2018-2019学年高一上学期期末考试数学试题PDF版含答案

合集下载

广东省惠州市2018-2019学年第一学期期末考试高一数学试题答案与评分标准

广东省惠州市2018-2019学年第一学期期末考试高一数学试题答案与评分标准

惠州市2018-2019学年第一学期期末考试高一数学试题答案与评分标准一.选择题:本大题共12小题,每小题5分。

(1)【解析】}{1,3A =,}{3,4,5B =,所以}{3AB =故选A.(2)【解析】∵()4,2a =, ()1,b x =,且a b ⊥,∴420x +=,解得2x =-。

选B 。

(3)【解析】因为3cos(23)=cos 22y x x ⎛⎫⎛⎫=++⎪ ⎪⎝⎭⎝⎭,所以向左移23个单位,选A 。

(4)【解析】()1 2.7230,(2)7.3940,(1)(2)0f f f f =-<=->⋅< 选B(5)【解析】由指数函数的性质可知:,,,且,,综上可得:,故选D .(6)【解析】3112cos =⎪⎭⎫⎝⎛-θπ,3112cos 12-2sin 125sin =⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+θπθππθπ,故选C. (7)【解析】设2()ln f x x x =+,定义域为{|0}x x ≠,22()()ln ln ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,其图象关于y 轴对称.且当0x >时,2()ln f x x x =+为单调递增函数.故选A (8)【解析】()()()1841,4)1(==-=-f f f f ,即21824=⇒=+αα,故选C.(9)【解析】由图象可知32=A ,πππ=--=)127(125T ,从而222===πππωT ,又当12π-=x 时,32)12-2sin(32=+⎪⎭⎫ ⎝⎛⋅=ϕπy ,所以()Z k k ∈+=+⎪⎭⎫⎝⎛⋅ππϕπ2212-2,又πϕ<,解得:32πϕ=,选D (10)【解析】如图所示O 是三角形ABC 的垂心,BE ⊥AC ,AD ⊥BC , D 、E 是垂足.()OA OB OB OC OB OC OA ⋅⇔⋅⋅=-=0,0OB CA OB CA ⇒⇔⋅⊥=,()2310,12a ⎛⎫=∈ ⎪⎝⎭()1310,13b ⎛⎫=∈ ⎪⎝⎭ln31c =>2312a ⎛⎫= ⎪⎝⎭1313b ⎛⎫== ⎪⎝⎭b a >c b a >>同理,OA BC OC AB ⊥⊥⇔O 为ABC ∆的垂心,故选D (11)【解析】如图,由题意可得:4,32==∠OA AOB π在Rt △AOD 中,可得:∠AOD =3π,∠DAO =6π,OD =12AO =1422⨯=, 可得:矢=4-2=2,由322343sin=⨯=⋅=πAO AD ,可得:弦=2AD =34322=⨯, 所以:弧田面积=12(弦×矢+矢2)=12(2+22)2平方米. 实际面积C . (12)【解析】当[]3,2∈x 时,()()223218122--=-+-=x x x x f ,图象为开口向下,顶点为()0,3的抛物线, 函数()1log )(+-=x x f y a 在()∞+,0上至少有三个零点,令()()1log +=x x g a ,因为()0≤x f ,所以()0≤x g ,可得10<<a ,要使函数()1log )(+-=x x f y a 在()∞+,0上至少有三个零点,如图要求()()22f g >, ()()23log 2212log ->⇒-=>+a a f ,可得3333132<<-⇒<a a,0>a ,所以330<<a ,故选A . 二.填空题:本大题共4小题,每小题5分。

2018-2019学年吉林省长春外国语学校高一下学期期末考试数学(文)试题(PDF版)

2018-2019学年吉林省长春外国语学校高一下学期期末考试数学(文)试题(PDF版)


3第
(2)若 x ∈[0, 5 ],求 y f (x) 的值域. 12
23.如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形, PD ⊥底面 ABCD , PD = AD =2,点 E 是 PA 的中点,点 O 是 AC 和 BD 的交点.
(1)证明: EO ∥平面 PCD ; (2)求三棱锥 P ABC 的体积.
21.在△ABC 中,角 A,B,C 所对的边分别为 a、b、c,,已知 b 3, c 8 ,角 A 为锐角,△ABC
的面积为 6 . (1)求角 A 的大小;
(2)求 a 的值.
22.已知 f (x) 2sinx cos x 3(cos2 x sin 2 x). (1)求函 y f (x) 的最小正周期和对称轴方程;
A. c a c b
B. ac2 bc2
C. 1 1 ab
D. b 1 a
15.圆锥的高 h 和底面半径 r 之比 h:r=2:1,且圆锥的体积 V=18π ,则圆

2第
锥的表面积为( )
A.18 π
B.9(1+2 )π C.9 π
第Ⅱ卷
二、填空题:(本题共 4 小题,每小题 5 分)
D.9(1+ )π
16.已知函数
f
(x)

A sin( x


)



