高性能混凝土的应用

合集下载

高性能混凝土的工程应用

高性能混凝土的工程应用

高性能混凝土的工程应用一、前言高性能混凝土(High Performance Concrete,简称HPC)是一种在混凝土中添加特殊材料和化学添加剂的混凝土,其性能优于普通混凝土。

由于其高强度、高耐久性、高可靠性和高抗震性等优点,被广泛应用于工程领域。

本文将从高性能混凝土的特点、材料组成、性能要求、施工工艺等方面详细介绍其工程应用。

二、高性能混凝土的特点1. 高强度:高性能混凝土的强度一般在80MPa以上,远高于普通混凝土的强度。

2. 高耐久性:高性能混凝土的耐久性比普通混凝土更好,可以抵抗化学腐蚀、冻融循环和氯离子渗透等。

3. 高可靠性:高性能混凝土的质量可靠,具有更高的工作性能和更长的使用寿命。

4. 高抗震性:高性能混凝土具有更好的抗震性能,可以减少地震对建筑物的影响。

5. 高流动性:高性能混凝土的流动性好,可以在混凝土结构中形成更加均匀的力学性能。

三、高性能混凝土的材料组成高性能混凝土主要由水泥、细集料、粗集料、化学掺加剂和钢纤维等组成。

1. 水泥:高性能混凝土中常用的水泥有普通硅酸盐水泥、高性能水泥和矿渣水泥等。

2. 细集料:高性能混凝土中常用的细集料有石英粉、硅灰石粉和矿物粉等。

3. 粗集料:高性能混凝土中常用的粗集料有骨料、砾石和砂等。

4. 化学掺加剂:高性能混凝土中常用的化学掺加剂有高效减水剂、缓凝剂、增强剂和微量添加剂等。

5. 钢纤维:高性能混凝土中常用的钢纤维有直径为0.2-1.0mm的钢纤维和直径为0.5-2.5mm的钢纤维等。

四、高性能混凝土的性能要求高性能混凝土的性能要求主要包括以下几个方面:1. 抗压强度:高性能混凝土的抗压强度要求在80MPa以上。

2. 抗拉强度:高性能混凝土的抗拉强度要求在6-10MPa以上。

3. 抗渗透性:高性能混凝土的渗透系数要求小于10-11m/s。

4. 抗裂性:高性能混凝土的抗裂性要求好,可以减少混凝土结构的裂缝。

5. 耐久性:高性能混凝土的耐久性要求好,可以抵抗化学腐蚀、冻融循环和氯离子渗透等。

《高性能混凝土在桥梁工程上的应用技术研究》范文

《高性能混凝土在桥梁工程上的应用技术研究》范文

《高性能混凝土在桥梁工程上的应用技术研究》篇一一、引言随着科技的不断进步和工程建设的快速发展,高性能混凝土(HPC)在桥梁工程中的应用越来越广泛。

其独特的物理和化学性能使其成为现代桥梁工程建设的理想选择。

本文将就高性能混凝土在桥梁工程中的应用技术进行深入研究,旨在为桥梁工程建设提供理论支持和实用建议。

二、高性能混凝土概述高性能混凝土(HPC)是一种具有高强度、高耐久性、高工作性能的新型混凝土。

其特点包括优异的力学性能、良好的施工性能、高耐久性和长寿命等。

与普通混凝土相比,高性能混凝土在桥梁工程中具有更好的应用前景。

三、高性能混凝土在桥梁工程中的应用1. 桥梁主梁建设高性能混凝土因其高强度和高耐久性,在桥梁主梁建设中得到广泛应用。

其优异的力学性能能够满足大跨度桥梁的承载要求,同时其良好的施工性能使得桥梁建设过程更为便捷。

2. 桥梁墩台建设高性能混凝土在桥梁墩台建设中也有着重要的应用。

其高耐久性可以抵抗恶劣环境对桥梁的侵蚀,延长桥梁的使用寿命。

此外,高性能混凝土还具有良好的抗裂性能,有助于减少桥梁在使用过程中的裂缝问题。

3. 预应力混凝土桥梁预应力混凝土桥梁是现代桥梁工程中的重要形式,高性能混凝土在预应力混凝土桥梁中的应用也日益广泛。

其优异的力学性能和施工性能使得预应力混凝土桥梁的施工更为便捷,同时提高了桥梁的承载能力和使用寿命。

四、高性能混凝土应用技术研究1. 配合比设计合理的配合比设计是保证高性能混凝土性能的关键。

通过优化配合比,可以提高混凝土的强度、耐久性和工作性能。

针对不同的桥梁工程需求,应进行针对性的配合比设计,以满足工程要求。

2. 施工工艺研究施工工艺对高性能混凝土的性能有着重要影响。

在桥梁工程建设中,应采用先进的施工工艺和技术,如泵送、振动、养护等,以保证混凝土的密实性和均匀性,从而提高混凝土的力学性能和耐久性。

3. 耐久性研究耐久性是高性能混凝土的重要性能之一。

针对桥梁工程中的恶劣环境,应进行耐久性研究,以提高混凝土的抗裂、抗渗、抗冻等性能,延长桥梁的使用寿命。

高性能混凝土的应用及其发展(全文)

高性能混凝土的应用及其发展(全文)

