坐标与图形变换的关系
冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》教学设计

冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》教学设计一. 教材分析冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》这一章节主要介绍了图形在坐标系中的变换,包括平移、旋转和轴对称等,以及这些变换与图形上点的坐标之间的关系。
通过本章的学习,学生能够理解图形变换的实质,掌握图形变换的方法,并能运用坐标表示和计算图形变换后点的坐标。
二. 学情分析学生在七年级已经学习了坐标系和坐标的概念,对坐标系有一定的认识,但对于图形变换和坐标之间的关系可能还没有完全理解。
因此,在教学过程中,需要引导学生通过实际操作和思考,逐步理解图形变换与坐标之间的关系。
三. 教学目标1.理解图形变换的实质,掌握图形变换的方法。
2.能够运用坐标表示和计算图形变换后点的坐标。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形变换的实质和方法的掌握。
2.图形变换与坐标之间的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作和思考,探索图形变换与坐标之间的关系。
2.运用多媒体辅助教学,直观展示图形变换的过程,帮助学生理解和掌握。
3.采用小组合作学习,鼓励学生互相讨论和交流,提高学生的合作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.坐标纸、直尺、圆规等学习工具。
3.教学课件和练习题。
七. 教学过程1.导入(5分钟)通过一个简单的图形变换实例,引导学生思考图形变换的过程和坐标的变化。
例如,将一个点(2,3)进行平移,让学生观察坐标的变化。
2.呈现(15分钟)利用多媒体展示各种图形变换的实例,包括平移、旋转和轴对称等,并引导学生思考这些变换与坐标之间的关系。
3.操练(15分钟)让学生分组进行实际操作,利用坐标纸和学具进行图形变换,并记录变换后点的坐标。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些图形变换的练习题,巩固所学知识。
教师选取部分学生的作业进行点评和讲解。
坐标系与平面图形的关系及其性质

坐标系与平面图形的关系及其性质坐标系和平面图形是数学中的基本概念,它们在解决几何问题和建模实践中扮演着重要的角色。
本文将探讨坐标系与平面图形之间的关系以及它们所具有的性质。
一、坐标系的定义及性质坐标系是用来描述空间位置的系统,常见的坐标系有直角坐标系和极坐标系。
直角坐标系由x轴、y轴和z轴组成,可用三个坐标值(x, y, z)来表示空间中的点。
而极坐标系则由极径和极角两个参数来确定点的位置。
坐标系具有以下性质:1. 唯一性:在一定范围内,每个点都有唯一的坐标表示,不会有重复的情况。
2. 可表示任意位置:坐标系可以描述任意点的位置,无论该点位于直线、曲线、平面还是空间中。
3. 满足数学规律:坐标系中的坐标值满足一系列的数学规律,如直角坐标系中的距离公式、角度计算等。
二、平面图形的定义及性质平面图形是指在平面上由多个点构成的形状,常见的平面图形有直线、曲线、多边形等。
平面图形可以由坐标系表示,通过坐标系中的点的集合来描述其形状、大小和位置。
平面图形具有以下性质:1. 可分解性:平面图形可以被分解为多个线段、面积或其他几何元素的组合。
2. 周长和面积:平面图形的周长和面积是衡量其大小的重要指标,可以通过数学方法进行计算和比较。
3. 对称性:平面图形可能具有对称性,如轴对称、中心对称等特点,这些对称性可以通过坐标系的变换来进行分析和判断。
三、坐标系与平面图形的关系1. 坐标系的应用:坐标系可以用来表示平面图形的位置和形状。
通过设定坐标系的原点和坐标轴方向,可以将平面图形的点与坐标系中的点进行一一对应。
2. 坐标系的变换:坐标系的平移、旋转和缩放等变换操作对于描述和分析平面图形非常重要。
通过坐标系的变换,可以实现对平面图形的位置、形状和尺寸的调整。
3. 区域和方程的关系:平面图形可以通过方程来表示,方程的解即为图形上的点的坐标,而图形的形状和位置则可以由方程的特征来推断。
四、坐标系与平面图形的性质1. 距离计算:坐标系中的两点之间的距离可以通过坐标差值和勾股定理来计算,这一性质在测量和分析平面图形时非常有用。
12 课题 图形的变换与坐标

课题图形的变换与坐标【学习目标】1.理解点或图形的变化引起的坐标的变化规律,以及图形上的点的坐标的某种变化引起的图形变换,并应用于实际问题中;2.经历图形坐标变化与图形平移、旋转、放大、缩小等之间的关系,发展学生的形象思维;3.培养数形结合的思想,感受图形上点的坐标变化与图形变化之间的关系,认识其应用价值.【学习重点】图形坐标变化与图形变换之间的关系.【学习难点】图形坐标变化与图形变换规律的探究.一、情景导入生成问题1.平移的特征是什么?2.轴对称图形的特征是什么?3.相似图形的特征是什么?二、自学互研生成能力知识模块一图形的平移阅读教材P88~P92的内容.范例:在图中△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?解:△AOB的三个顶点的坐标分别是A(2,4),O(0,0),B(4,0).平移之后的△A′O′B′对应的顶点坐标分别是A′(5,4),O′(3,0),B′(7,0).沿x轴向右平移3个单位之后,三个顶点的纵坐标都没有改变,而横坐标都增加了3.范例:如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4,3)和(-1,3).将△ABC沿y 轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″.试写出现在三个顶点的坐标,看看发生了什么变化.