034 滴定法测定酸溶性和非酸溶性硫化物方法9035 硫酸盐(比色法,自动,氯冉酸盐)方法9036 硫酸盐(比色法,自动,甲基百里酚兰,)方法9038 硫酸盐(浊度计)方法9056 离子色谱法测定无机阴离子方法9057 阴离子色谱法测定HCl/Cl2排放源采集样品中的氯化物方法9060A 总有机碳(TOC)方法9065 酚醛塑料(分光光度法,手动4-氨基安替比林蒸馏)方法9066 酚醛塑料(比色法,自动4-氨基安替比林蒸馏)方法9067 酚醛塑料(分光光度法,酚试剂蒸馏)方法9070A 用于水溶液样品的正己烷可提取物方法9071B 用于污泥、沉积物、土壤样品的正己烷可提取物方法9075 X射线荧光光谱法分析新的或使用过的石油产品中的总氯方法9076 燃烧氧化和微库仑法分析新的或使用过的石油产品中的总氯方法9077 新的或使用过的石油产品中的总氯(现场测试套件)方法A:固定终点套件法方法B:反向滴定终点定量套件法方法C:直接滴定终点定量套件法方法9131 大肠杆菌:多管发酵法方法9132 大肠杆菌:膜过滤法方法9210 离子选择电极点位滴定法测定水溶液样品中的硝酸盐方法9211 离子选择电极点位滴定法测定水溶液样品中的溴化物方法9212 离子选择电极点位滴定法测定水溶液样品中的氯化物方法9213 蒸馏后离子选择电极点位滴定法测定水溶液样品中的氰化物方法9214 离子选择电极点位滴定法测定水溶液样品中的氟化物方法9215 蒸馏后离子选择电极点位滴定法测定水溶液样品中的硫化物方法9250 氯化物(比色法,自动铁氰化物,AAI)方法9251 氯化物(比色法,自动铁氰化物,AAII)方法9253 氯化物(滴定法,硝酸银)方法9320 镭-288第六章—性质分析方法1030 固体的可燃性方法1120 皮肤腐蚀性方法1312 人工凝结浸出方法方法1320 多次萃取法方法1330A 含油废弃物的提取方法9041A pH试纸制作方法方法9045D 土壤和废弃物pH方法9050A 电导率方法9080 土壤的阳离子交换性能(醋酸铵)方法9081 土壤的阳离子交换性能(醋酸钠)方法9090A 废弃物和膜沉淀的兼容性试验方法9095B 滤芯液体试验方法9096 液体泄露试验方法附件A:液体泄露试验预试验方法9100 饱和水溶液电导,饱和滤出液电导以及固有磁导率方法9310 总α、总β放射性水平方法9315 α放射性同位素第二部分性状第七章—性状说明和定义7.1 可燃性7.2 腐蚀性7.3 反应性7.4 毒性物质提取步骤第八章—性状测定方法8.1 可燃性方法1010A 潘-马氏闭杯分析仪测定闪点方法1020B 闪点的标准测定方法Setaflash闭杯分析仪法8.2 腐蚀性方法9040C pH电极测量方法1110A 钢铁腐蚀性测验8.3 毒性方法1310B 提取过程毒性测试方法和结构完整性试验方法1311 毒性物质提取步骤附件—公司推荐---------------------------第二卷---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第三部分采样第九章—采样计划9.1 规划和设计9.2 执行第十章—采样方法方法0010 改进后的Method 5 Sampling Train附件A:XAD-2吸附树脂的准备附件B:所有可用色谱分析物质的分析方法0011 固定醛酮类排放源的采样方法方法0020 源头评价采样方法方法0023A 固定多氯联苯并二恶英和多氯联苯并呋喃源的采样方法方法0030 挥发性有机物采样教程方法0031 挥发性有机化合物采样方法方法0040 塑料袋燃烧源头主要持久性危险有机物的采样方法方法0050 HCl/Cl2排放源的等动力采样教程方法0051 HCl/Cl2排放源的小型冲击吸收瓶采样教程方法0060 烟囱排放源的金属测定方法0061 固定排放源六价铬的测定方法0100 室内甲醛和其它羰基化合物的采样第四部分监测第十一章—地表水监测11.1 背景和目标11.2 与标准的关系和与其他文件的关系11.3 修订本和附录11.4 可以接受的设计和措施11.5 不可接受的设计和措施第十二章—土地处理(有害废物的)监测12.1 背景12.2 处理区域12.3 定义12.4 监测和采样策略12.5 分析12.6 参考文献和内容提要第十三章—灰化13.1 说明13.2 定义13.3 废物定性策略13.4 烟囱气体排放物定性策略13.5 附加排放物定性策略13.6 采样和分析方法的选择13.7 参考文献附件—公司推荐。
美国环保局 EPA 试验 方法 8318

METHOD 8318N-METHYLCARBAMATES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)1.0SCOPE AND APPLICATION1.1Method 8318 is used to determine the concentration of N-methylcarbamates in soil, water and waste matrices. The following compounds can be determined by this method:_______________________________________________________________________________Compound Name CAS No.a________________________________________________________________________________Aldicarb (Temik) 116-06-3Aldicarb Sulfone 1646-88-4Carbaryl (Sevin) 63-25-2Carbofuran (Furadan) 1563-66-2Dioxacarb 6988-21-23-Hydroxycarbofuran16655-82-6Methiocarb (Mesurol) 2032-65-7Methomyl (Lannate)16752-77-5Promecarb 2631-37-0Propoxur (Baygon) 114-26-1________________________________________________________________________________aChemical Abstract Services Registry Number.1.2The method detection limits (MDLs) of Method 8318 for determining the target analytes in organic-free reagent water and in soil are listed in Table 1.1.3This method is restricted to use by, or under the supervision of, analysts experienced in the use of high performance liquid chromatography (HPLC) and skilled in the interpretation of chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1N-methylcarbamates are extracted from aqueous samples with methylene chloride, and from soils, oily solid waste and oils with acetonitrile. The extract solvent is exchanged to methanol/ethylene glycol, and then the extract is cleaned up on a C-18 cartridge, filtered, and eluted on a C-18 analytical column. After separation, the target analytes are hydrolyzed and derivatized post-column, then quantitated fluorometrically.2.2Due to the specific nature of this analysis, confirmation by a secondary method is not essential. However, fluorescence due to post-column derivatization may be confirmed by substituting the NaOH and o-phthalaldehyde solutions with organic-free reagent water and reanalyzing the sample. Iffluorescence is still detected, then a positive interference is present and care should be taken in the interpretation of the results.2.3The sensitivity of the method usually depends on the level of interferences present, rather than on the instrumental conditions. Waste samples with a high level of extractable fluorescent compounds are expected to yield significantly higher detection limits.3.0INTERFERENCES3.1Fluorescent compounds, primarily alkyl amines and compounds which yield primary alkyl amines on base hydrolysis, are potential sources of interferences.3.2Coeluting compounds that are fluorescence quenchers may result in negative interferences.3.3Impurities in solvents and reagents are additional sources of interferences. Before processing any samples, the analyst must demonstrate daily, through the analysis of solvent blanks, that the entire analytical system is interference free.4.0APPARATUS AND MATERIALS4.1HPLC system4.1.1An HPLC system capable of injecting 20 µL aliquots andperforming multilinear gradients at a constant flow. The system must also be equipped with a data system to measure the peak areas.4.1.2C-18 reverse phase HPLC column, 25 cm x 4.6 mm (5 µm).4.1.3Post Column Reactor with two solvent delivery systems (KratosPCRS 520 with two Kratos Spectroflow 400 Solvent Delivery Systems, or equivalent).4.1.4Fluorescence detector (Kratos Spectroflow 980, or equivalent).4.2Other apparatus4.2.1Centrifuge.4.2.2Analytical balance - + 0.0001 g.4.2.3Top loading balance - + 0.01 g.4.2.4Platform shaker.4.2.5Heating block, or equivalent apparatus, that can accommodate10 mL graduated vials (Sec. 4.3.11).4.3Materials4.3.1HPLC injection syringe - 50 µL.4.3.2Filter paper, (Whatman #113 or #114, or equivalent).4.3.3Volumetric pipettes, Class A, glass, assorted sizes.R4.3.4Reverse phase cartridges, (C-18 Sep-Pak [Waters Associates],or equivalent).4.3.5Glass syringes - 5 mL.4.3.6Volumetric flasks, Class A - Sizes as appropriate.4.3.7Erlenmeyer flasks with teflon-lined screw caps, 250 mL.4.3.8Assorted glass funnels.4.3.9Separatory funnels, with ground glass stoppers and teflonstopcocks - 250 mL.4.3.10Graduated cylinders - 100 mL.4.3.11Graduated glass vials - 10 mL, 20 mL.4.3.12Centrifuge tubes - 250 mL.4.3.13Vials - 25 mL, glass with Teflon lined screw caps orcrimp tops.4.3.14Positive displacement micro-pipettor, 3 to 25 µLdisplacement, (Gilson Microman [Rainin #M-25] with tips, [Rainin #CP-25], or equivalent).4.3.15Nylon filter unit, 25 mm diameter, 0.45 µm pore size,disposable (Alltech Associates, #2047, or equivalent).5.0REAGENTS5.1HPLC grade chemicals shall be used in all tests. It is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lowering the accuracy of the determination.5.2General5.2.1Acetonitrile, CH CN - HPLC grade - minimum UV cutoff at 203 nm3(EM Omnisolv #AX0142-1, or equivalent).5.2.2Methanol, CH OH - HPLC grade - minimum UV cutoff at 230 nm (EM3Omnisolv #MX0488-1, or equivalent).5.2.3Methylene chloride, CH Cl - HPLC grade - minimum UV cutoff at22230 nm (EM Omnisolv #DX0831-1, or equivalent).5.2.4Hexane, C H - pesticide grade - (EM Omnisolv #HX0298-1, or614equivalent).5.2.5Ethylene glycol, HOCH CH OH - Reagent grade - (EM Science, or22equivalent).5.2.6Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.2.7Sodium hydroxide, NaOH - reagent grade - 0.05N NaOH solution.5.2.8Phosphoric acid, H PO - reagent grade.345.2.9pH 10 borate buffer (J.T. Baker #5609-1, or equivalent).5.2.10o-Phthalaldehyde, o-C H(CHO) - reagent grade (Fisher642#0-4241, or equivalent).5.2.112-Mercaptoethanol, HSCH CH OH - reagent grade (Fisher22#0-3446, or equivalent).5.2.12N-methylcarbamate neat standards (equivalence to EPA standards must be demonstrated for purchased solutions).5.2.13Chloroacetic acid, ClCH COOH, 0.1 N.25.3Reaction solution5.3.1Dissolve 0.500 g of o-phthalaldehyde in 10 mL of methanol, ina 1 L volumetric flask. To this solution, add 900 mL of organic-free reagent water, followed by 50 mL of the borate buffer (pH 10). After mixing well, add 1 mL of 2-mercaptoethanol, and dilute to the mark with organic-free reagent water. Mix the solution thoroughly. Prepare fresh solutions on a weekly basis, as needed. Protect from light and store under refrigeration.5.4Standard solutions5.4.1Stock standard solutions: prepare individual 1000 mg/L solutions by adding 0.025 g of carbamate to a 25 mL volumetric flask, and diluting to the mark with methanol. Store solutions, under refrigeration, in glass vials with Teflon lined screw caps or crimp tops. Replace every six months.5.4.2Intermediate standard solution: prepare a mixed 50.0 mg/L solution by adding 2.5 mL of each stock solution to a 50 mL volumetric flask, and diluting to the mark with methanol. Store solutions, underrefrigeration, in glass vials with Teflon lined screw caps or crimp tops.Replace every three months.5.4.3Working standard solutions: prepare 0.5, 1.0, 2.0, 3.0 and 5.0mg/L solutions by adding 0.25, 0.5, 1.0, 1.5 and 2.5 mL of the intermediate mixed standard to respective 25 mL volumetric flasks, and diluting each to the mark with methanol. Store solutions, under refrigeration, in glass vials with Teflon lined screw caps or crimp tops.Replace every two months, or sooner if necessary.5.4.4Mixed QC standard solution: prepare a 40.0 mg/L solution fromanother set of stock standard solutions, prepared similarly to those described in Sec. 5.4.1. Add 2.0 mL of each stock solution to a 50 mL volumetric flask and dilute to the mark with methanol. Store the solution, under refrigeration, in a glass vial with a Teflon lined screw cap or crimp top. Replace every three months.