高性能混凝土的应用及其发展(全文)模板一:正文:一:引言高性能混凝土是一种具有优异性能和广泛应用前景的建筑材料。

近年来,随着科技的进步和人们对建筑质量要求的不断提高,高性能混凝土在工程领域中的应用越来越广泛。

本文将详细介绍高性能混凝土的应用及其发展。

二:高性能混凝土的定义和特点高性能混凝土是一种具有极高抗压强度、良好的耐久性和抗渗透性能的混凝土材料。

其主要特点包括:抗压强度高、波动性小、耐久性好、抗渗透性强、抗冻性好等。

这些特点使高性能混凝土在工程领域中表现出了独特的优势。

三:高性能混凝土的应用领域1. 桥梁工程:高性能混凝土在桥梁工程中的应用非常广泛。

由于其优异的抗压强度和抗渗透性能,可以有效提高桥梁的使用寿命和安全性能。

2. 建筑工程:高性能混凝土在高层建筑、地下工程和重要建筑物的抗震加固中具有重要应用价值。

其高强度和耐久性能可以提高建筑物的承载能力和抗灾能力。

3. 水利工程:高性能混凝土在水利工程领域中的应用也非常广泛。

例如水坝、水管和水处理设备等建筑物的建造和维护中都需要使用到高性能混凝土。

四:高性能混凝土的发展趋势1. 新材料的研发:随着科技的进步,人们对高性能混凝土的要求也越来越高。

因此,研发出更加优异的高性能混凝土是未来的发展趋势之一。

2. 绿色环保:未来高性能混凝土的发展将更加注重环境保护和可持续性发展。

例如,利用废旧材料和再生材料制造高性能混凝土将成为发展的一个重要方向。

3. 技术应用的创新:随着科技的进步,高性能混凝土的制备技术也在不断改进和创新。

未来可能会出现更加先进和高效的制备工艺和设备。

附件:本文档涉及附件:无法律名词及注释:1. 抗压强度:混凝土材料在受到压力作用时的抵抗能力。

2. 耐久性:指混凝土材料在长期使用和外界环境作用下不发生损坏和破坏的能力。

3. 抗渗透性:混凝土材料对水、气体和其他外界物质的渗透能力。

模板二:正文:一:引言随着科技的发展和社会的进步,高性能混凝土作为一种新型建筑材料正逐渐受到人们的关注和重视。

高性能混凝土在工程建设中的施工应用

高性能混凝土在工程建设中的施工应用

高性能混凝土在工程建设中的施工应用高性能混凝土是一种具有优良力学性能和耐久性能的特殊混凝土。

它的强度高、抗渗性好、耐久性长,适用于各种建筑物和工程的施工中,具有广泛的应用前景。

以下是关于高性能混凝土施工应用的一些内容。

高性能混凝土在地基工程中有广泛的应用。

在大型桥梁的桥墩基础上,使用高性能混凝土能够提高桥墩的强度和稳定性,增加整个桥梁结构的承载能力,同时减少渗漏问题的发生。

高性能混凝土还可以用于地下工程中的基础施工,例如地下车库、地下管线等。

在这些地下工程中,高性能混凝土可以提供更好的抗渗性能,避免地下水渗漏导致的损坏。