解:△ABC的三个顶点的坐标分别是A(-3,4),B(-4,3),C(-1,3),沿y轴向下平移3个单位之后的△A′B′C′对应的顶点坐标分别是A′(-3,1),B′(-4,0),C′(-1,0).沿x轴向右平移4个单位之后的△A″B″C″对应的顶点坐标分别是A″(1,1),B″(0,0),C″(3,0).经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了 3.我们还可以把这两次平移看作是△ABC沿BB″方向平移一次,得到△A″B″C″.知识模块二轴对称范例:如图,将△AOB沿着x轴对折,得到△A′O B,画图并说明对应顶点有什么变化?解:点A(2,4)和点A′(2,-4)关于x轴对称,且它们的横坐标相同,纵坐标相反.仿例:请在右图中的平面直角坐标系中画一个平行四边形,写出它的四个顶点的坐标,然后画出这个平行四边形关于y轴的对称图形,写出对称图形四个顶点的坐标,观察对应顶点的坐标有什么变化.范例:如图1,将△AOB缩小后得到△COD,你能求出它们的相似比吗?图1探索:如图2,已知矩形ABCD四个顶点的坐标分别是A(0,0)、B(3,0)、C(3,2)、D(0,2),将这四个顶点坐标同时扩大到原来的2倍后得到一组新坐标,画出新坐标对应的点所确定的图形,看看新的图形和原图形之间有什么关系.图2概括:我们看到,当一个几何图形经过某种运动改变位置后,图形上各点的坐标也发生了相应的变化,这些变化可以归纳成下表(请补充完整表格中的内容).反过来,以某种方式同时改变一个几何图形上各点的坐标,也会使该图形产生相应的变换,从而改变它的位置或大小.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 图形的平移 知识模块二 轴对称 知识模块三 相似四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:_________________________________________________ 2.存在困惑:_____________________________________________。
平面直角坐标系下的图形变换

平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
坐标与位置变化

伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案.
压缩:新图案的坐标变为原图案坐标的 (a>1),则将原图案压缩 ,便可得新图案.
【例5】 下面的方格 纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.
(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?
(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图 形与原图形的位置有怎样的变化?
图1
解:(1)A,B,C,D,E点的横坐标都加上3,所得顶点的坐标分别是A1(1,0),B1(4,2),C1(5,1),D1(6,2),E1(5,0),依次连接各点得图形A1B1C1D1E1,图形A1B1C1D1E1相当于图形ABCDE向右平移了3个单位长度后得到的(如图2).
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为_______,B4的坐标为_______.
(2)若按第(1)题中找到的规律将△OAB进行n次变换,得到△OAnBn,推测An的坐标为____________,Bn的坐标为________.
2.在直角坐标系 中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平 行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( )
⑶写出点B′的坐标.
5.李老师从“淋浴龙头”受到启发 ,编了一个题目:在数轴上截取从0到3的线段 ,实数 对应 上的点 ,如图1;将 折成正三角形,使点 重合于点 ,如图2;建立平面直角坐标系,平移此三角形,使它关于 轴对称,且点 的坐标为(0,2), 与 轴交于点 ,如图3.当 时,求 的值.你解答这个题目得到的 值为( )
平面直角坐标系与图形的对称变换

根据点P所在的象限,可以确定其坐标符号。第一象限内点的坐标符号为(+,+) ,第二象限内点的坐标符号为(-,+),第三象限内点的坐标符号为(-,-),第四象 限内点的坐标符号为(+,-)。
距离公式和中点公式应用
距离公式
两点A(x1,y1)和B(x2,y2)之间的距离 公式为d=√[(x2-x1)²+(y2-y1)²]。
其他特殊图形对称性质
除了上述几种特殊图形外,还有许多其他图 形也具有对称性质,如菱形、矩形、正六边 形等。这些图形的对称性质可以根据其定义 和性质进行推导和证明。
03
平面直角坐标系中图形对称变换规 律
轴对称变换在坐标系中实现方法
确定对称轴
根据题目要求或图形特点 ,确定对称轴的位置。
找对应点
在对称轴的一侧任取一点 ,通过翻折找到它的对应 点。
逐步进行变换
按照基本变换的顺序,逐步进行 变换操作。
注意变换顺序
复合对称变换中,变换的顺序可 能会影响最终的结果。
图形对称性质在解题中运用策略
利用对称性简化问题
01
利用图形的对称性,可以将复杂的问题简化为更易于解决的问
题。
构造对称图形辅助解题
02
根据题目要求,构造出具有对称性的辅助图形,帮助解题。
性质
平面直角坐标系具有对称性、平 移不变性和旋转不变性。
坐标轴上点表示方法
01
02
03
原点
坐标系的原点用O表示, 其坐标为(0,0)。
x轴上点
x轴上的点用(x,0)表示, 其中x为实数。
y轴上点
y轴上的点用(0,y)表示, 其中y为实数。
平面内任意点坐标确定
图形的位似变换与坐标
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
y
A'
6
4 A
3
2
B'
C
1
B
o
2
4
6
还有其他办法吗?