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1Due to the extreme instability of N-methylcarbamates in alkaline media, water, waste water and leachates should be preserved immediately after collection by acidifying to pH 4-5 with 0.1 N chloroacetic acid.6.2Store samples at 4E C and out of direct sunlight, from the time of collection through analysis. N-methylcarbamates are sensitive to alkaline hydrolysis and heat.6.3All samples must be extracted within seven days of collection, and analyzed within 40 days of extraction.7.0PROCEDURE7.1Extraction7.1.1Water, domestic wastewater, aqueous industrial wastes, andleachates7.1.1.1Measure 100 mL of sample into a 250 mL separatoryfunnel and extract by shaking vigorously for about 2 minutes with 30mL of methylene chloride. Repeat the extraction two more times.Combine all three extracts in a 100 mL volumetric flask and diluteto volume with methylene chloride. If cleanup is required, go toSec. 7.2. If cleanup is not required, proceed directly to Sec.7.3.1.7.1.2Soils, solids, sludges, and heavy aqueous suspensions7.1.2.1Determination of sample % dry weight - In certaincases, sample results are desired based on dry-weight basis. Whensuch data is desired, a portion of sample for this determinationshould be weighed out at the same time as the portion used for analytical determination.WARNING:The drying oven should be contained in a hood orvented. Significant laboratory contamination mayresult from a heavily contaminated hazardouswaste sample.7.1.2.1.1Immediately after weighing the sample forextraction, weigh 5-10 g of the sample into a tared crucible.Determine the % dry weight of the sample by drying overnightoat 105C. Allow to cool in a desiccator before weighing:% dry weight = g of dry sample x 100g of sample7.1.2.2Extraction - Weigh out 20 + 0.1 g of sample intoa 250 mL Erlenmeyer flask with a Teflon-lined screw cap. Add 50 mLof acetonitrile and shake for 2 hours on a platform shaker. Allow the mixture to settle (5-10 min), then decant the extract into a 250 mL centrifuge tube. Repeat the extraction two more times with 20 mL of acetonitrile and 1 hour shaking each time. Decant and combine all three extracts. Centrifuge the combined extract at 200 rpm for10 min. Carefully decant the supernatant into a 100 mL volumetricflask and dilute to volume with acetonitrile. (Dilution factor = 5) Proceed to Sec. 7.3.2.7.1.3Soils heavily contaminated with non-aqueous substances, such as oils7.1.3.1Determination of sample % dry weight - FollowSecs. 7.1.2.1 through 7.1.2.1.1.7.1.3.2Extraction - Weigh out 20 + 0.1 g of sample intoa 250 mL Erlenmeyer flask with a Teflon-lined screw cap. Add 60 mLof hexane and shake for 1 hour on a platform shaker. Add 50 mL of acetonitrile and shake for an additional 3 hours. Allow the mixture to settle (5-10 min), then decant the solvent layers into a 250 mL separatory funnel. Drain the acetonitrile (bottom layer) through filter paper into a 100 mL volumetric flask. Add 60 mL of hexane and50 mL of acetonitrile to the sample extraction flask and shake for1 hour. Allow the mixture to settle, then decant the mixture intothe separatory funnel containing the hexane from the first extraction. Shake the separatory funnel for 2 minutes, allow the phases to separate, drain the acetonitrile layer through filter paper into the volumetric flask, and dilute to volume with acetonitrile. (Dilution factor = 5) Proceed to Sec. 7.3.2.7.1.4Non-aqueous liquids such as oils7.1.4.1Extraction - Weigh out 20 + 0.1 g of sample intoa 125 mL separatory funnel. Add 40 mL of hexane and 25 mL ofacetonitrile and vigorously shake the sample mixture for 2 minutes.Allow the phases to separate, then drain the acetonitrile (bottomlayer) into a 100 mL volumetric flask. Add 25 mL of acetonitrile tothe sample funnel, shake for 2 minutes, allow the phases toRepeat the extraction with another 25 mL portion of acetonitrile,combining the extracts. Dilute to volume with acetonitrile.(Dilution factor = 5). Proceed to Sec. 7.3.2.7.2Cleanup - Pipet 20.0 mL of the extract into a 20 mL glass vial containing 100 µL of ethylene glycol. Place the vial in a heating block set at o50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Dissolve the ethylene glycol residue in 2 mL of methanol, pass the extract through a pre-washed C-18 reverse phase cartridge, and collect the eluate in a 5 mL volumetric flask. Elute the cartridge with methanol, and collect the eluate until the final volume of 5.0 mL is obtained. (Dilution factor = 0.25) Using a disposable 0.45 µm filter, filter an aliquot of the clean extract directly into a properly labelled autosampler vial. The extract is now ready for analysis. Proceed to Sec. 7.4.7.3Solvent Exchange7.3.1Water, domestic wastewater, aqueous industrial wastes, andleachates:Pipet 10.0 mL of the extract into a 10 mL graduated glass vial containing 100 µL of ethylene glycol. Place the vial in a heating block oset at 50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Add methanol to the ethylene glycol residue, dropwise, until the total volume is 1.0 mL. (Dilution factor = 0.1). Using a disposable 0.45 µm filter, filter this extract directly into a properly labelled autosampler vial.The extract is now ready for analysis. Proceed to Sec. 7.4.7.3.2Soils, solids, sludges, heavy aqueous suspensions, and non-aqueous liquids:Elute 15 mL of the acetonitrile extract through a C-18 reverse phase cartridge, prewashed with 5 mL of acetonitrile. Discard the first 2 mL of eluate and collect the remainder. Pipet 10.0 mL of the clean extract intoa 10 mL graduated glass vial containing 100 µL of ethylene glycol. Placeothe vial in a heating block set at 50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Add methanol to the ethylene glycol residue, dropwise, until the total volume is 1.0 mL. (Additional dilution factor = 0.1;overall dilution factor = 0.5). Using a disposable 0.45 µm filter, filter this extract directly into a properly labelled autosampler vial. The extract is now ready for analysis. Proceed to Sec. 7.4.7.4Sample Analysis7.4.1Analyze the samples using the chromatographic conditions,post-column reaction parameters and instrument parameters given in Secs.7.4.1.1, 7.4.1.2, 7.4.1.3 and 7.4.1.4. Table 2 provides the retentiontimes that were obtained under these conditions during method development.A chromatogram of the separation is shown in Figure 1.7.4.1.1Chromatographic Conditions (Recommended)Solvent A:Organic-free reagent water, acidified with0.4 mL of phosphoric acid per liter ofwaterSolvent B:Methanol/acetonitrile (1:1, v/v)Flow rate: 1.0 mL/minInjection Volume:20 µLSolvent delivery system program:Time Duration(min)Function Value(min) File0.00 FR 1.0 00.00 B% 10% 00.02 B% 80% 20 020.02 B%100% 5 025.02 B%100% 5 030.02 B% 10% 3 033.02 B% 10% 7 036.02 ALARM 0.01 07.4.1.2Post-column Hydrolysis Parameters (Recommended)Solution:0.05 N aqueous sodium hydroxideFlow Rate:0.7 mL/minoTemperature 95 CResidence Time:35 seconds (1 mL reaction coil)7.4.1.3Post-column Derivatization Parameters(Recommended)Solution:o-phthalaldehyde/2-mercaptoethanol (Sec.5.3.1)Flow Rate:0.7 