0,|
|
2

的图象的一部分如图所示,
则 f (x) 的解析式为

17.已知向量 a , b 的夹角为 ,且 a 1, 2a b 10 ,则 b

4
18.若 m 0, n 0 ,且 m n 2 ,则 1 4 的最小值为

江西省临川第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

江西省临川第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

2018—2019学年度上学期临川一中期末考试高三理科数学试卷卷面满分:150 分 考试时间: 120分钟 命题人:朱建洲 审题人:许卫民、张文军一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1M =-,{}2,N x x a a M ==∈,则集合=⋃N M ( ) A.{}1,0,1-B. {}2,0,2-C. {}0D.{}2,1,0,1,2--2.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作5~10年的员工400人,工作0~5年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作5~10年的员工代表有( ) A .8人B .16人C .4人D .24人3.在ABC ∆中,,1CA CB CA CB ⊥==,D 为AB 的中点,将向量CD u u u r 绕点C 按逆时针方向旋转90o得向量CM u u u u r ,则向量CM u u u u r在向量CA u u u r 方向上的投影为( )A.1-B.1C.12-D.124.已知复数(2i)i 5i(,)m n m n -=+∈R ,则复数i1im n z +=-的共轭复数z 虚部为( ) A .32B .32-C .72D .72- 5.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8 C. 3 D .4 6.已知某几何体的三视图如图所示,则该几何体的体积为( ) A. 2π B. 3π C. 5π D. 7π 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图,给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出v 的值为( )A. 621-B. 62C. 631- D. 63 8.若20π<<x ,则1tan <x x 是1sin <x x 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.如图,在由0x =, 0y =, 2x π=,及cos y x =围成区域内任取一点,则该点落在0x =,sin y x =及cos y x =围成的区域内(阴影部分)的概率为( )A. 212-B. 212- C. 322- D. 21- 10.在三棱锥S ABC -中,2AB BC ==, 2SA SC AC === ,二面角S AC B--的余弦值是 33,则三棱锥S ABC -外接球的表面积是( )A. 32π B. 2π C. 6π D. 6π11.已知函数ln ,0()ln(),0mx x x f x mx x x ->⎧=⎨+-<⎩.若函数()f x 有两个极值点12,x x ,记过点11(,())A x f x 和22(,())B x f x 的直线斜率为k ,若02k e <≤,则实数m 的取值范围为( )A.1(,2]eB.1(,]e eC.(,2]e eD.1(2,]e e + 12.已知抛物线C :()022>=p py x 的焦点到准线的距离为2,直线1+=kx y 与抛物线C交于N M 、两点,若存在点()1,0-x Q 使得QMN ∆为等边三角形,则=MN ( ) A. 8 B. 10 C. 12 D. 14第Ⅱ卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知菱形ABCD 中,2=CD ,060=∠ABC ,分别以A 、B 、C 、D 为圆心,1为半径作圆,得到的图形如下图所示,若往菱形内投掷10000个点,则落在阴影部分内的点约有________________个.(3取1.8) 14.设⎰-=22cos ππxdx a ,则421⎪⎭⎫⎝⎛++x a x 的展开式中常数项为_________.15.已知数列{}n a 的首项21=a ,方程23cos sin 12019-=-⋅+⋅+n n a x a x x 有唯一实根,则数列{}n a 的前n 项和为_________.16.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线PB PA ,,切点分别为B A ,,若存在点P 使得→→→=+PO PB PA 23,则实数a 的取值范围是 .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知ABC △中,2BC =,45B =︒,(01)AD AB λλ=<<u u u r u u u r.(I )若1=∆BCD S ,求CD 的长;(II )若30A =︒,31=λ,求sin sin ACDDCB ∠∠的值.18.(本小题满分12分)如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,BE EC ⊥,6BC =,3AB =30ABC ∠=︒.(I )求证:AC BE ⊥;(II )若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值.19. (本小题满分12分)已知椭圆()222210x y a b a b+=>>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63x 轴正半轴一点(),0m 且斜率为33-的直线l 交椭圆于,A B 两点.(I )求椭圆的标准方程;(II )是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由.20.(本小题满分12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:表(1) 表(2)(I )将表(1)补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(II )现从表(2)中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为X ,求X 的分布列及数学期望()E X .n a b c d =+++.21.(本小题满分12分)已知函数)(1ln )(R a x ax x f ∈--=. (I )求)(x f 的单调区间; (II )若0=a ,令223)1()(++++=x x tx f x g ,若1x ,2x 是)(x g 的两个极值点,且0)()(21>+x g x g ,求正实数t 的取值范围.选做题(本小题满分10分):(以下两道选做题任选一道,若两道都做按第一道给分) 22.在直角坐标系xOy 中,直线l 的参数方程为5cos sin x t y t αα=+⎧⎨=⎩,(t 为参数,α为直线倾斜角).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4cos ρθ=.(Ⅰ)当45α=o 时,求直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)已知点C 的直角坐标为(2,0)C ,直线l 与曲线C 交于,A B 两点,当ABC ∆面积最大时,求直线l 的普通方程.23.已知函数错误!未找到引用源。