高性能混凝土在建筑物的结构施工中也有重要的应用。

在高层建筑的结构中,高性能混凝土可以用于楼板、柱子、梁等构件的施工。

由于高性能混凝土的抗压强度和抗弯强度较高,可以提高整个建筑物的结构安全性和稳定性。

高性能混凝土还具有较好的抗震性能,能够有效减少地震对建筑物结构的破坏。

高性能混凝土在桥梁、隧道等交通工程中的施工中也有重要的应用。

由于高性能混凝土的耐久性好,可以有效抵抗氯离子渗透、碳化等环境因素的侵蚀,能够延长桥梁和隧道的使用寿命。

高性能混凝土还可用于制作护坡砂浆、防护墙、护坡等结构,能够提供更好的抗渗性能,保护桥梁和隧道结构的安全性和稳定性。

高性能混凝土还可以用于水利工程中的施工。

在水库大坝的施工中,使用高性能混凝土能够提高大坝的耐水性和抗渗性,防止水流对大坝结构的破坏。

高性能混凝土还可以用于渠道、堤坝、港口码头等水利工程中的结构施工,能够提供更好的耐水性和抗浪性能,增加工程的安全性和稳定性。

高性能混凝土在工程建设中具有广泛的应用前景。

在地基工程、建筑物结构、交通工程和水利工程等方面的施工中,高性能混凝土都能够提供更好的力学性能和耐久性能,提高工程的安全性和稳定性,减少维修和维护的成本。

高性能混凝土在工程建设中的应用将会越来越广泛。

高性能混凝土的工程应用

高性能混凝土的工程应用

高性能混凝土的工程应用一、引言高性能混凝土是一种具有高强度、高耐久性、高抗裂性和高流动性的新型混凝土材料。

由于其优异的物理和力学性能,高性能混凝土在工程建设中得到了广泛应用。

本文将重点介绍高性能混凝土的工程应用,包括其在桥梁、隧道、地下结构和高层建筑等方面的应用。

二、高性能混凝土的特点1.高强度:高性能混凝土的强度等级一般在C50以上,最高可达到C120以上,其抗压强度和抗拉强度均高于普通混凝土。

2.高耐久性:高性能混凝土具有良好的抗冻融性、耐久性和抗硫酸盐侵蚀性,能够满足各种恶劣环境下的使用要求。

3.高抗裂性:高性能混凝土具有良好的抗裂性能,能够有效地控制混凝土的裂缝。

4.高流动性:高性能混凝土具有良好的流动性能,可以在混凝土内部均匀分布,从而提高混凝土的致密性和强度。

三、高性能混凝土在桥梁中的应用1.高性能混凝土在桥梁桥面板中的应用桥面板是桥梁结构中重要的承载部分,其性能直接关系到桥梁的安全性和使用寿命。

采用高性能混凝土作为桥面板材料,可以有效地提高桥面板的强度和耐久性。

同时,高性能混凝土的流动性能可以使得混凝土在模板中均匀分布,从而减小混凝土收缩产生的裂缝。

例如,北京五环路东北角立交桥采用高性能混凝土作为桥面板材料,其强度等级为C60,能够有效地提高桥梁的承载能力和使用寿命。

2.高性能混凝土在桥梁梁段中的应用桥梁梁段是桥梁结构中主要的承载部分,其性能直接关系到桥梁的安全性和使用寿命。