mL/minoTemperature 40 CResidence time:25 seconds (1 mL reaction coil)7.4.1.4Fluorometer Parameters (Recommended)Cell:10 µLExcitation wavelength:340 nmEmission waveleng 418 nm cutoff filterSensitivity wavelength:0.5 µAPMT voltage: -800 VTime constant: 2 sec7.4.2If the peak areas of the sample signals exceed the calibration range of the system, dilute the extract as necessary and reanalyze the diluted extract.7.5Calibration:7.5.1Analyze a solvent blank (20 µL of methanol) to ensure that thesystem is clean. Analyze the calibration standards (Sec. 5.4.3), starting with the 0.5 mg/L standards and ending with the 5.0 mg/L standard. If the percent relative standard deviation (%RSD) of the mean response factor (RF) for each analyte does not exceed 20%, the system is calibrated and the analysis of samples may proceed. If the %RSD for any analyte exceeds 20%, recheck the system and/or recalibrate with freshly prepared calibration solutions.7.5.2Using the established calibration mean response factors, checkthe calibration of the instrument at the beginning of each day by analyzing the 2.0 mg/L mixed standard. If the concentration of each analyte falls within the range of 1.70 to 2.30 mg/L (i.e., within + 15% of the true value), the instrument is considered to be calibrated and the analysis of samples may proceed. If the observed value of any analyte exceeds its true value by more than + 15%, the instrument must be recalibrated (Sec. 7.5.1).7.5.3After 10 sample runs, or less, the 2.0 mg/L standards must beanalyzed to ensure that the retention times and response factors are still within acceptable limits. Significant variations (i.e., observed concentrations exceeding the true concentrations by more than + 15%) may require a re-analysis of the samples.7.6Calculations7.6.1Calculate each response factor as follows (mean value based on5 points):concentration of standard RF =area of the signal5(3 RF )i i mean RF = RF =__ 55[(3 RF - RF)] / 4i __21/2i %RSD of RF = X 100%__RF __7.6.2Calculate the concentration of each N-methylcarbamate asfollows:µg/g or mg/L = (RF) (area of signal) (dilution factor)__8.0QUALITY CONTROL8.1Before processing any samples, the analyst must demonstrate, through the analysis of a method blank for each matrix type, that all glassware and reagents are interference free. Each time there is a change of reagents, a method blank must be processed as a safeguard against laboratory contamination.8.2 A QC check solution must be prepared and analyzed with each sample batch that is processed. Prepare this solution, at a concentration of 2.0 mg/L of each analyte, from the 40.0 mg/L mixed QC standard solution (Sec. 5.4.4). The acceptable response range is 1.7 to 2.3 mg/L for each analyte.8.3Negative interference due to quenching may be examined by spiking the extract with the appropriate standard, at an appropriate concentration, and examining the observed response against the expected response.8.4Confirm any detected analytes by substituting the NaOH and OPA reagents in the post column reaction system with deionized water, and reanalyze the suspected extract. Continued fluorescence response will indicate that a positive interference is present (since the fluorescence response is not due to the post column derivatization). Exercise caution in the interpretation of the chromatogram.9.0METHOD PERFORMANCE9.1Table 1 lists the single operator method detection limit (MDL) for each compound in organic-free reagent water and soil. Seven/ten replicate samples were analyzed, as indicated in the table. See reference 7 for more details.9.2Tables 2, 3 and 4 list the single operator average recoveries and standard deviations for organic-free reagent water, wastewater and soil. Ten replicate samples were analyzed at each indicated spike concentration for each matrix type.9.3The method detection limit, accuracy and precision obtained will be determined by the sample matrix.10.0REFERENCES1.California Department of Health Services, Hazardous Materials Laboratory,"N-Methylcarbamates by HPLC", Revision No. 1.0, September 14, 1989.2.Krause, R.T. Journal of Chromatographic Science, 1978, vol. 16, pg 281.3.Klotter, Kevin, and Robert Cunico, "HPLC Post Column Detection ofCarbamate Pesticides", Varian Instrument Group, Walnut Creek, CA 94598.EPA, "Method 531. Measurement of N-Methylcarbomyloximes and N-Methylcarbamates in Drinking Water by Direct Aqueous Injection HPLC withPost Column Derivatization", EPA 600/4-85-054, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268.EPA, "Method 632. The Determination of Carbamate and Urea Pesticides inIndustrial and Municipal Wastewater", EPA 600/4-21-014, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268.6.Federal Register, "Appendix B to Part 136 - Definition and Procedure forthe Determination of the Method Detection Limit - Revision 1.11", Friday, October 26, 1984, 49, No. 209, 198-199.7.Okamoto, H.S., D. Wijekoon, C. Esperanza, J. Cheng, S. Park, J. Garcha, S.Gill, K. Perera "Analysis for N-Methylcarbamate Pesticides by HPLC in Environmental Samples", Proceedings of the Fifth Annual USEPA Symposium on Waste Testing and Quality Assurance, July 24-28, 1989, Vol. II, 57-71.aELUTION ORDER, RETENTION TIMES ANDSINGLE OPERATOR METHOD DETECTION LIMITSMethod Detection Limits b Compound Retention Organic-freeTime Reagent Water Soil(min) (µg/L)(µg/kg)_______________________________________________________________________________c cAldicarb Sulfone 9.59 1.944Methomyl (Lannate) 9.59 1.7123-Hydroxycarbofuran12.70 2.610cDioxacarb13.50 2.2 >50cc cAldicarb (Temik)16.05 9.412Propoxur (Baygon)18.06 2.417Carbofuran (Furadan)18.28 2.022Carbaryl (Sevin)19.13 1.731d-Naphthol20.30 - -Methiocarb (Mesurol)22.56 3.132Promecarb23.02 2.517________________________________________________________________________________ aSee Sec. 7.4 for chromatographic conditionsbMDL for organic-free reagent water, sand, soil were determined by analyzing 10 low concentration spike replicate for each matrix type (except where noted). See reference 7 for more details.cMDL determined by analyzing 7 spiked replicates.dBreakdown product of Carbaryl.aPRECISION DATA FOR ORGANIC-FREE REAGENT WATERCompound Recovered% Recovery SD%RSD_____________________________________________________________________________ Aldicarb Sulfone22575.0 7.28 3.24 Methomyl (Lannate)24481.3 8.34 3.423-Hydroxycarbofuran21070.0 7.85 3.74 Dioxacarb24180.3 8.53 3.54 Aldicarb (Temik)22474.7 13.5 6.03 Propoxur (Baygon)23277.3 10.6 4.57 Carbofuran (Furadan)23979.6 9.23 3.86 Carbaryl (Sevin)24280.7 8.56 3.54 Methiocarb (Mesurol)23177.0 8.09 3.50 Promecarb22775.7 9.43 4.1_______________________________________________________________________________ aSpike Concentration = 300 µg/L of each compound, n = 10aPRECISION DATA FOR WASTEWATERCompound Recovered% Recovery SD%RSD______________________________________________________________________________Aldicarb Sulfone23578.317.67.49 Methomyl (Lannate)24782.329.912.10 3-Hydroxycarbofuran25183.725.410.11bDioxacarb - - - Aldicarb (Temik)25886.016.4 6.36 Propoxur (Baygon)26387.716.7 6.47 Carbofuran (Furadan)26287.315.7 5.99 Carbaryl (Sevin)26287.317.2 6.56 Methiocarb (Mesurol)25484.719.97.83 Promecarb26387.715.1 5.74 ________________________________________________________________________________ aSpike Concentration = 300 µg/L of each compound, n = 10bNo recoveryaPRECISION DATA FOR SOILCompound Recovered% Recovery SD%RSD______________________________________________________________________________Aldicarb Sulfone 1.5778.50.069 4.39 Methomyl (Lannate) 1.4874.00.086 5.81 3-Hydroxycarbofuran 1.6080.00.071 4.44 Dioxacarb 1.5175.50.073 4.83 Aldicarb (Temik) 1.2964.50.14211.0 Propoxur (Baygon) 1.3366.50.1269.47 Carbofuran (Furadan) 1.4673.00.092 6.30 Carbaryl (Sevin) 1.5376.50.076 4.90 Methiocarb (Mesurol) 1.4572.50.071 4.90 Promecarb 1.2964.70.1249.61 _______________________________________________________________________________ aSpike Concentration = 2.00 mg/kg of each compound, n = 101.00 µg/mL EACH OF:1.ALDICARB SULFONE 6.PROPOXUR2.METHOMYL7.CARBOFURAN3.3-HYDROXYCARBOFURAN8.CARBARYL4.DIOXACARB9.METHIOCARB5.ALDICARB10.PROMECARB。
EPA方法索引

EPA方法索引EPA方法索引和相关标准品EPA 是美国国家环境保护局(U.S Environmental Protection Agency) 的英文缩写。
它的主要任务是保护人类健康和自然环境。
EPA 制定了一系列标准分析方法用于环境监测领域。