福建省莆田第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

福建省莆田第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

2018-2019学年莆田一中高三上学期期末理科数学考试2019-1-27命题人:钱剑华 审核人:曾献峰一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1. 若21zi i=-+(i 为虚数单位),则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B = ( )A. (0,2)B. (1,0)-C. (2,0)-D. (2,2)-3.下列叙述中正确的是( )A.命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为“a +b 不是偶数,则a 、b 都是奇数”B.“方程221Ax By +=表示椭圆”的充要条件是“A B ≠”C.命题“2,0x R x ∀∈>”的否定是“200,0x R x ∃∈≥”D. “m =2”是“1l :()2140x m y +++=与2l : 320mx y +-=平行”的充分条件4.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .955.《九章算术》一书中,第九章“勾股”中有如下问题:今有勾八步,股一十五步.问勾中容圆径几何?其意思是,今有直角三角形,短的直角边长为8步,长的直角边长为15步,问该直角三角形能容纳圆的直径最大是多少?通过上述问题我们可以知道,当圆的直径最大时,该圆为直角三角形的内切圆,则往该直角三角形中随机投掷一点,该点落在此三角形内切圆内的概率为( ) A.320π B.310π C.4π D 5π6.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为( ) A .8-4π3 B .8-π C .8-2π3D .8-π37.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,若将f (x )图象上的所有点向右平移π6个单位长度得到函数g (x )的图象,则函数g (x )的单调递增区间为( )A.⎣⎡⎦⎤k π-π4,k π+π4,k ∈Z B.⎣⎡⎦⎤2k π-π4,2k π+π4,k ∈Z C.⎣⎡⎦⎤k π-π3,k π+π6,k ∈ZD.⎣⎡⎦⎤2k π-π3,2k π+π6,k ∈Z 8.函数f (x )=ln|x -1||1-x |的图象大致为( )9.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的最大值为( ) A .4B .5C .2D .1310.已知定义在R 上的可导函数f (x )的导函数为()f x ',若对于任意实数x ,有f (x )>()f x ',且y =f (x )-1为奇函数,则不等式f (x )<e x 的解集为( )A .(-∞,0)B .(0,+∞)C .(-∞,e 4)D .(e 4,+∞)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得1221sin sin a c MF F MF F =∠∠,则该椭圆离心率的取值范围为( ) A .(0,2-1) B.⎝⎛⎭⎫22,1C.⎝⎛⎭⎫0,22 D .(2-1,1)12.抛物线y 2=8x 的焦点为F ,设A (x 1,y 1),B (x 2,y 2)是抛物线上的两个动点,若x 1+x 2+4=233|AB |,则∠AFB 的最大值为 ( )A.π3B.3π4C.5π6D.2π3二、填空题(本题共4道小题,每小题5分,共20分)13.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .14. ()()6221x x -+的展开式中4x 的系数为 .15.2016年9月3日,二十国集团(G20)工商峰会在杭州开幕,为了欢迎二十国集团政要及各位来宾的到来,杭州市决定举办大型歌舞晚会.现从A 、B 、C 、D 、E 5名歌手中任选3人出席演唱活动,当3名歌手中有A 和B 时,A 需排在B 的前面出场(不一定相邻),则不同的出场方法有 .16.已知函数f (x )=(3x +1)e x +1+mx ,若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是 .三.解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在等比数列}{n a 中,首项81=a ,数列}{n b 满足n n a b 2log =,且15321=++b b b .(1)求数列}{n a 的通项公式;(2)记数列}{n b 的前n 项和为n S ,又设数列}1{n S 的前n 项和为n T ,求证:43<n T . 18.(本小题满分12分)如图,在四棱锥S —ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥DC ,平面SAD ⊥平面ABCD ,P 为AD 的中点,SA =SD =2,BC =12AD =1,CD =3.(1)求证:SP ⊥AB ; (2)求直线BS 与平面SCD 所成角的正弦值; (3)设M 为SC 的中点,求二面角S —PB —M 的余弦值. 19.(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1—50名和951—1000名的学生进行了调查,得到表格中的数据,试问:能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系? (3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取9人,进一步调查他们良好的养眼习惯,并且在这9人中任抽取3人,记名次在1—50名的学生人数为X ,求X 的分布列和数学期望.20. (本小题满分12分)已知点C 为圆22(1)8x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点A (1,0)和AP 上的点M ,满足0MQ AP ⋅=,2AP AM =.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,F H ,O 是坐标原点,且2334OF OH ≤⋅≤时,求k 的取值范围. 21.(本小题满分12分)已知函数f (x )=a ln x -x +1x ,其中a >0. (1)若f (x )在(2,+∞)上存在极值点,求a 的取值范围; (2)设∀x 1∈(0,1),∀x 2∈(1,+∞),若f (x 2)-f (x 1)存在最大值,记为M (a ),则 当a ≤e +1e 时,M (a )是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.请考生在第(22)、(23)题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。

黑龙江省哈尔滨市第三中学校2018-2019学年高一数学上学期期末考试试题(含解析)

黑龙江省哈尔滨市第三中学校2018-2019学年高一数学上学期期末考试试题(含解析)