采用高性能混凝土作为桥梁梁段材料,可以有效地提高其强度和耐久性,从而增加桥梁的承载能力和使用寿命。

例如,北京大运河黄庄桥采用高性能混凝土作为梁段材料,其强度等级为C60,能够有效地提高桥梁的承载能力和使用寿命。

四、高性能混凝土在隧道中的应用1.高性能混凝土在隧道衬砌中的应用隧道衬砌是隧道结构中重要的承载部分,其性能直接关系到隧道的安全性和使用寿命。

采用高性能混凝土作为隧道衬砌材料,可以有效地提高其强度和耐久性,从而增加隧道的承载能力和使用寿命。

高性能混凝土在公路工程施工中的应用

高性能混凝土在公路工程施工中的应用

高性能混凝土在公路工程施工中的应用一、高性能混凝土的特点高性能混凝土是一种以高性能水泥、高性能骨料和掺和料为主要原材料,具有高强度、高耐久性、高抗渗性和高耐久性等显著特点的混凝土。

与普通混凝土相比,高性能混凝土具有以下特点:1. 高强度:高性能混凝土的抗压强度一般可达到100MPa以上,远高于普通混凝土的抗压强度。

2. 高耐久性:高性能混凝土的耐久性明显优于普通混凝土,具有更好的抗腐蚀性和抗冻融性能。

3. 高抗渗性:高性能混凝土的抗渗性能更好,能够有效阻止水分和有害物质的渗透。

4. 高工作性能:高性能混凝土的流动性好,能够满足施工的需要,保证施工质量。

5. 绿色环保:高性能混凝土的生产过程对环境影响小,符合可持续发展理念。

高性能混凝土具有优良的物理性能和工程性能,因而在公路工程施工中具有广泛的应用前景。

1. 路面铺装高性能混凝土在公路工程中最为广泛的应用就是路面铺装。

由于高性能混凝土具有较高的抗压强度和耐久性,因此可以大幅提高路面的承载能力和使用寿命。

而且,高性能混凝土的抗渗性能和抗冻融性能也能有效减少路面开裂和坑洞的问题,降低维修成本,提高道路整体质量。

2. 桥梁结构公路工程中的桥梁结构承受着巨大的荷载和变形,因此对材料的强度和耐久性要求较高。

高性能混凝土不仅具有较高的抗压强度,而且还具有良好的抗腐蚀性能,能够有效延长桥梁结构的使用寿命,保障交通安全。

3. 护坡和隧道在公路工程中,护坡和隧道构筑物也是使用混凝土的重要部分。

使用高性能混凝土可以提高护坡和隧道的整体稳定性和耐久性,减少因风吹雨淋而导致的损坏和维修成本。

1. 提高施工效率2. 保证施工质量高性能混凝土的抗压强度和抗渗性能优良,能够有效保证公路工程的施工质量,减少施工过程中的质量问题。

3. 减少维修成本高性能混凝土具有良好的耐久性和抗腐蚀性能,可以减少公路工程后期的维修成本,提高工程的经济效益。

四、高性能混凝土在公路工程中的发展趋势随着科技的不断进步和对交通质量要求的提高,高性能混凝土在公路工程中的应用将会呈现出以下发展趋势:1. 新材料的开发随着工程技术的不断进步,将会有更多种类的高性能混凝土材料被开发出来,以满足不同工程场景中的需求。