主要包括:EPA T01~T14 系列标准分析方法——空气中有毒有机物分析方法EPA IP1~IP10 系列标准分析方法——室内空气污染物的分析测定方法EPA 200 系列标准分析方法———金属的分析方法EPA 500 系列标准分析方法——饮用水中有机物的分析方法EPA 600 系列标准分析方法——城市和工业废水中有机化合物的分析方法SW -846 系列标准分析方法——固体废弃物试验分析评价手册1300 系列是毒性试验方法3000 系列是金属元素的提取方法3500 系列是半(非) 挥发性有机物的提取方法3600 系列是净化、分离方法5000 系列是挥发性有机物的提取方法6000 系列是测定金属的新方法7000 系列是原子吸收法测定金属元素8000 系列是有机物分析方法9000 系列是常规项目分析方法其中,500系列,600系列和8000系列是环境种有机物分析最常用的方法。
EPA 600系列方法是美国为贯彻“净水法”(CW A) 、“全国水体污染物排放消除制度”(NPDES) 和“许可证制度”,严格控制点源排放,保护地表水,使其免受城市和工业废水中有机物的污染而制定的。
EPA 500 系列方法是为执行“安全饮用水法”(SDW A) 和“国家一级饮用水法案”(National Primary Drinking Water Regulations) ,确保饮用水及饮用水源的质量而制订的。
EPA 500 系列是针对比较洁净的水样(饮用水、地下水、地表水) 开发的,有些方法仅用试剂水和饮用水验证过SW-846 系列集中贯彻了“资源保护回收法”和“陆地处置限制法规”的精神,包含了固体废弃物采样和分析试验的全部方法, 是在EPA200 ~EPA 600 系列的基础上发展起来的。
美国饮用水水质标准(EPA)

《美国饮用水水质标准》(EPA)
[标题]:《美国饮用水水质标准》
[颁布者]:美国
[编号]:
[颁布日期]:
[实施日期]:
[有效性]:有效
国家一级饮用水规程(NPDWRs或一级标准),是法定强制性的标准,它适用于公用给水系统。
一级标准限制了那些有害公众健康的及已知的或在公用给水系统中出现的有害污染物浓度,从
注:
①、污染物最高浓度目标MCLG-对人体健康无影响或预期无不良影响的水中污染物浓度。
它规定了确当的安全限量,MCLGs是非强制性公共健康目标。
②、污染物最高浓度-它是供给用户的水中污染物最高允许浓度,MCLGs它是强制性标准,MCLG 是安全限量,确保略微超过MCL限量时对公众健康不产生显着风险。
③、TT处理技术-公共给水系统必须遵循的强制性步骤或技术水平以确保对污染物的控制。
④、除非有特别注释,一般单位为mg/L。
⑤、
度:
病毒
HPC每毫升不超过500细菌数。
⑨、每月总大肠杆菌阳性水样不超过5%,于每月例行检测总大肠杆菌的样品少于40只的给水系统,总大肠菌阳性水样不得超过1个。
含有总大肠菌水样,要分析粪型大肠杆菌,粪型大肠杆菌不容许存在。
⑩、粪型及艾氏大肠杆菌的存在表明水体受到人类和动物排泄物的污染,这些排泄物中的微生物可引起腹泻,痉挛,恶心,头痛或其它症状。
岳宇明译岳舜琳校。
EPAMethod202中文版

排放管道中可凝结性微粒检测方法一、方法概要以本署公告检测方法(如NIEAA212)收集排放管道内可过滤性微粒(Filterable Particulate Matter,FPM,以下简称FPM)后,再以冲击瓶组与滤纸收集排放管道中可凝结性微粒(Condensable Particulate Matter,CPM,以下简称CPM)。
样品采集后立即用氮气吹拂冲击瓶与滤纸之内容物以去除溶解性二氧化硫等气体,再用水和己烷分别萃取采样管、冲击瓶与滤纸中无机与有机之CPM;而相关样品携回实验室再经由干燥与称重,其总量即为CPM。
二、适用范围本方法说明检测CPM所需的设备和采样分析方法,其仅适用于固定污染排放源。
量测时机是在排放气体自管道抽出并经滤纸过滤之后,如果排放气体被过滤时的温度(Gas Filtration Temperature)超过30℃(85°F)时,原生性微粒(Primary Particulate Matter)的总量必须是FPM与CPM方法量测结果的加总。
而当气体过滤温度低于30℃(85下)时,则FPM采样的结果即可代表原生性微粒的总量。
当排放管道中含有水滴(droplet)时,本方法应结合NIEAA212方法,且采样温度应足够使经过采样管的水滴变成气态(vaporous)。
三、干扰略。
四、设备与材料(一)FPM采样设备可参考本署公告检测方法NIEA A212,CPM设备如下所述:1.采样延伸管与内衬:连接冷凝管与FPM微粒过滤器之间的设备,内衬应为玻璃或铁氟龙材质,并应维持管内温度于120〜134℃间。
2.冷凝管:详细规格参考本署公告检测方法NIEA A807四、(一)7.中所述。
3.冲击瓶:冲击瓶组参考本署公告检测方法NIEA A807四、(一)10中所述,在冷凝管后方需先安装一短头式水凝结冲击瓶(waterdrop out impinger,简称 D 瓶),并后方再连接一Greenburg -Smith修正冲击瓶,此瓶为后置(backup)冲击瓶(其吸收管末第1直,共22 M 端为内径1.3公分距冲击瓶底部1.3公分之玻璃管,简称B瓶)。
美国国家环保局EPA方法要点和推荐仪器

美国国家环保局EPA方法要点和推荐仪器EPA方法218.6离子色谱测定在饮用水、地下水和工业废水中的水溶性铬(1994年修订版3.3)应用范围测定饮用水、地下水和工业废水中的水溶性六价铬(如CrO2-4),这种方法的检测下限为0.4μg/L。
样品中如果含有大量的阴离子物质如硫酸或氯离子可能会引起色谱柱过载。
样品如果含有大量有机物或硫离子可能会引起可溶性的六价铬快速还原为三价铬。
样品贮存在4℃,在24小时内分析。
方法采用离子色谱法分析。
方法要点:水样经0.45μm滤膜过滤后,用浓缓冲溶液调节pH为9-9.5。
样品的测量体积为50-250μL进样到离子色谱。
保护柱去除样品中的有机物,六价铬以CrO2-4形式,在高容量的阴离子交换分离柱上分离,六价铬用双苯基苄巴脲柱后衍生,然后在530nm波长下检测有色络合物。
建议采用的仪器条件保护柱:Dionex IonPac NG1或与之相同的色谱柱分离柱:Dionex IonPac AS7或与之相同的色谱柱阴离子抑制器装置:Dionex Anion MicroMembrane Suppressor,其它抑制器必须有足够低的检测限和足够的基线稳定性。
色谱条件:色谱柱:保护柱-Dionex IonPac NG1, 分离柱-Dionex IonPac AS7淋洗液:250mM (NH4)2SO4, 100mM NH4OH, 流速=1.5 mL/min柱后试剂:2mM双苯基苄巴脲,10% v/v甲醇,1N 硫酸,流速=0.5 mL/min 检测器:可见光530nm保留时间:3.8 分钟离子色谱测定无机阴离子(1993年八月,修订版2.2)应用范围1.可测定的阴离子包括A部分:溴离子,氯离子,氟离子,硝酸根,亚硝酸根,磷酸根,硫酸B部分:溴酸根,亚氯酸根,氯酸根2.基体包括:饮用水,地表水,民用水和工业废水,地下水,试剂用水,固体浸出液方法要点1.小量样品,一般2-3mL注入离子色谱,阴离子采用一个系统含有保护柱,分离柱,抑制器和电导检测器进行分离和检测。
美国环保局 EPA 试验 方法 8440

METHOD 8440TOTAL RECOVERABLE PETROLEUM HYDROCARBONS BY INFRAREDSPECTROPHOTOMETRY1.0SCOPE AND APPLICATION1.1Method 8440 (formerly Draft Method 9073) is used for the measurement of total recoverable petroleum hydrocarbons (TRPHs) extracted with supercritical carbon dioxide from sediment, soil and sludge samples using Method 3560.1.2Method 8440 is not applicable to the measurement of gasoline and other volatile petroleum fractions, because of evaporative losses.1.3Method 8440 can detect TRPHs at concentrations of 10 mg/L in extracts. This translates to 10 mg/Kg in soils when a 3 g sample is extracted by SFE (assuming 100 percent extraction efficiency), and the final extract volume is 3 mL.1.4This method is restricted to use by or under the supervision of trained analysts. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1Soil samples are extracted with supercritical carbon dioxide using Method 3560. Interferences are removed with silica gel, either by shaking the extract with loose silica gel, or by passing it through a silica gel solid-phase extraction cartridge. After infrared (IR) analysis of the extract, TRPHs are quantitated by direct comparison with standards.3.0INTERFERENCES3.1The analyte class being measured (TRPHs) is defined within the context of this method. The measurement may be subject to interferences, and the results should be interpreted accordingly.3.2Determination of TRPHs is a measure of mineral oils only, and does not include the biodegradable animal greases and vegetable oils captured in oil and grease measurements. These non-mineral-oil contaminants may cause positive interferences with IR analysis, if they are not completely removed by the silica gel cleanup.3.3Method 8440 is not appropriate for use in the analysis of gasoline and other volatile petroleum fractions because these fractions evaporate during sample preparation.4.0APPARATUS AND MATERIALS4.1Infrared spectrophotometer - Scanning or fixed wavelength, for measurement around 2950 cm.-14.2IR cells - 10 mm, 50 mm, and 100 mm pathlength, sodium chloride or IR-grade glass. CD-ROM8440 - 1Revision 0December 1996CD-ROM 8440 - 2Revision 0December 19964.3Magnetic stirrer with polytetrafluoroethylene (PTFE)-coated stirring bars.4.4Optional - A vacuum manifold consisting of glass vacuum basin, collection rack and funnel, collection vials, replaceable stainless steel delivery tips, built-in vacuum bleed valve and gauge is recommended for use when silica gel cartridges are used. The system is connected to a vacuum pump or water aspirator through a vacuum trap made from a 500 mL sidearm flask fitted with a one-hole stopper and glass tubing.5.0REAGENTS5.1Reagent-grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.5.2Tetrachloroethylene, C Cl - spectrophotometric grade, or equivalent.245.3Raw materials for reference oil mixture - spectrophotometric grade, or equivalent.5.3.1n-Hexadecane, CH (CH )CH 321435.3.2Isooctane, (CH )CCH CH(CH )332325.3.3Chlorobenzene, C H Cl 655.4Silica gel.5.4.1Silica gel solid-phase extraction cartridges (40 µm particles, 60 A pores), 0.5 g,Supelco, J.T. Baker, or equivalent.5.4.2Silica gel, 60 to 200 mesh, Davidson Grade 950 or equivalent (deactivated with1 to2 percent water).5.5Calibration mixtures:5.5.1The material of interest, if available, or the same type of petroleum fraction, if itis known and original sample is unavailable, shall be used for preparation of calibration standards. Reference oil is to be used only for unknowns. Whenever possible, a GC fingerprint should be run on unknowns to determine the petroleum fraction type.5.5.2Reference oil - Pipet 15.0 mL n-hexadecane, 15.0 mL isooctane, and 10.0 mLchlorobenzene into a 50 mL glass-stoppered bottle. Maintain the integrity of the mixture by keeping stoppered except when withdrawing aliquots. Refrigerate at 4E C when not in use.5.5.3Stock standard - Pipet 0.5 mL calibration standard (Section 5.5.1 or 5.5.2) intoa tared 100 mL volumetric flask and stopper immediately. Weigh and dilute to volume with tetrachloroethylene.5.5.4Working standards - Pipet appropriate volumes of stock standard (Sec. 5.5.3) into100 mL volumetric flasks according to the cell size to be used. Dilute to volume withCD-ROM 8440 - 3Revision 0December 1996tetrachloroethylene. Calculate the concentrations of the standards from the stock standard concentrations.5.6Calibration of silica gel cleanup5.6.1Prepare a stock solution of corn oil and mineral oil by placing about 1 mL each(0.5 to 1 g) of corn oil and mineral oil into a tared 100 mL volumetric flask. Stopper the flask and weigh to the nearest milligram. Dilute to the mark with tetrachloroethylene, and shake the contents to effect dissolution.5.6.2Prepare additional dilutions to cover the range of interest.5.6.3Transfer 2 mL (or other appropriate volume) of the diluted corn oil/mineral oilsamples to vials.5.6.4Add 0.3 g of loose silica gel to the vials of diluted corn oil/mineral oil samples andshake the mixture for 5 minutes, or pass the extract through a 0.5 g silica gel solid-phase extraction cartridge (conditioned with 5 mL of tetrachloroethylene). Elute with tetrachloroethylene. Collect three 3 mL (or other appropriate volume) fractions of eluant.When using loose silica gel, filter the extract through a plug of precleaned silanized glass wool in a disposable glass pipette.5.6.5Fill a clean IR cell with the solution. Determine the fraction(s) in which thehydrocarbons will elute without corn oil being present using the absorbances of each fraction of the extract at 2800-3000 cm (hydrocarbon range) and 1600-1800 cm(ester range). If the -1 -1absorbance indicates that the absorptive capacity of the silica gel has been exceeded or that the silica gel is not absorbing the corn oil (corn oil is present in the extract), select new silica gel or solid phase cartridges.