黑龙江省哈尔滨市第三中学校2018-2019学年高一数学上学期期末考试试题(含解析)第I卷(选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.()A. B. C. D.【答案】A【解析】【分析】利用特殊角的三角函数值计算即可求出值.【详解】故选:A【点睛】此题考查了特殊角的三角函数值,正确记忆相关角的的三角函数值是解题的关键.2.()A. 2B. -3C. 7D. 1【答案】B【解析】【分析】利用根式的性质及对数的运算性质直接化简求值即可.【详解】.故选:B【点睛】本题考查了根式的运算性质,考查了对数的运算性质,考查了计算能力.3.已知集合,,,则()A. B.C. D.【答案】C【解析】【分析】,借助余弦图像即可得到结果.【详解】∵,∴即故选:C【点睛】本题考查交集概念及运算,考查余弦函数的图象与性质,属于基础题.4.函数的零点所在区间为()A. B.C. D.【答案】C【解析】【分析】令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x),最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【详解】令0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:C.【点睛】本题主要考查函数零点所在区间的求法.考查数形结合思想是中档题.5.下图给出四个幂函数的图象,则图象与函数的大致对应是()① ② ③ ④A. ①,②,③,④B. ①,②,③,④C. ①,②,③,④D. ①,②,③,④【答案】B【解析】【分析】通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项【详解】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.【点睛】本题考查幂函数的图象与性质,幂函数的图象取决于幂指数.属于基础题.6.函数的单调递减区间是()A. B. C. D.【答案】A【解析】【分析】先求出函数的定义域,再由复合函数的单调性求单调减区间.【详解】∵x2+2x﹣3>0,∴x>1或x<﹣3;又∵y=x2+2x﹣3在(﹣∞,﹣1]上是减函数,在[﹣1,+∞)上是增函数;且y=log2x在(0,+∞)上是增函数;∴函数y=log2(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3);故选:A.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.7.在中,角所对的边分别为,,则A. B. C. D.【答案】B【解析】【分析】利用正弦定理,即可解得.【详解】∵∴,即,∴,又a<b,A三角形的内角,∴故选:B【点睛】本题考查了正弦定理的应用,注意利用大边对大角进行角的限制,属于基础题.8.已知则()A. B. C. D.【答案】D【解析】【分析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β).【详解】∵∴,∴。

广西南宁市第三中学2018-2019学年高一上学期期末考试数学试题(详解版)

广西南宁市第三中学2018-2019学年高一上学期期末考试数学试题(详解版)

南宁三中2018~2019学年度上学期高一期考数学试题一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合则()A. B. C. D.【答案】A【解析】因为,,所以故选A.考点:本题主要考查不等式基础知识及集合的交集运算.2.如果,且,则是()A. 第一象限的角B. 第二象限的角C. 第三象限的角D. 第四象限的角【答案】C【解析】试题分析:由题,是第二或第三象限。

,是第一或第三象限。

综上:是第三象限的角.考点:角的象限与三角函数值的正负.3.的定义域为()A. B.C. D.【答案】C【解析】试题分析:要使函数有意义,需满足:,所以.考点:函数的定义域.4.已知是第四象限角,,则( )A. B. C. D.【答案】C【解析】【分析】根据同角三角函数关系式和角α在第四象限,确定cosα的值,再求得tanα的值即可。