C'
x
12
在平面直角坐标系中, △ABC三个顶点的坐标分别 为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相 似比为2,将△ABC放大.
(2)一般情况下,画已知图形的位似图形的结果不唯一; (3)将一个图形放大或缩小而保持形状不变.
复习回顾
如何把三角形ABC放大为原来的2倍?
E
B
O
C
F
D
A
D
B
O
C
F
A
E
对应点连线都交于_位__似___中__心____ 对应线段___平___行__或__在___一__条__直___线__上_________
放大后对应点的坐标分别是多少?
A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 )
y
A
C
B
x
o
B”
A”
例题.在平面直角坐标系中, 四边形ABCD的四个顶点的坐
标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以 原点O为位似中心,相似比为1/2的位似图形.
y
A(5,4)
A’(10,4)
C(5,1)
C’
0
B(3,0) B’
D(5,-1)
x
D'
E(4,-2)
E’(8,-2)
图形的变换与坐标
曹营中心校
饶玉秋
知识回顾
什么是平面直角坐标系?怎样用坐标表示平
面内的点?
全等变换有哪些?在全等变换中只改变图形
两条互相垂直的数轴构成平面直角坐标系; 用有序实数对表示点的坐标(横前纵后)
的什么?
相似变换改变了图形的什么?不改变图形的
平移、旋转、对称;全等变换只改变图形的位 置,而形状和大小都不改变。
想一想?
先完成P92页练习第3题,然
后相互交流自己的看法。
课堂作业:
1、P93页第2题。 2、已知△ABC各顶点的坐标为A(2,1),B (0,3),C(4,0) (1)把△ABC向上平移一个单位,所得三角 ( 2,2)( 0,4) ( 4,1) 形三个顶点坐标为 _____ 、____ 、 __ (2)把△ABC向右平移一个单位,所得三角 ( 1,3) ( 5,0) ( 3,1) 形三个顶点坐标为 _____ 、 ____ 、 __ (3)把△ABC先向下平移一个单位,再向左 平移一个单位,所得三角形三个顶点坐标为 ( 1,0) (-1,2 ) ( 3,-1) ____ 、 ____ 、 ______ 。
什么?
改变大小,不改变形状。
教学目标 1、掌握图形在变换过程中坐标的变化情 况,能求图形变换后的坐标;
2、进一步体会用坐标确定位置需要两个
数据;
3、通过了解图形在变换前后坐标的变化
情况的学习,体会数学的和谐美。
自学指导 认真自学教材Pຫໍສະໝຸດ 8-92页部分内容,思考下列问题:
1、图形沿x轴左右平移时,坐标是怎样变化的?图形沿y 轴上下平移时坐标又是怎样变化的?左右平移时改变的 是什么坐标,什么坐标不变?上下平移时改变的又是什 么坐标,什么坐标不变?