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1Solid samples should be collected and stored as any other solid sample containing semivolatile analytes. See the introductory material to this Chapter, Organic Analytes, Sec. 4.1.6.2Samples should be analyzed with minimum delay, upon receipt in the laboratory, and must be kept refrigerated prior to analysis.7.0PROCEDURE7.1Prepare samples according to Method 3560.7.2Add 0.3 g of loose silica gel to the extract and shake the mixture for 5 minutes, or pass the extract through a 0.5 g silica gel solid-phase extraction cartridge (conditioned with 5 mL of tetrachloroethylene). When using loose silica gel, filter the extract through a plug of precleaned silanized glass wool in a disposable glass pipette.7.3After the silica gel cleanup, fill a clean IR cell with the solution and determine the absorbance of the extract. If the absorbance exceeds the linear range of the IR spectrophotometer,prepare an appropriate dilution and reanalyze. The possibility that the absorptive capacity of thesilica gel has been exceeded can be tested at this point by repeating the cleanup and determinative steps.7.4Select appropriate working standard concentrations and cell pathlengths according to the following ranges:Concentration rangePathlength (mm)(µg/mL of extract)Volume (mL)10 5 to 500 350 1 to 100151000.5 to 5030Calibrate the instrument for the appropriate cells using a series of working standards. Determine absorbance directly for each solution at the absorbance maximum at about 2950 cm.-1 Prepare a calibration plot of absorbance versus concentration of petroleum hydrocarbons in the working standards.7.5Determine the concentration of TRPHs in the extract by comparing the response against the calibration plot.7.6Calculate the concentration of TRPHs in the sample using the formula:R x D x VConcentration (mg/Kg) =Wwhere:R=mg/mL of TRPHs as determined from the calibration plotV=volume of extract, in millilitersD=extract dilution factor, if usedW=weight of solid sample, in kilograms.7.7Recover the tetrachloroethylene used in this method by distillation or other appropriate technique.8.0QUALITY CONTROL8.1Reagent blanks or matrix-spiked samples must be subjected to the same analytical procedures as those used with actual samples.8.2Refer to Chapter One for specific Quality Control procedures and to Method 3500 for sample preparation procedures.8.3Based on manufacturer's recommendation, each laboratory should establish quality control practices necessary to evaluate the scanning or fixed wavelength infrared spectrophotometer.CD-ROM8440 - 4Revision 0December 19969.0METHOD PERFORMANCE9.1Table 1 presents a comparison of certified values and the values obtained using Methods 3560 and 8440. Data are presented for both Freon-113 and tetrachloroethylene, since both solvents were found to be an acceptable collection solvent. However, only tetrachloroethylene is recommended as a collection solvent for TRPHs in Method 3560.9.2Table 2 presents precision and accuracy data from the single-laboratory evaluation of Methods 3560 and 8440 for the determination of petroleum hydrocarbons from spiked soil samples. These data were obtained by extracting samples at 340 atm/80E C/60 minutes (dynamic).10.0REFERENCES1.Rohrbough, W. G.; et al. Reagent Chemicals, American Chemical Society Specifications, 7thed.; American Chemical Society, Washington, DC, 1986.2.Methods for Chemical Analysis of Water and Wastes; U.S. Environmental Protection Agency.Office of Research and Development, Environmental Monitoring and Support Laboratory. ORD Publication Offices of Center for Environmental Research Information, Cincinnati, OH, 1983;EPA-600/4-79-020.CD-ROM8440 - 5Revision 0December 1996CD-ROM 8440 - 6Revision 0December 1996CERTIFIED AND SPIKE VALUES COMPARED TO RESULTSOBTAINED BY METHODS 3560/8440Spike conc. or Methods certified conc.3560/8440Reference Material(mg/kg)(mg/kg)Environmental Resource Assoc.TPH-1 (lot 91012)1,8301,920±126a Environmental Resource Assoc.2,2302,150±380a TPH-2 (lot 91012)Clay spiked with kerosene 10086.0; 93.0bClay spiked with light gas oil10084.0; 98.0c Clay spiked with heavy gas oil 100103; 108dEnvironmental Resource Assoc.TPH-1 (lot 91017)614562; 447eEnvironmental Resource Assoc.TPH-2 (lot 91017)2,0501,780; 1,780e Three 60 minute extractions. The extracted material was collected in Freon-113; thea concentrations were determined against the reference oil standard.Duplicate 30 minute extractions. The extracted material was collected in tetrachloroethylene;b the concentrations were determined against standard made from the spiking material.Six 30 minute extractions. The extracted material was collected in tetrachloroethylene; the c concentrations were determined against a standard made from the spiking material.Four 30 minute extractions. The extracted material was collected in tetrachloroethylene; the d concentrations were determined against a standard made from the spiking material.Three 30 minute extractions. The extracted material was collected in tetrachloroethylene; the econcentrations were determined against the reference oil standard.CD-ROM 8440 - 7Revision 0December 1996SINGLE-LABORATORY METHOD ACCURACY AND PRECISION FORMETHODS 3560/8440 FOR SELECTED MATRICESSpike conc. or Method Method certified conc.Spike accuracy precision Matrix(mg/kg)Material (% recovery)(% RSD)Clay soil 2,500Motor oil 1048.5aERA TPH-12,350Vacuum oil 80.319.7a(lot 91016)ERA TPH-21,450Vacuum oil 88.619.6a(lot 91016)SRS103-10032,600c 94.2 4.0bEight determinations were made using two different supercritical fluid extraction systems.a The extracted material was collected in Freon-113.Ten determinations were made using three different supercritical fluid extraction systems.b The extracted material was collected in Freon-113.cThis is a standard reference soil certified for polynuclear aromatic hydrocarbons. No spike was added.CD-ROM 8440 - 8Revision 0December 1996METHOD 8440TOTAL RECOVERABLE PETROLEUM HYDROCARBONSBY INFRARED SPECTROPHOTOMETRY。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
METHOD 8410GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED(GC/FT-IR) SPECTROMETRY FOR SEMIVOLATILE ORGANICS:CAPILLARY COLUMN1.0SCOPE AND APPLICATION1.1This method covers the automated identification, or compound class assignment of unidentifiable compounds, of solvent extractable semivolatile organic compounds which are amenable to gas chromatography, by GC/FT-IR. GC/FT-IR can be a useful complement to GC/MS analysis (Method 8270). It is particularly well suited for the identification of specific isomers that are not differentiated using GC/MS. Compound class assignments are made using infrared group absorption frequencies. The presence of an infrared band in the appropriate group frequency region may be taken as evidence of the possible presence of a particular compound class, while its absence may be construed as evidence that the compound class in question is not present. This evidence will be further strengthened by the presence of confirmatory group frequency bands. Identification limits of the following compounds have been demonstrated by this method._____________________________________________________________________ Compound Name CAS No.a_____________________________________________________________________ Acenaphthene 83-32-9Acenaphthylene 208-96-8Anthracene 120-12-7Benzo(a)anthracene 56-55-3Benzo(a)pyrene 50-32-8Benzoic acid 65-85-0Bis(2-chloroethoxy)methane 111-91-1Bis(2-chloroethyl) ether 111-44-4Bis(2-chloroisopropyl) ether39638-32-9Bis(2-ethylhexyl) phthalate 117-81-74-Bromophenyl phenyl ether 101-55-3Butyl