【详解】因为,代入解得又因为α在第四象限所以所以所以选C【点睛】本题考查了同角三角函数关系式,角在四个象限的符号,属于简单题。

5.函数的零点所在的区间为()A. B. C. D.【答案】B【解析】【分析】由题意易知函数f(x)=3x+2x﹣7在定义域上是连续增函数,再由函数零点的判定定理求解.【详解】易知函数f(x)=3x+2x﹣7在定义域上是连续增函数,f(1)=3+2﹣7=﹣2<0,f(2)=9+4﹣7=6>0,f(1)f(2)<0;由零点判定定理,可知函数f(x)=3x+2x﹣7的零点所在的区间为(1,2);故选:B.【点睛】本题考查了函数的零点的判断,属于基础题.6.函数f(x)=ln()的递增区间为()A. B. C. D.【答案】C【解析】求得函数的定义域为,设内函数,外函数为,外函数在单调递增,内函数在单调递增,根据复合函数单调性“同增异减”,所以函数f(x)在区间上单调递增,选C.7.若,则( )A. B. C. D.【答案】C【解析】【分析】由已知求得tanα,再由同角三角函数基本关系式化弦为切求得sin2α﹣sinαcosα﹣3cos2α的值.【详解】由可知:∴,∴,又==.故选C.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.8.如图,矩形的三个顶点,,分别在函数,,,的图像上,且矩形的边分别平行于两坐标轴,若点的纵坐标为,则点的坐标为().A. B. C. D.【答案】C【解析】由图可知点在函数上,又点的纵坐标为,所以将代入对数函数解析式可求得点的坐标为,所以点的横坐标为,点的纵坐标为,点在幂函数的图像上,所以点的坐标为,所以点的横坐标为,点的指数函数的图像上,所以点的坐标为,所以点的纵坐标为,所以点的坐标为.故选:.9.已知定义在上的函数的图象关于轴对称,且函数在上单调递减,则不等式的解集为()A. B.C. D.【答案】A【解析】【分析】函数图像关于轴对称,故函数在上递增,由此得到,两边平方后可解得这个不等式.【详解】依题意,函数是偶函数,且在上单调递增,故,故选A.【点睛】本小题主要考查函数的对称性,考查函数的单调性以及绝对值不等式的解法,属于中档题.10.将函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),得到函数的图像,则函数的图像的一个对称中心是()A. B. C. D.【答案】B【解析】分析:根据三角函数的放缩变换,可得到,由余弦函数的对称性可得结果.详解:函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),得到,由,可得,当时,对称中心为,故选B.点睛:本题主要考查三角函数的图象与性质,属于中档题.由函数可求得函数的周期为;由可得对称中心横坐标;由可得对称轴方程.11.有以下四个命题:①集合若则的取值范围为;②函数只有一个零点;③函数的周期为;④角的终边经过点,若则.这四个命题中,正确的命题有()个.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】由A为空集和不为空集,可得m的不等式组,解不等式可得m的范围,可判断①;由y=|log3x|和y=3﹣x的图象交点个数,可得函数y=3x|log3x|﹣1的零点个数,可判断②;求得f(x+π)=f(x),即可判断③;由任意角三角函数的定义,计算可判断④.【详解】对于①,A=∅时,即2m﹣1<m⇔m<1,当A≠∅时,⇔1≤m≤2.综上所述,m的取值范围为;∴①不对;对于②,函数的零点个数等价于方程|log3x|的解的个数,在同一坐标系中画出函数y与y=|log3x|的图象,如图所示:易判断其交点个数为2个,所以函数有两个零点,∴②不对;由f(x+π)=|cos(x+π)|=|cos(x)|=f(x),可得函数的周期为π,故③正确;对于④,当x=0时,但可判④错误.故选A.【点睛】本题考查集合的包含关系和函数的零点个数问题、三角函数的周期求法,以及任意角三角函数的定义,考查分类讨论思想方法和运算能力、推理能力,属于中档题.12.已知函数,则方程的实根个数不可能为()A. 8B. 7C. 6D. 5【答案】D【解析】【分析】运用排除法,令t=x1,则t∈(﹣∞,﹣3]∪[1,+∞)可得f(t)=a,作出y=f(x)的图象,以及t =x1的图象,讨论a=1,a=log35,log35<a<2时,求得t的范围,可得x的解分别为6,7,8,即可得到结论.【详解】∵,令t=x1,则t∈(﹣∞,﹣3]∪[1,+∞)可得f(t)=a,画出y=f(x)的图象,当a=1时,t=﹣1,,2,4,由t=x1的图象可得x有6个解;当a=log35,即有t=﹣3,,3±,由t=x1的图象可得x有7个解;当log35<a<2时,t有一个小于﹣3的解,三个大于1的解,由t=x1的图象可得x有8个解;综上可得方程的实根个数不可能为5.故选:D.【点睛】本题重点考查分段函数的运用、函数的零点等知识,注意运用换元法和数形结合思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

内蒙古呼和浩特市第六中学2018-2019学年高一上学期期末考试数学试题(精校Word版含答案)

内蒙古呼和浩特市第六中学2018-2019学年高一上学期期末考试数学试题(精校Word版含答案)