高性能混凝土及其工程应用

高性能混凝土及其工程应用

高性能混凝土及其工程应用
高性能混凝土是一种具有卓越性能的建筑材料,在工程应用中广泛使用。

它具有高强度、高耐久性、高稳定性等优点,能够满足各种复杂工程要求,因此在现代建筑领域得到了广泛的应用。

高性能混凝土的强度通常高于传统混凝土,其抗压强度可达到80MPa以上。

这使得高性能混凝土在承受巨大荷载的结构中具有很好的应用潜力,比如高层建筑、大桥、港口码头等。

高性能混凝土的抗拉强度和抗折强度也较高,能够有效抵抗变形和开裂。

高性能混凝土还具有较好的耐久性,能够在恶劣环境中长期保持稳定的力学性能。

它的低渗透性和高抗化学侵蚀性能能够有效防止氯、硫酸盐、酸碱等侵蚀物质的侵害。

这使得高性能混凝土特别适用于海洋工程、化工厂、污水处理厂等特殊环境中的建筑。

高性能混凝土的施工性能也较好,能够满足各种复杂形状和设计要求。

它可以通过适当的掺合料和施工工艺来调整硬化时间和流动性,适应不同的施工工况。

高性能混凝土在养护期间不需要过多的保养,节省了施工成本和维护成本。

高性能混凝土的工程应用十分广泛。

在高层建筑中,由于高性能混凝土的高强度和优良的延性,能够有效抵御地震和风荷载等外力作用,提供更安全可靠的建筑物。

在大桥和高速公路等交通基础设施中,高性能混凝土的高耐久性使其能够满足长期使用和大荷载的需求。

在港口码头、水利工程等海洋环境中,高性能混凝土的耐久性和抗侵蚀性能能够有效应对海水侵蚀和氯离子侵害。

高性能混凝土应用案例分析

高性能混凝土应用案例分析

高性能混凝土应用案例分析一、引言高性能混凝土是一种以高强度、高耐久、高流动性、高抗裂性为特点的新型混凝土材料,被广泛应用于各种建筑工程中。

本文将以实际应用案例为基础,分析高性能混凝土的应用情况、特点、优势和不足,并探讨如何有效地使用高性能混凝土。

二、高性能混凝土的应用情况高性能混凝土的应用范围非常广泛,涵盖了建筑工程的各个领域。

下面列举一些典型的应用情况:1. 桥梁建设高性能混凝土被广泛应用于桥梁的建设中,特别是在大跨度桥梁和高速公路桥梁中的应用较为普遍。

高性能混凝土的高强度和高耐久性可以保证桥梁的安全和使用寿命。

2. 隧道建设高性能混凝土也被广泛应用于隧道的建设中。

在隧道的墙体、顶板和地基中使用高性能混凝土可以提高隧道的强度和耐久性,并且可以减少隧道的翻新和维护成本。

3. 建筑物建设高性能混凝土还可以用于建筑物的建设中,特别是在高层建筑和特殊建筑物中的应用比较广泛。

高性能混凝土可以提高建筑物的抗震性能和耐久性,保证建筑物的安全和使用寿命。

三、高性能混凝土的特点和优势高性能混凝土的特点和优势主要表现在以下几个方面:1. 高强度高性能混凝土的强度比普通混凝土高出很多,可以达到100MPa以上。

这种高强度可以保证建筑物的安全和使用寿命。

2. 高耐久高性能混凝土具有较高的抗风化性、抗冻融性和抗硫酸盐侵蚀性等耐久性能。

这些性能可以保证建筑物在恶劣环境下的使用寿命。

3. 高流动性高性能混凝土具有较高的流动性,可以在混凝土中添加少量的水,使得混凝土的流动性更好。

这种高流动性可以使混凝土更加均匀、密实、耐久。

4. 高抗裂性高性能混凝土具有较高的抗裂性,可以在混凝土中添加少量的聚合物纤维,使得混凝土的抗裂性更好。

这种高抗裂性可以减少混凝土的开裂和龟裂现象,保证混凝土的坚固性和耐久性。

四、高性能混凝土的不足之处虽然高性能混凝土具有很多优点,但是也存在一些不足之处。

主要表现在以下几个方面:1. 成本较高相比普通混凝土,高性能混凝土的成本较高,需要使用特殊的原材料和加工工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:高性能混凝土在建设工程中的应用内容提要:本文阐述了高性能混凝土的定义及特点,并通过对高性能混凝土的原材料、配合比的分析,指出了其在建筑工程中的应用和发展趋势,在使用过程中的存在的问题及解决途径。