benzyl phthalate 85-68-74-Chloroaniline 106-47-84-Chloro-3-methylphenol 59-50-72-Chloronaphthalene 91-58-72-Chlorophenol 95-57-84-Chlorophenol 106-48-94-Chlorophenyl phenyl ether 7005-72-3Chrysene 218-01-9Dibenzofuran 132-64-9Di-n-butyl phthalate 84-74-21,2-Dichlorobenzene 95-50-11,3-Dichlorobenzene 541-73-11,4-Dichlorobenzene 106-46-72,4-Dichlorophenol 120-83-2CD-ROM8410 - 1Revision 0September 1994CD-ROM 8410 - 2Revision 0September 1994_______________________________________________________________________Compound Name CAS No.a_______________________________________________________________________Dimethyl phthalate 131-11-3Diethyl phthalate 84-66-24,6-Dinitro-2-methylphenol 534-52-12,4-Dinitrophenol 51-28-52,4-Dinitrotoluene 121-14-22,6-Dinitrotoluene 606-20-2Di-n-octyl phthalate 117-84-0Di-n-propyl phthalate 131-16-8Fluoranthene 206-44-0Fluorene 86-73-7Hexachlorobenzene 118-74-11,3-Hexachlorobutadiene 87-68-3Hexachlorocyclopentadiene 77-47-4Hexachloroethane 67-72-1Isophorone 78-59-12-Methylnaphthalene 91-57-62-Methylphenol 95-48-74-Methylphenol 106-44-5Naphthalene 91-20-32-Nitroaniline 88-74-43-Nitroaniline 99-09-24-Nitroaniline 100-01-6Nitrobenzene 98-95-32-Nitrophenol 88-75-54-Nitrophenol 100-02-7N-Nitrosodimethylamine 62-75-9N-Nitrosodiphenylamine 86-30-9N-Nitroso-di-n-propylamine 621-64-7Pentachlorophenol 87-86-5Phenanthrene 85-01-8Phenol 108-95-2Pyrene 129-00-01,2,4-Trichlorobenzene 120-82-12,4,5-Trichlorophenol 95-95-42,4,6-Trichlorophenol 88-06-2_______________________________________________________________________Chemical Abstract Services Registry Number.a 1.2This method is applicable to the determination of most extractable,semivolatile-organic compounds in wastewater, soils and sediments, and solid wastes. Benzidine can be subject to losses during solvent concentration and GC analysis; -BHC, -BHC, Endosulfan I and II, and Endrin are subject to decomposition under the alkaline conditions of the extraction step; Endrin is subject to decomposition during GC analysis; and Hexachlorocyclopentadiene and N-Nitrosodiphenylamine may decompose during extraction and GC analysis. Other extraction and/or instrumentation procedures should be considered for unstable analytes.CD-ROM 8410 - 3Revision 0September 19941.3The identification limit of this method may depend strongly upon the level and type of gas chromatographable (GC) semivolatile extractants. The values listed in Tables 1 and 2 represent the minimum quantities of semivolatile organic compounds which have been identified by the specified GC/FT-IR system,using this method and under routine environmental analysis conditions. Capillary GC/FT-IR wastewater identification limits of 25 µg/L may be achieved for weak infrared absorbers with this method, while the corresponding identification limits for strong infrared absorbers is 2 µg/L. Identification limits for other sample matrices can be calculated from the wastewater values after choice of the proper sample workup procedure (see Sec. 7.1).2.0SUMMARY OF METHOD2.1Prior to using this method, the samples should be prepared for chromatography using the appropriate sample preparation and cleanup methods.This method describes chromatographic conditions that will allow for the separation of the compounds in the extract and uses FT-IR for detection and quantitation of the target analytes.3.0INTERFERENCES3.1Glassware and other sample processing hardware must be thoroughly cleaned to prevent contamination and misinterpretation. All of these materials must be demonstrated to be free from interferences under the conditions of the analysis by running method blanks. Specific selection of reagents or purification of solvents by distillation in all-glass systems may be required.3.2Matrix interference will vary considerably from source to source,depending upon the diversity of the residual waste being sampled. While general cleanup techniques are provided as part of this method, unique samples may require additional cleanup to isolate the analytes of interest from interferences in order to achieve maximum sensitivity.3.34-Chlorophenol and 2-nitrophenol are subject to interference from co-eluting compounds.3.4Clean all glassware as soon as possible after use by rinsing with the last solvent used. Glassware should be sealed/stored in a clean environment immediately after drying to prevent any accumulation of dust or other contaminants.4.0APPARATUS AND MATERIALS4.1Gas Chromatographic/Fourier Transform Infrared Spectrometric Equipment4.1.1Fourier Transform-Infrared Spectrometer - A spectrometercapable of collecting at least one scan set per second at 8 cm resolution -1is required. In general, a spectrometer purchased after 1985, or retrofitted to meet post-1985 FT-IR improvements, will be necessary toCD-ROM 8410 - 4Revision 0September 1994meet the detection limits of this protocol. A state-of-the-art A/D converter is required, since it has been shown that the signal-to- noise ratio of single beam GC/FT-IR systems is A/D converter limited.4.1.2GC/FT-IR Interface - The interface should be lightpipe volume-optimized for the selected chromatographic conditions (lightpipe volume of 100-200 µL for capillary columns). The shortest possible inert transfer line (preferably fused silica) should be used to interface the end of the chromatographic column to the lightpipe. If fused silica capillary columns are employed, the end of the GC column can serve as the transfer line if it is adequately heated. It has been demonstrated that the optimum lightpipe volume is equal to the full width at half height of the GC eluate peak.4.1.3Capillary Column - A fused silica DB-5 30 m x 0.32 mmcapillary column with 1.0 µm film thickness (or equivalent).4.1.4Data Acquisition - A computer system dedicated to the GC/FT-IRsystem to allow the continuous acquisition of scan sets for a full chromatographic run. Peripheral data storage systems should be available (magnetic tape and/or disk) for the storage of all acquired data.Software should be available to allow the acquisition and storage of every scan set to locate the file numbers and transform high S/N scan sets, and to provide a real time reconstructed chromatogram.4.1.5Detector - A cryoscopic, medium-band HgCdTe (MCT) detectorwith the smallest practical focal area. Typical narrow-band MCT detectors operate from 3800-800 cm , but medium-band MCT detectors can reach -1650 cm . A 750 cm cutoff (or lower) is desirable since it allows the -1-1detection of typical carbon-chlorine stretch and aromatic out-of-plane carbon-hydrogen vibrations of environmentally important organo-chlorine and polynuclear aromatic compounds. The MCT detector sensitivity (D)*should be $ 1 x 10 cm.104.1.6Lightpipe - Constructed of inert materials, gold coated, andvolume-optimized for the desired chromatographic conditions (see Sec.7.3).4.1.7Gas Chromatograph - The FT-IR spectrometer should beinterfaced to a temperature programmable gas chromatograph equipped with a Grob-type (or equivalent) purged splitless injection system suitable for capillary glass columns or an on-column injector system.A short, inert transfer line should interface the gas chromatographto the FT-IR lightpipe and, if applicable, to the GC detector. Fused silica GC columns may be directly interfaced to the lightpipe inlet and outlet.4.2Dry Purge Gas - If the spectrometer is the purge-type, provisions should be made to provide a suitable continuous source of dry purge-gas to the FT-IR spectrometer.CD-ROM 8410 - 5Revision 0September 19944.3Dry Carrier Gas - The carrier gas should be passed through an efficient cartridge-type drier.4.4Syringes - 1-µL, 10-µL.5.0REAGENTS5.1Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used,provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.5.2Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.3Solvents5.3.1Acetone, CH C0CH - Pesticide quality, or equivalent.335.3.2Methylene chloride, CH Cl - Pesticide quality, or equivalent.225.4Stock Standard Solutions (1000 mg/L) - Standard solutions can be prepared from pure standard materials or purchased as a certified solution.5.4.1Prepare stock standard solutions by accurately weighing 0.1000+ 0.0010 g of pure material. Dissolve the material in pesticide quality acetone or other suitable solvent and dilute to volume in a 100 