呼市六中2018-2019高一数学上学期期末试题一、选择题(本大题共12小题,共60.0分)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.B.C.2,4, D. 2,3,4,2.函数y=+的定义域为()A.B.D.C.3.,则f[f(-1)]=()A.2 B. 6 C. D.4.下列各项中两个函数表示同一函数的是()A.与 B. 与C.与 D. 与5.已知f()=,则f(x)的解析式为()B. C. D.A.6.已知实数集R,集合A={x|1<x<3},集合B={x|y=},则A∩(∁R B)=()A.B. C. D.7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是()B. C. D.A.8.下列各图表示两个变量x、y的对应关系,则下列判断正确的是()A. 都表示映射,都表示y是x的函数B. 仅表示y是x的函数C. 仅表示y是x的函数D. 都不能表示y是x的函数9.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A. 1B. 2C. 3D. 410.已知函数f (x )=[x ]([x ]表示不大于x 的最大整数),则对任意实数x, y,有( )A.f x f x B. f x f xC. f x y f x f yD. f x y f x f y11.设,若,则实数的取值范围是()B. C. D.A.12.设a=0.64.2,b=0.74.2,c=0.65.1,则a,b,c大小关系正确的是()B. C. D.A.二、填空题(本大题共4小题,共20.0分)13.已知f(x+1)=x2-2x,则f(1)的值为.______ .14.给定映射f:(x,y)→(x+2y,2x-y),则象(3,1)对应的原象为______ .15.函数的值域是______.16.设A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,则实数a组成的集合C=______.三、解答题(本大题共6小题,共70.0分)17.设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.(1)若a=-2,求B∩A,B∩∁U A;(2)若A∪B=A,求实数a的取值范围.18.已知求,的值.求和的解析式;求的值域.19.已知函数,当x>0时,恒有.(1)若不等式的解集为,求实数t的取值范围;(2)若方程的解集为空集,求实数m的取值范围.20.21.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.22.(1)计算:lg25+lg2•lg50+lg22(2)已知x+x=3,求的值.答案和解析1.【答案】C【解析】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选:C.先求出∁U P,再得出(∁U P)∪Q.本题考查了集合的运算,属于基础题.2.【答案】C【解析】解:函数y=+,∴,解得x≥且x≠3;∴函数y的定义域为[,3)∪(3,+∞).故选:C.根据函数y的解析式,列出使解析式有意义的不等式组,求出解集即可.本题考查了根据函数解析式求定义域的应用问题,是基础题.3.【答案】B【解析】【分析】本题主要考查函数值的计算,根据分段函数的表达式,利用代入法是解决本题的关键.比较基础.利用分段函数的表达式,利用代入法进行求解即可.【解答】解:f(-1)=-(-1)+1=2,f(2)=22+2=4+2=6,故f[f(-1)]=6,故选B.4.【答案】D【解析】【分析】分别验证每组函数的定义域、值域、对应法则是否相同即可本题考查函数的三要素(定义域、值域、对应法则),两个函数为同一个函数时,需满足两函数的三要素都相同.属简单题【解答】解:对于A:函数f(x)=x的定义域为R,函数g(x)=()2为[0,+∞),定义域不同,∴A不正确对于B:函数f(x)=x的值域为R,函数g(x)=的值域为[0,+∞),值域不同,∴B 不正确对于C:函数f(x)=x+2的定义域为R,函数g(x)=的定义域为(-∞,2)∪(2,+∞),定义域不同,∴C不正确对于D:两函数的定义域、值域都为R,且g(x)==x,对应法则也相同,∴D正确.故选D.5.【答案】D【解析】【分析】函数对定义域内任何变量恒成立,故可以用x代即可求出f(x)解析式.本题属于求解函数的表达式问题,使用的是构造法.即在定义域范围内以x 代从而解决问题.另外,求解函数解析式的常用方法还有待定系数法.【解答】解:由可知,函数的定义域为{x|x≠0,x≠-1},取x=,代入上式得:f(x)==,故选D.6.【答案】A【解析】【分析】由题意和函数的定义域求出集合B,由补集的运算求出∁R B,由交集的运算求出A∩(∁R B).本题考查交、并、补集的混合运算,以及函数的定义域,属于基础题.【解答】解:由x-2>0得x>2,则集合B={x|x>2},所以∁R B={x|x≤2},又集合A={x|1<x<3},则A∩(∁R B)={x|1<x≤2},故选A.7.【答案】C【解析】解:∵函数y=f(x)定义域是[-2,3],∴由-2≤2x-1≤3,解得-≤x≤2,即函数的定义域为[-,2],故选:C.根据复合函数定义域之间的关系即可得到结论.本题主要考查函数定义域的求解,根据复合函数定义域之间的关系解不等式是解决本题的关键,是基础题.8.【答案】C【解析】【分析】本题考查映射与函数的定义,根据函数的定义可知:对于定义域内的任意一个自变量x在集合B中都有唯一的一个值与其对应,即可选出,映射的定义不限于数集,任何集合均适用.【解答】解:根据函数的定义可知:仅④表示y是x的函数.故选C.9.【答案】C【解析】【分析】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.据“∈”于元素与集合;“∩”用于集合与集合间;判断出①⑤错,∅是不含任何元素的集合且是任意集合的子集判断出②④的对错;据集合元素的三要素判断出③对【解答】解:对于①,“∈”是用于元素与集合的关系故①错;对于②,∅是任意集合的子集,故②对;对于③,集合中元素的三要素有确定性、互异性、无序性故③对;对于④,因为∅是不含任何元素的集合故④错;对于⑤,因为∩是用于集合与集合的关系的,故⑤错;故选C.10.【答案】D【解析】【分析】本题考查了取整函数的性质,先充分理解[x]的含义,从而可知针对于选项注意新函数的定义加以分析即可,注意反例的应用.【解答】解:对A,设x=-1.8,则f(-x)=[-x]=1,-f(x)=-[x]=2,所以A选项为假.对B,设x=-1.4,f(2x)=[2x]=[-2.8]=-3,2f(x)=2[x]=-4,所以B选项为假.对C,设x=y=1.8,对A,f(x+y)=[x+y]=[3.6]=3,f(x)+f(y)=[x]+[y]=2,所以C选项为假.故D选项为真.故选D.11.【答案】C【解析】【分析】首先根据可得出,再分和两种情况即可求解此题. 【解答】解:∵,∴,当时,2a>a+3,解得a>3,当时,,解得,综上所述,a的取值范围是,故选C.12.【答案】B【解析】【分析】本题考查了指数的比较大小,属于基础题. 利用指数函数的单调性.【解答】解:因为y=a x,a∈(0,1)时函数是减函数,4.2<5.1,所以a>c;因为y=x a,a=4.2>1,函数是增函数,因为0.7>0.6,所以b>a.所以b>a>c.故选B.13.【答案】0【解析】【分析】本题考查函数值的求法,解决本题的关键是将x=0代入函数中即可得出结论.【解答】解:f(x+1)=x2-2x,则f(0+1)=02-2×0=0.即f(1)=0.故答案为0.14.【答案】【解析】【分析】本题考查的是映射的对应关系,要正确理解概念,本题运算不大,属于容易题.已知映射f的对应法则和映射的象,可列出参数x、y相应的关系式,解方程组求出原象,得到本题题结论.【解答】解:∵映射f:,映射f下的对应元素为,∴,∴.∴原来的元素为.故答案为.15.【答案】[2,+∞)【解析】解:由x-1≥0,得x≥1,又y=为[1,+∞)上的增函数,y=2x在[1,+∞)上也是增函数,∴f(x)=2x+是[1,+∞)上的增函数,则f(x)min=2,∴函数f(x)=2x+的值域为[2,+∞).故答案为:[2,+∞).由根式内部的代数式大于等于0求出函数的定义域,再由函数的单调性求得答案.本题考查函数的值域,训练了利用函数的单调性求函数的值域,是基础题.16.【答案】【解析】【分析】本题主要考查集合的相等等基本运算,属于基础题.本题的关键是由A={x|x2-8x+15=0}求出A的元素,再由B={x|ax-1=0},若B⊆A,求出a值,注意空集的情况.【解答】解:∵A={x|x2-8x+15=0},∴A={3,5}.又∵B={x|ax-1=0},∴①时,a=0,显然B⊆A;②时,,由于B⊆A,∴或5,综上.故答案为{}.17.【答案】解:(1)集合A={x|1≤x<4},∁U A={x|x<1或x≥4},a=-2时,B={-4≤x<5},…(2分)所以B∩A=[1,4),B∩∁U A={x|-4≤x<1或4≤x<5}…(6分)(2)若A∪B=A则B⊆A,分以下两种情形:①B=∅时,则有2a≥3-a,∴a≥1…(8分)②B≠∅时,则有,∴…(12分)综上所述,所求a的取值范围为…(14分)【解析】(1)利用已知条件求出A的补集,然后直接求解即可.(2)分类讨论B是否是空集,列出不等式组求解即可.本题考查集合的基本运算,补集以及并集的求法,考查分类讨论思想的应用,是基础题.18.【答案】解:(1)∵f(x-1)=x2-2x+7,∴f(2)=9-6+7=10,f(a)=(a+1)2-2(a+1)+7=a2+6.(2)f(x)=(x+1)2-2(x+1)+7=x2+6,f(x+1)=(x+1)2+6;(3)f(x+1)=(x+1)2+6≥6,∴f(x+1)的值域为[6,+∞).【解析】本题考查函数的解析式,考查学生的计算能力,比较基础.(1)代入计算,可得f(2),f(a)的值.(2)代入法求f(x)和f(x+1)的解析式;(3)利用f(x+1)=(x+1)2+6,求f(x+1)的值域.19.【答案】解:(1)∵当x>0时,恒成立∴,即(a-b)x2-(a-b)x=0恒成立,又f(1)=0,即a+b=2,从而a=b=1,∴,所以f(x)≤lg t的解集为(0,4]等价在(0,4]上恒成立,令,则等价于g(x)max≤t,因为在(0,4]单调递增,所以,得t的取值范围为;(2)由得,即.方程的解集为∅,故有两种情况:①方程8x2+(6+m)x+m=0无解,即△<0,得2<m<18,②方程8x2+(6+m)x+m=0有解,两根均在[-1,0]内,设g(x)=8x2+(6+m)x+m , 则,解得0≤m≤2,综合①②得实数m的取值范围是0≤m<18.本题考查函数解析式及单调性与最值,同时考查对数函数和二次函数.(1)由已知求出f(x)的解析式,将问题转化为在(0,4]上恒成立,然后利用函数的单调性求解即可;(2)将问题转化为二次方程根的分布即可求解.20.【答案】解(1)f(x)定义域为R(2)由题意当x≥0时,f(x)=3x+1。