主题词:主题词:高性能混凝土原材料配合比应用正文内容1 高性能混凝土的定义和特点高性能混凝土是指在大幅度提高常规混凝土性能的基础上采用现代先进的预拌混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高性能外加剂,经过科学配方以及提高浇筑、捣实的方法来提高混凝土的长期力学性能、初期强度、刚度和体积稳定性以及延长其在恶劣环境下的使用寿命的一种新型高技术混凝土。

高性能混凝土往往被人们与高强度混凝土联系起来,其实质高性能混凝土不仅仅是高强度,而且具有相当高的刚度、弹性模量和耐久性。

这种混凝土在凝结硬化过程中,水化热低,内部缺陷少;硬化后,体积稳定,收缩变形小,结构密实,抗渗、抗冻、抗碳化等耐久性高。

2 高性能混凝土在建设工程中的应用高性能混凝土广泛用于长大跨径结构和特殊条件结构,因为其具有易于浇注、捣实而不离析、高超的、能长期保持的力学性能,在恶劣的使用条件下寿命长、强度高、高流动性与优异的耐久性,高性能混凝土对延长构筑物的使用寿命和获得更好的经济效益方面发挥着举足轻重的作用。

青岛地区海洋环境是混凝土结构所处的恶劣的外部环境之一,普通混凝土的耐久性根本无法满足很长的使用年限。

用于海水环境的混凝土,其性能上,应具有高耐久性(抗渗、抗冻、抗碳化、抗碱骨料反应,耐磨等),尤其具有高的抗氯离子渗透性,以减少海水中氯化物对钢筋的锈蚀作用;良好的施工性(大流动,可灌性、可泵性、均匀性等);良好的力学性能,早期后期强度均高;良好的尺寸稳定性;合理的适用性与经济性等。

能够具备这些要求的,非高性能混凝土莫属。

3 高性能混凝土的原材料和配合比高性能混凝土的原材料,除了常规的水泥、粗集料、细集料、水四种材料外,必须使用化学外加剂和矿物细掺料,一共是六种必不可少的材料,而且后两种材料可以是一种也可以是多种复合,这在选材上就要求与水泥具有良好的相容性,多种的外加剂之间(或细掺料之间)要求合理匹配,使之具有黄金搭配,产生叠加效应的效果,其组成和配比要比普通混凝土复杂,要求也高得多。

3.1 水泥及其用量配制高性能混凝土可以使用硅酸盐、普通硅酸盐水泥、早强硅酸盐水泥、中热水泥等,其强度等级应不低于42.5级。

水泥矿物组成中,C3A(铝酸三钙)含量不应超过8%,比表面积不宜太高,通常比表面在3200cm2/g左右。

试验结果证明,C3A含量超过8%,水泥的流动度损失明显,含碱量及硫酸盐含量高的水泥更严重。

当骨料具有碱-硅酸反应活性时,水泥的碱含量不应超过0.60%。

用于海水环境的还应控制其氯离子含量低于0.03%。

为了控制水泥水化放热量以及提高体积稳定性,配制高性能混凝土时胶凝材料(包括水泥和活性掺合料)总用量通常在300~550kg/m3范围。

这样,在合适的配合比条件下,可以得到抗压强度40~120MPa的混凝土。

为了适应高性能混凝土的发展,最理想的办法是生产一种低水胶比、高流动性、高强度等级的水泥,或者生产一种调节细度和颗粒组成的水泥,与普通水泥配合使用,这样便能保证在低水胶比的情况下,水泥砂浆流动度在200mm以上。

3.2 矿物掺合料矿物掺和料包括粉煤灰、火山灰质材料、粒化高炉矿渣等,它们是辅助胶凝材料,近几年来在普通混凝土应用中越来越普遍,一方面是由于经济效益显著,另一方面是因为使用这种材料可以得到技术效果。