mL volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be 96 percent or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.5.4.2Transfer the stock standard solutions into bottles with Teflonlined screw-caps. Store at 4C and protect from light. Stock standard o solutions should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.5.4.3Stock standard solutions must be replaced after 6 months orsooner if comparison with quality control reference samples indicates a problem.5.5Calibration Standards and Internal Standards - For use in situations where GC/FT-IR will be used for primary quantitation of analytes rather than confirmation of GC/MS identification.5.5.1Prepare calibration standards that contain the compounds ofinterest, either singly or mixed together. The standards should beCD-ROM 8410 - 6Revision 0September 1994prepared at concentrations that will completely bracket the working range of the chromatographic system (at least one order of magnitude is suggested).5.5.2Prepare internal standard solutions. Suggested internalstandards are 1-Fluoronaphthalene, Terphenyl, 2-Chlorophenol, Phenol,Bis(2-chloroethoxy)methane, 2,4-Dichlorophenol, Phenanthrene, Anthracene,and Butyl benzyl phthalate. Determine the internal standard concentration levels from the minimum identifiable quantities. See Tables 1 and 2.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1See the introductory material to this chapter, Organic Analytes, Sec.4.1.7.0PROCEDURE7.1Sample Preparation - Samples must be prepared by one of the following methods prior to GC/FT-IR analysis.Matrix Methods Water3510, 3520Soil/sediment3540, 3541, 3550Waste3540, 3541, 3550, 35807.2Extracts may be cleaned up by Method 3640, Gel-Permeation Cleanup.7.3Initial Calibration - Recommended GC/FT-IR conditions:Scan time: At least 2 scan/sec.Initial column temperature and hold time:40C for 1 minute.o Column temperature program:40-280C at 10C/min.o o Final column temperature hold:280C.o Injector temperature:280-300C.o Transfer line temperature:270C.o Lightpipe:280C.o Injector:Grob-type, splitless or on-column.Sample volume:2-3 µL.Carrier gas:Dry helium at about 1 mL/min.7.4With an oscilloscope, check the detector centerburst intensity versus the manufacturer's specifications. Increase the source voltage, if necessary,to meet these specifications. For reference purposes, laboratories should prepare a plot of time versus detector voltage over at least a 5 day period.7.5Capillary Column Interface Sensitivity Test - Install a 30 m x 0.32 mm fused silica capillary column coated with 1.0 µm of DB-5 (or equivalent).CD-ROM 8410 - 7Revision 0September 1994Set the lightpipe and transfer lines at 280C, the injector at 225C and the GC o o detector at 280C (if used). Under splitless Grob-type or on-column injection o conditions, inject 25 ng of nitrobenzene, dissolved in 1 µL of methylene chloride. The nitrobenzene should be identified by the on-line library software search within the first five hits (nitrobenzene should be contained within the search library).7.6Interferometer - If the interferometer is air-driven, adjust the interferometer drive air pressure to manufacturer's specifications.7.7MCT Detector Check - If the centerburst intensity is 75 percent or less of the mean intensity of the plot maximum obtained by the procedure of Sec.7.4, install a new source and check the MCT centerburst with an oscilloscope versus the manufacturer's specifications (if available). Allow at least five hours of new source operation before data acquisition.7.8Frequency Calibration - At the present time, no consensus exists within the spectroscopic community on a suitable frequency reference standard for vapor-phase FT-IR. One reviewer has suggested the use of indene as an on-the-fly standard.7.9Minimum Identifiable Quantities - Using the GC/FT-IR operating parameters specified in Sec. 7.3, determine the minimum identifiable quantities for the compounds of interest.7.9.1Prepare a plot of lightpipe temperature versus MCT centerburstintensity (in volts or other vertical height units). This plot should span the temperature range between ambient and the lightpipe thermal limit in increments of about 20C. Use this plot for daily QA/QC (see Sec. 8.4).o Note that modern GC/FT-IR interfaces (1985 and later) may have eliminated most of this temperature effect.7.10GC/FT-IR Extract Analysis7.10.1Analysis - Analyze the dried methylene chloride extractusing the chromatographic conditions specified in Sec. 7.3 for capillary column interfaces.7.10.2GC/FT-IR Identification - Visually compare the analyteinfrared (IR) spectrum versus the search library spectrum of the most promising on-line library search hits. Report, as identified, those analytes with IR frequencies for the five (maximum number) most intense IR bands (S/N $ 5) which are within + 5.0 cm of the corresponding bands in -1the library spectrum. Choose IR bands which are sharp and well resolved.The software used to locate spectral peaks should employ the peak "center of gravity" technique. In addition, the IR frequencies of the analyte and library spectra should be determined with the same computer software.7.10.3Retention Time Confirmation - After visual comparison ofthe analyte and library spectrum as described in Sec. 7.10.2, compare the relative retention times (RRT) of the analyte and an authentic standard of the most promising library search hit. The standard and analyte RRTCD-ROM 8410 - 8Revision 0September 1994should agree within + 0.01 RRT units when both are determined at the same chromatographic conditions.7.10.4Compound Class or Functionality Assignment - If theanalyte cannot be unequivocally identified, report its compound class or functionality. See Table 3 for gas-phase group frequencies to be used as an aid for compound class assignment. It should be noted that FT-IR gas-phase group stretching frequencies are 0-30 cm higher in frequency than -1those of the condensed phase.7.10.5Quantitation - This protocol can be used to confirm GC/MSidentifications, with subsequent quantitation. Two FT-IR quantitation and a supplemental GC detector technique are also provided.7.10.5.1Integrated Absorbance Technique - After analyteidentification, construct a standard calibration curve ofconcentration versus integrated infrared absorbance. For thispurpose, choose for integration only those FT-IR scans which are ator above the peak half-height. The calibration curve should span atleast one order of magnitude and the working range should bracketthe analyte concentration.7.10.5.2Maximum Absorbance Infrared Band Technique -Following analyte identification, construct a standard calibrationcurve of concentration versus maximum infrared band intensity. Forthis purpose, choose an intense, symmetrical and well resolved IRabsorbance band.(Note that IR transmission is not proportional to concentra-tion). Select the FT-IR scan with the highest absorbance to plotagainst concentration. The calibration curve should span at leastone order of magnitude and the working range should bracket theanalyte concentration. This method is most practical forrepetitive, target compound analyses. It is more sensitive than theintegrated absorbance technique.7.10.5.3Supplemental GC Detector Technique - If a GCdetector is used in tandem with the FT-IR detector, the followingtechnique may be used: following analyte identification, constructa standard calibration curve of concentration versus integrated peakarea. The calibration curve should span at least one order ofmagnitude and the working range should bracket the analyteconcentration. This method is most practical for repetitive, targetcompound analyses.8.0QUALITY CONTROL8.1Refer to Chapter One for specific quality control procedures.Quality control to validate sample extraction is covered in Method 3500 and in the extraction method utilized. If extract cleanup was performed, follow the QC in Method 3600 and in the specific cleanup method.CD-ROM 8410 - 9Revision 0September 19948.2One Hundred Percent Line Test - Set the GC/FT-IR operating conditions to those employed for the Sensitivity Test (see Sec. 7.5). Collect 16 scans over the entire detector spectral range. Plot the test and measure the peak-to-peak noise between 1800 and 2000 cm . This noise should be # 0.15%. Store this