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中小学教育教学资料
2
2 ) ( 1
1 )
3,0 ] [0,1] A. B. C. D. 0
圆心角为 ,半径为 的扇形面积是 2. 60 2 ( ) 2
4
A .
B .
C .
D . 2 3
3 3 a 3 b c
3.△
ABC 内角 A , B , C
的对边分别为 a ,
b ,
c ,且 ,则△ ABC
是( )
sin A cos B 3c os C
A.等边三角形
B.有一个角是3 0°的直角三角形
C.等腰直角三角形
D.有一个角是3 0°的等腰三角形 sin θ +
2cos θ
4.若 = 2
,则
sin θ ·cos θ =
( )
sin θ - cos θ 4 4 4 4
A
.-
B .
C .
±
D

17
5
17
17
5. 函数 的图象的相邻两支截直线 所得的线段长为 ,则
的值是(
f ( ) f ( x ) tan x ( 0) y
1 4 12
3 3 1 A. B. C. D. 0 3
0 BC
6.
等腰直角三角形A B C , C 90 , AB
=2,则

方向上的投影为
( )
AB A. B.-
C. D.
2 2 2 2 2 2
7. 为了得到 的图象,可以将函数
的图象
( )
y 2cos 2 x y 2sin( 2 x )
6
A.向右平移 个单位长度 B.向左平移
个单位长度 3
6
C.向左平移 个单位长度
D.向右平移 个单位长度
6
3
1 f (
x ) sin( x ) ( 0,0
) x x , f f ( x ) 1, f ( x ) 0, 8.已知函数 , 若 且 1
2 1 2 min 2
2 f (
x ) 则 的单调递增区间为( )
1 5 5 1
k Z k Z A. 2 k
,2 k , B. 2 k
,2 k , 6 6 6 6
[ 1] , ( 3] , ( 1. B A )

,则
1} | 2 x { B ,
0} 3 x 2 x | x { A 已知集合
x
2 求的) 36
3
12
分,在每小题给出的四个选项中,只有一项是符合题目分,共
小题,每小题 一、选择题(本大题共 高一数学备课组
审核人: 命题人:高一数学备课组
) 分钟
120
分,考试时间:
100
本卷满分
( 5