在高性能混凝土中,应用辅助胶凝材料的作用就更为突出。

高性能混凝土的高强度部分来源于其基材的密实,即使有一部分水泥被一种或多种辅助代替,也对混凝土的早期强度不会有副作用。

此外,化学活性较低的辅助胶凝材料代替部分水泥,从控制水化放热和流变性能的角度也是有益的。

3.3集料及其用量集料的种类对混凝土的体积稳定性也有显著影响。

例如:水泥浆与集料的弹性模量或热膨胀系数不相匹配,当结构暴露在温度变化频繁的环境中将产生开裂。

同样,在一定的水泥浆、集料比时,使用弹性模量低的集料将会使混凝土的徐变增大。

就长期尺寸稳定性而言,通常认为混凝土集料用石灰岩和玄岩比花岗岩好,其发生碱-骨料反应的风险也大大降低。

除此之外,在配合比相似时,用花岗岩和砾石集料的混凝土比用辉绿岩或石灰岩集料的混凝土强度低得多,这是由于水泥石与集料之间的界面区的结构和粘结强度的差异造成的。

除集料的材质外,使用级配良好,洁净集料(没有泥土及脆弱颗粒)是必要的。

作为细集料(小于5mm)通常采用中高细度模数(即2.6~3.1)的天然砂为好。

在颗粒尺寸相同时,作为粗集料用破碎的致密石灰石或深层的岩浆岩(如花岗岩、正长岩、闪长岩和辉绿岩)通常以得到满意的结果。

粗集料的最大粒径对高性能混凝土来说以不超过25mm为最佳,超过25mm 对混凝土强度和抗渗性不利。

由于高性能混凝土的集料与水泥石界面较强,集料确实是混凝土强度的制约因素,而在普通混凝土中几乎不考虑这个问题。

若采用水泥熟料球作为人造集料配制高性能混凝土,可能得到高强度和高弹性模量,其原因是产生致密和牢固的集料-水泥界面区。

3.4 用水量在拌合水大大减少的情况下,获得大的流动性,使硬化混凝土具有高强度和高密实性。

因此,必须使用超塑化剂破坏水泥粒子的絮凝结构,使水泥粒子分散。

拌合水大大减少使水泥粒子间距缩小,因此得到比普通混凝土密实得多的水泥石结构,凭借这种高密实度的结构,水化物形成较多的水泥石结构,水化物形成较多的化学键合就能获得非常高的抗压强度。

由于游离水含量较少,自干燥失水后使高性能混凝土的水泥石具有非常低的孔隙率。

在配制高性能混凝土时应采用低水水灰比(ω/c)或水胶比ω/(c+s),高性能混凝土的抗压强度不仅取决于水灰比(水胶比),也取决于水泥石的密实度。

换句话说,两个影响混凝土强度的因素即水灰比(水胶比)和减小水化开始时粒子的间距。

3.5 外加剂配制高性能混凝土不可缺少的是超塑化剂,而普通减水剂达不到高性能混凝土减水率和提高工作性的要求。

超塑化剂或高性能减水剂是阴离子型高分子表面活性剂。

通常是萘磺酸盐甲醛聚合物和三聚氰胺磺酸盐甲醛聚合物。

这两个系列的超塑化剂很难说哪个好一些。

三聚氰胺系超塑化剂减水率略差一些,但坍落度损失快,缓凝比萘系小得多,更适合与引气剂复合使用。

超塑化剂的掺量为水泥重量的1%~2%,对于不同等级的混凝土,随着强度的增高其掺量增大。

市售的超塑化剂产品很多,产品选择通过试验来确定,因为超塑化剂与水泥和掺合料之间存在相容性问题。

超塑化剂对水泥浆有强烈的分散作用,但是这种作用持续时间不长,因此用超塑化剂配制大流动性混凝土存在坍落度随时间损失的问题,解决坍落度损失可采用后掺法,即一部分超塑化剂在混凝土拌合物运达施工现场后再加入,然后经搅拌进行混凝土泵送。