plot -1for future reference.8.3Single Beam Test - With the GC/FT-IR at analysis conditions, collect 16 scans in the single beam mode. Plot the co-added file and compare with a subsequent file acquired in the same fashion several minutes later. Note if the spectrometer is at purge equilibrium. Also check the plot for signs of deterioration of the lightpipe potassium bromide windows. Store this plot for future reference.8.4Align Test - With the lightpipe and MCT detector at thermal equilibrium, check the intensity of the centerburst versus the signal temperature calibration curve. Signal intensity deviation from the predicted intensity may mean thermal equilibrium has not yet been achieved, loss of detector coolant,decrease in source output, or a loss in signal throughput resulting from lightpipe deterioration.8.5Mirror Alignment - Adjust the interferometer mirrors to attain the most intense signal. Data collection should not be initiated until the interferogram is stable. If necessary, align the mirrors prior to each GC/FT-IR run.8.6Lightpipe - The lightpipe and lightpipe windows should be protected from moisture and other corrosive substances at all times. For this purpose,maintain the lightpipe temperature above the maximum GC program temperature but below its thermal degradation limit. When not in use, maintain the lightpipe temperature slightly above ambient. At all times, maintain a flow of dry, inert,carrier gas through the lightpipe.8.7Beamsplitter - If the spectrometer is thermostated, maintain the beamsplitter at a temperature slightly above ambient at all times. If the spectrometer is not thermostated, minimize exposure of the beamsplitter to atmospheric water vapor.9.0METHOD PERFORMANCE9.1Method 8410 has been in use at the U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory for more than two years.Portions of it have been reviewed by key members of the FT-IR spectroscopic community (9). Side-by-side comparisons with GC/MS sample analyses indicate similar demands upon analytical personnel for the two techniques. Extracts previously subjected to GC/MS analysis are generally compatible with GC/FT-IR.However, it should be kept in mind that lightpipe windows are typically water soluble. Thus, extracts must be vigorously dried prior to analysis.9.2Table 4 provides performance data for this method.10.0REFERENCES1.Handbook for Analytical Quality Control in Water and WastewaterLaboratories; U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. ORD Publication Offices of Center for Environmental Research Information: Cincinnati, OH, March 1979; Sec. 4, EPA-600/4-79-019.2.Freeman, R.R. Hewlett Packard Application Note: Quantitative AnalysisUsing a Purged Splitless Injection Technique; ANGC 7-76.3.Cole, R.H. Tables of Wavenumbers for the Calibration of InfraredSpectrometers; Pergamon: New York, 1977.4.Grasselli, J.G.; Griffiths, P.R.; Hannah, R.W. "Criteria for Presentationof Spectra from Computerized IR Instruments"; Appl. Spectrosc. 1982, 36,87.5.Nyquist, R.A. The Interpretation of Vapor-Phase Infrared Spectra. GroupFrequency Data; Volume I. Sadtler Laboratories: Philadelphia, PA, 1984.6.Socrates, G. Infrared Characteristic Group Frequencies; John Wiley andSons: New York, NY, 1980.7.Bellamy, L.J. The Infrared Spectra of Complex Organic Molecules; 2nd ed.;John Wiley and Sons: New York, NY, 1958.8.Szymanski, H.A. Infrared Band Handbook, Volumes I and II; Plenum: NewYork, NY, 1965.9.Gurka, D.F. "Interim Protocol for the Automated Analysis of SemivolatileOrganic Compounds by Gas Chromatography/Fourier Transform-Infrared Spectrometry"; Appl. Spectrosc. 1985, 39, 826.10.Griffiths, P.R.; de Haseth, J.A.; Azarraga, L.V. "Capillary GC/FT-IR";Anal. Chem. 1983, 55, 1361A.11.Griffiths, P.R.; de Haseth, J.A. Fourier Transform-Infrared Spectrometry;Wiley-Interscience: New York, NY, 1986.12.Gurka, D. F.; Farnham, I.; Potter, B. B.; Pyle, S.; Titus, R. and Duncan,W. "Quantitation Capability of a Directly Linked Gas Chromatography/Fourier Transform Infrared/Mass Spectrometry System"; Anal.Chem., 1989, 61, 1584.CD-ROM8410 - 10Revision 0September 1994CD-ROM 8410 - 11Revision 0September 1994FUSED SILICA CAPILLARY COLUMN GAS CHROMATOGRAPHIC/FOURIER TRANSFORMINFRARED IDENTIFICATION LIMITS FOR BASE/NEUTRAL EXTRACTABLES________________________________________________________________________________Identification LimitCompound ng injected µg/L max, cm a b c-1________________________________________________________________________________Acenaphthene 40(25)20(12.5) 799Acenaphthylene 50(50)25(25) 799Anthracene40(50)20(25) 874Benzo(a)anthracene (50) (25) 745Benzo(a)pyrene(100) (50) 756Bis(2-chloroethyl) ether 70(10)35(5)1115Bis(2-chloroethoxy)methane 50(10)25(5)1084Bis(2-chloroisopropyl) ether 50(10)25(5)1088Butyl benzyl phthalate25(10)12.5(5)17484-Bromophenyl phenyl ether 40(5)20(2.5)12382-Chloronaphthalene 11055 8514-Chloroaniline402015434-Chlorophenyl phenyl ether 20(5)10(2.5)1242Chrysene(100) (50) 757Di-n-butyl phthalate 20(5)10(2.5)1748Dibenzofuran40201192Diethyl phthalate 20(5)10(2.5)1748Dimethyl phthalate 20(5)10(2.5)1751Di-n-octyl phthalate 25(10)12.5(5)1748Di-n-propyl phthalate 25(5)12.5(2.5)17481,2-Dichlorobenzene 502514581,3-Dichlorobenzene 5025 7791,4-Dichlorobenzene 502514742,4-Dinitrotoluene 201015472,6-Dinitrotoluene20101551Bis-(2-ethylhexyl) phthalate 25(10)12.5(5)1748Fluoranthene 100(50)50(25) 773Fluorene40(50)20(25) 737Hexachlorobenzene40201346Hexachlorocyclopentadiene 12060 814Hexachloroethane5025 7831,3-Hexachlorobutadiene 12060 853Isophorone402016902-Methylnaphthalene 110553069Naphthalene 40(25)20(12.5) 779Nitrobenzene2512.51539N-Nitrosodimethylamine 20(5)10(2.5)1483N-Nitrosodi-n-propylamine 50(5)25(2.5)1485N-Nitrosodiphenylamine 40201501d 2-Nitroaniline 402015643-Nitroaniline40201583CD-ROM 8410 - 12Revision 0September 1994(Continued)________________________________________________________________________________Identification LimitCompound ng injected µg/L max, cm a b c-1________________________________________________________________________________4-Nitroaniline 40201362Phenanthrene 50(50)25(25) 729Pyrene 100(50) 50(25) 8201,2,4-Trichlorobenzene 50(25)25(12.5) 750________________________________________________________________________________Determined using on-column injection and the conditions of Sec. 7.3. A medium aband HgCdTe detector [3800-700 cm ; D value (peak 1000 Hz, 1) 4.5 x 10 cm -1*10Hz W ] type with a 0.25 mm focal chip was used. The GC/FT-IR system is a 1/22-11976 retrofitted model. Values in parentheses were determined with a new (1986) GC/FT-IR system. A narrow band HgCdTe detector [3800-750cm ; D value -1*(peak 1000 Hz, 1) 4 x 10 cm Hz W ] was used. Chromatographic conditions 101/2-1are those of Sec. 7.3.Based on a 2 µL injection of a one liter sample that has been extracted and bconcentrated to a volume of 1.0 mL. Values in parentheses were determined with a new (1986) GC/FT-IR system. A narrow band HgCdTe detector [3800-750cm -; D value (peak 1000 Hz, 1) 4 x 10 cm Hz W ] was used. Chromatographic 1-1*101/2conditions are those of Sec. 7.3.Most intense IR peak and suggested quantitation peak.cDetected as diphenylamine.dCD-ROM 8410 - 13Revision 0September 1994FUSED SILICA CAPILLARY COLUMN GAS CHROMATOGRAPHIC/FOURIER TRANSFORM INFRARED ON-LINE AUTOMATED IDENTIFICATION LIMITS FOR ACIDIC EXTRACTABLES________________________________________________________________________________Identification LimitCompound ng injected µg/L max, cm a b -1c ________________________________________________________________________________Benzoic acid 703517512-Chlorophenol 502514854-Chlorophenol 100501500d4-Chloro-3-methylphenol 2512.511772-Methylphenol 5025 7484-Methylphenol502511772,4-Dichlorophenol 502514812,4-Dinitrophenol603013464,6-Dinitro-2-methylphenol 603013462-Nitrophenol 40201335d 4-Nitrophenol50251350Pentachlorophenol 50251381Phenol703511842,4,6-Trichlorophenol 1206014702,4,5-Trichlorophenol120601458________________________________________________________________________________Operating conditions are the same as those cited in Sec. 7.3.aBased on a 2 µL injection of a one liter sample that has been extracted and bconcentrated to a volume of 1.0 mL.Most intense IR peak and suggested quantitation peak.cSubject to interference from co-eluting compounds.d。