4 , 1 数学必修 高一
学年度上学期期末考试试卷 2018-2019
莆田一中
,2 k , D. 2 k ,2 k ,
6 6 6 6
1 1
e e ke
e , e , e e , e
9.设为单位向量,且,,若以向量为两边的三角形的面积为,则

k 0

k
3 1 2
1 2 3 1 2
2 2
值为( )
2 3 5 7
A.B.C.D.
2 2 2 2
10
.
庄严美丽的国旗和国徽上的五角星是革命和光明的象征。

正五角星是一个非常优美的几何图形,且与黄金分
PT
5
割有着密切的联系:在如图所示的正五角星中,以
A,B,C,D,E
为顶点的多边形为正五边形,且
AT 2 下列关系中正确的是()
5 1 5 1
A. B.
BP TS RS CQ
TP TS
2 2
5 1 5 1
C. D.
ES AP BQ AT BQ CR
2 2
2 [0,2 ] f ( m) c
11.设二次函数在区间上单调递减,且,则实数的取值范围为(
f ( x)ax 4 a x c m
[0,4 ]
A. B. C. D.
,0 4,
,0 4,
ππ
x

12.若函数
f (x)

2sin (

2< x<10)
的图象与
x
轴交于点
A
,过点
A
的直线
l
与函数的图象交于
B

C
两点
6 3

OB
+
OC

OA
则( )
A.-32 B.-16 C.16 D.32
二、填空题
(
本大题共
4
个小题,每小题
3
分,共
12

)
m
13. 设向量,,若共线且同向,则实数.
a (2 m,8)
b ( 1, m) a

b
( 3 tan 20
)sin 50
14.计算:__ _ .
(1 3 tan 20 )cos 50
x 2
2 ,0 x 1
15. 设函数则=_______
f ( x) f (lo
g 12)
2
,
f ( x 1), x 1
16.
已知圆
O
有一个内接三角形
ABC

AB =4

AC =2

N
为边
BC
上不含
B

C
的动点
,

AN AO
的取值范_____

.
解答题:(本大题共
6
个小题,共
52
分,解答时要求写出必要的文字说明或推演步骤.请按照题目顺序第Ⅱ卷各个题目的答题区域内作答,超出答题区域书写的答案无效.)
k
2
C. Z
k
Z
k
7
1
1
5
分 )
设向量
满足 =1,

a b , a ( a b )
0 a a
b 3
( 1
)求 的值;
b
( 2 )当 k
为何值时 , ( a 2 b )
( a kb )
S 18.
(8 分 ) 在 中,角 A 、 B
、 所对应的边分别为 、 、 , 的面积为 ,
已知
ABC C b
ABC a c ( I
)求角 B 的值; A 2 5
cos
(Ⅱ)若 ,求
的值.
sin C
2 5
19.(8分)受日月引力影响,海水会发生涨落,在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货
后, 浅时返回海洋,某港口水的深度y (米)与时间t 的关系近似为 在不至搁
f (t) Asin( t ) b(A 0,
0,

下面是该港口在某季节每天水深的数据:
2
t ( 时
) 0 3 6 9 12 15 18 21 24
y ( 米
) 14.0 10.0 6.0 10.0 14.0 10.1 6.0 9.9 14.0
( )根据以上数据,写出函数 y 的表达式;
1 f ( t )
( 2 )一般情况下,船舶航行时,船底离海底的距离不小于 5
米认为是安全的,某船吃水深度 (
船底与水面距
离 ) 为 7
米,为保证安全 ,
问它在一天中的什么时刻( t
[0,2 4] )可以在港口航行 ?
(8 17.
5 4 3 2 的取值范围
x x x x 2 )
的取值范围;
m
成立,求实数 x
O A Q
P
B
y
O
是坐标原点
单位圆上两点, 20.(9分 )如图,设A ,B 分 别是单位圆和坐标轴正半轴的交点,P ,Q 是 5
QOP AOQ , ( , )

,
.
6 3 6 3 y ( x , y ) sin( ) (1)若点Q 的坐标是 ,
则求 的值;
6 5
AOQ S S (2)设 的面积为 ,设 的面积为 , POB 1 2
3
S S 若
,求角 的值.
1 2
16
2
x
1 ( 分)已知函数
f ( x )
x 4 x a 5, g ( x ) m
4
m 7 ,
21. 9 . f ( x )
( 1 )若函数 在区间 [ — 1,1]
上存在零点,求实数 a
的取值范围;
( )当 a 时,若对任意的
,总存在
使
2
=0
x [1,2 ] x [1,2
] f ( x ) g ( x 1 2 1 sin x 3cos x ,0 x
f ( x ) 22. ( 10 分)已知函数 { 2 2 cos x sin x
,
x
0 f ( x )
( 1 )求函数 的值域;
g ( x ) f ( x )
m ( )若函数 的零点个数为 n
2
n
2 ①当 时,求实数 m
的取值范围;
g ( x )
x , x , x , x , x x ②当
n 时,函数
的零点从小到大依次为
,求 =5
1 2 3 4 5 1。

相关文档
最新文档