后掺法虽然有效地解决了坍落度损失问题,但增加了二次搅拌工艺。

因此,后掺法并不是最好的方法。

解决坍落度损失的另一种方法是将超塑化剂与缓凝剂(或缓凝减水剂)组成复合外加剂。

这样配制的可满足新拌搅运输、泵送、浇注工艺过程的要求。

4高性能混凝土的发展趋势随着社会的不断发展,节能、环保等关系人类生存和发展的重大课题,已逐渐被业界内行家所重视,因此,高性能混凝土也被称为“绿色混凝土”。

绿色高性能混凝土是现代混凝土技术发展的必然结果,绿色混凝土是大量采用工业废渣细掺料、水泥用量降低30%~50%的低水泥用量生态混凝土,新型高性能减水剂使超细矿物掺和料用量大大增加,实现了大掺量粉煤灰、大掺量矿渣等免振捣的自密实绿色高性能混凝土。

与普通混凝土相比,水灰比极低的高强、超高强高性能混凝土强度更高,结构尺寸更小,稳定性更好,结构的维修和重建费用更省,在恶劣条件下使用寿命更长,即显示出其耐久性良好的特点。

随着构筑物结构向大跨径,高承载力方向发展,为缩小结构断面,减轻结构自重,发展轻质、高强、节能的混凝土是一个大趋势。

高性能混凝土在实际工程中的应用领域正在不断扩大。

5高性能混凝土在应用中存在的问题虽然高性能混凝土有诸多优点,但在实际应用中也存在着问题,比如混凝土的收缩问题和检测技术问题。

由于高性能混凝土用水量少,水胶比低,拌合时较稠,外部水分向内部扩散较慢,易造成混凝土内部的自真空现象,使混凝土收缩,严重时会导致混凝土表面开裂。

因此需要采用拌合性能好的搅拌设备。

而且制备高性能混凝土时,各种原材料的计量应尽量准确。

解决高性能混凝土收缩问题的方法之一就是在浇注后立即进行湿养护,养护是混凝土成型的最后一道关键工序,是混凝土技术性能好坏的决定性因素之一,是保证混凝土在适宜的条件下正常硬化和强度增长的因素之一。

还有混凝土坍落度损失的问题,随着现代(预拌)混凝土技术发展,混凝土各种化学外加剂包括泵送剂、防水剂、防冻剂等性能要求均发生了变化,但国内大多使用萘系复合型的减水剂,混凝土坍落度损失的问题没有得到根本解决,各地的技术水平差异和原材料变化较大,往往达不到技术要求。

通常聚羧酸系减水剂较萘系减水剂的减水率高,与水泥的相容性更好,用聚羧酸系减水剂配制高性能混凝土,水胶比可以降至很低,混凝土的流动性很大。

由于减水剂与不同水泥存在相容性问题,混凝土容易出现流动性损失问题.再一个问题就是对高性能混凝土的试验检测的问题,我国现行的混凝土配合比设计、施工质量标准,包括原材料的检验标准,主要都是针对高水灰比的普通混凝土特点制定的,如《混凝土外加剂》GB80876-2008,不能准确检验出丙酸基高性能减水剂的减水率,所测结果与施工配合比中反应出的减水率之间存在较大差异。

高性能混凝土配合比设计的有关参数和耐久性检测方法与普通混凝土有所不同,其方法特点应主要突出新拌混凝土的流动性和硬化混凝土的耐久性检测。

当前施工现场确认结构混凝土强度的无损检测技术只能实用于50MPa以下强度的混凝土,而对于强度较高的高性能混凝土的强度检测无能为力。

即使在国际上这也是个尚未解决的问题。

5 结束语随着混凝土技术向高流态、免振自密实高科技方向的发展,混凝土施工工艺改革势在必行,开展高性能混凝土的研究和发展具有重要的意义。

高性能混凝土从配合比设计、配料、搅拌、运输、施工、养护、检测验收各个环节都要按照相关的规范、规程和标准进行严格的检查和监控,建设行政主管部门和质量监督部门要严格控制混凝土生产管理和施工,从政策上、工艺上和管理上确保高性能混凝土的质量,推动高性能混凝土的应用。

在我国,高性能减水剂的质量与国外产品有一定差距,随着对化学外加剂的深入研究,差距将会缩小,免振捣自密实混凝土及高强超高强高性能混凝土也将得到进一步发展。

相关文档
最新文档