坐标平移的性质
坐标平移与图形 变换的关系
图形变换的基本概念
图形变换是指通 过平移、旋转、 缩放等操作,改 变图形的大小、 形状和位置。
图形变换广泛应 用于计算机图形 学、动画制作、 游戏开发等领域。
三维坐标平移
三维坐标平移的定义
定义:将三维空间中的点按照给定的向量进行平移,得到新的点。 性质:平移不改变点的坐标值,只改变点的位置。 应用:在几何、物理、工程等领域中广泛使用,例如机器人移动、机械零件装配等。 注意事项:平移时需要确保方向和距离的正确性,否则会产生误差。
三维坐标平移的性质
定义:将一个点在三维空间中沿着某一方向移动一定的距离 性质:平移不改变点的坐标,只改变点的位置 方向:可以沿着x轴、y轴或z轴平移,也可以沿着任意方向平移 距离:平移的距离可以是任意的实数
三维坐标平移的应用
机器人的移动控制:通过三维坐标平移,可以精确控制机器人的移动轨迹和位置。
建筑建模:在建筑行业中,利用三维坐标平移技术可以建立精确的建筑模型,提高施工效率和精 度。
地球科学:在地球科学领域,通过三维坐标平移,可以对地球表面进行精确测量和建模,为地质 调查、矿产资源勘探等领域提供有力支持。
坐标平移是图形变 换中最基本的一种 ,是理解其他变换 的基础。
图形变换的应用
图形变换在计算机图形学中的应用,如动画、游戏、虚拟现实等。 图形变换在图像处理中的应用,如图像缩放、旋转、平移等。 图形变换在建筑设计中的应用,如建筑模型的三维建模、景观设计等。 图形变换在机械设计中的应用,如零件的建模、装配等。
感谢您的观看
汇报人:XX
坐标与图形的变化
缩放变换是图形变换中常用的一种,它通过改变图形上所有点的坐标值来实现放大或缩小。在缩放变 换中,图形上任意一点都按照相同的比例因子进行放大或缩小,保持了图形之间的相对关系不变。
旋转变换
总结词
旋转变换是指图形绕某一点旋转一定的角度,同时改变其方向和位置。
详细描述
旋转变换是图形变换中常用的一种,它通过旋转图形上所有点的坐标值来实现旋转。在旋转变换中,图形上任意 一点都绕着旋转中心按照相同的旋转角度进行旋转,保持了图形之间的相对关系不变。
在实际应用中,坐标与图形变化的应用非常广泛。例如,在计算机图形学中,坐标与图形变 化被用于生成和处理各种类型的图像;在物理学中,它们被用于描述物体的运动轨迹和状态 变化;在工程学中,它们被用于设计和分析各种机械系统和控制系统。
对未来研究的展望与建议
• 随着科技的不断发展,坐标与图形变化的应用前景将更加广阔。未来,我们可 以进一步探索如何将坐标与图形变化应用于更多领域,以解决更多实际问题。
在机械设计中,可以通过建立坐标系来描述机器部件的位置和运 动轨迹,从而进行精确的设计和制造。
航空航天
在航空航天领域,通过建立三维坐标系,可以描述飞行器的位置和 姿态,从而进行导航和控制。
自动化控制
在自动化控制领域,通过建立坐标系,可以描述机器的位置和状态, 从而进行精确的控制和监测。
05
总结与展望
• 总之,坐标与图形变化是一个充满活力和潜力的研究领域。未来,我们可以通 过不断深入研究和探索,推动该领域的发展和应用,为解决更多实际问题提供 更多有效的方法和工具。THAKS感谢观看04
坐标与图形变化的应用
在几何学中的应用
01
02
03
坐标变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y (x,y) (x,2y).
o
x
纵向拉长2倍。
猜想:将你画的图形所有点,横 纵坐标都乘2,即(x,y) (2x, 2y).
yห้องสมุดไป่ตู้
o
x
横向拉长2倍,纵向拉长2倍。
2、观察下列三角形,红色三角形各点的坐 标怎样变化后能得到蓝色三角形?
y
4 3 2 1
-4 -3 -2 -1 0 1 2 3 4 x
-1 -2
(1)
3、图形中所有点的横坐标乘以2,纵坐 标再加上3,那么所得图形会发生什么 变化? 8 y
7
6 5
4
3
2
1
0 1 2 3 4 5 6 7 8 9 10
x
–1
–2
1
练习:纵向变为原来的 ,横向不变。
3
y
12
y
4
2
6
O1 4 x
O1
4
x
(x,y)(
_x_
1
,
_y_
)
3
再同样用线段依次连接,图形将发生了什么 变化?图形的这个变化与坐标有怎样的关系?
(x,y) (2x,y).
y
0
x 10
横向拉长2倍。
活动三:
将你画的图形所有点,纵坐标乘2, 横坐标不变,即:(x,y) (x,2y).再同样 用线段依次连接,图形将发生了什么变 化?图形的这个变化与坐标有怎样的关 系?
同江三中 刘兆来
7y
6
5 4
3 2 1
–4 -3 -2 -1 0
–1
–2
-3-3
–4
–-55
3
x
12
4 56
活动一:
在直角坐标系中 描出以下各点: (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用 线段依次连接。
y
5 4
3
2
1
x
0 1234567
–1
–2
–3
–4
–5
活动二:
将你画的图形所有点,横坐标乘2,纵 坐标不变,即:(x,y) (2x,y)
(x,y) (0 , 0) (5 , 4) (3 , 0) (5 , 1) (5 , -1) (3 , 0) (4 , -2) (0 , 0)
(2x, y) (0 , 0) (10 , 4) (6, 0)(10 , 1)(10, -1) (6 , 0) (8 , -2) (0 , 0)