计算方法论文
计算方法论文浅谈拉格朗日插值法

计算方法论文浅谈拉格朗日插值法拉格朗日插值法是一种常用的数值计算方法,用于构造一个多项式来逼近一些已知的离散数据点。
它被广泛应用于插值问题,如图像处理、物理实验数据处理、曲线拟合以及信号处理等领域。
本文将从原理、计算步骤以及优缺点三个方面,对拉格朗日插值法进行探讨。
拉格朗日插值法的基本原理是利用多项式的线性组合来逼近函数。
假设已知n+1个数据点:(x0, y0), (x1, y1), ... , (xn, yn),其中x0, x1, ... , xn是互不相同的。
我们的目标是通过已知的数据点构造一个多项式P(x),使得在这n+1个数据点上有P(xi) = yi。
根据插值定理,只要这些数据点满足一定的条件,存在唯一的插值多项式。
下面我们来具体讨论拉格朗日插值法的计算步骤。
首先,我们需要构造一个基于已知数据点的拉格朗日基函数。
对于每个数据点(xi, yi),我们定义一个拉格朗日基函数Li(x),它满足在xi处取值为1,而在其他数据点xj上取值为0。
拉格朗日基函数的定义如下:Li(x) = Π(j=0, j≠i, n)(x - xj) / Π(j=0, j≠i, n)(xi - xj)其中,Π表示一系列数的乘积符号。
接下来,我们需要将基函数与其对应的函数值进行线性组合,得到插值多项式P(x)。
插值多项式的表达式如下:P(x) = Σ(i=0, n)Li(x) * yi最后,我们可以利用插值多项式来计算任意点的函数值。
拉格朗日插值法的优点在于相对简单和容易理解,它能够精确地通过已知的n+1个数据点来构造一个次数不超过n的多项式,实现对函数的逼近。
然而,拉格朗日插值法也存在一些缺点。
首先,拉格朗日插值法对于数据点的选择非常敏感,如果数据点的密度不均匀或者存在较大误差,那么插值结果可能会出现较大的误差。
此外,拉格朗日插值法在计算多项式系数时需要进行大量的乘法和除法运算,这在数据规模较大时可能会导致计算效率降低。
论文二重极限计算方法

论文二重极限计算方法二重极限是函数在二元自变量趋于特定点$(a,b)$的过程中的极限。
在求解二重极限时,可以使用两种常用方法:路径法和极限法。
下面将详述这两种方法。
1.路径法路径法是通过沿着不同路径逼近极限点,观察函数极限的行为。
常见的路径有$x=a$和$y=b$,以及通过以$(a,b)$为中心的射线等。
路径法的基本思想是,如果函数在不同路径下极限都存在,并且极限值相等,那么二重极限存在,并且等于这个共同的极限值。
举例说明,假设要求函数$f(x, y)=\frac{x^2y}{x^2+y^2}$在点$(0, 0)$处的二重极限。
可以沿着不同路径逼近这个点。
对于路径$x=0$,有$f(0, y)=0$;对于路径$y=0$,有$f(x, 0)=0$。
所以根据路径法,得到$\lim_{(x, y) \to (0, 0)} f(x, y) = 0$。
2.极限法极限法通过使用不等式,将二重极限的计算转化为一重极限的计算。
具体步骤如下:(1)假设要求函数$f(x,y)$在点$(a,b)$处的二重极限。
(2)令$x=a+h$,$y=b+k$,其中$h$和$k$表示趋于0的变量。
(3)将$f(x,y)$转化为一个关于$h$和$k$的函数$F(h,k)$。
(4) 计算一重极限$\lim_{(h, k) \to (0, 0)} F(h, k)$。
举例说明,求$f(x, y)=\frac{x^2y}{x^2+y^2}$在点$(0, 0)$处的二重极限。
可以将$x$和$y$表示为$x = h$和$y = k$。
代入函数$f(x,y)$得到$F(h, k) = \frac{h^2k}{h^2+k^2}$。
接下来计算一重极限$\lim_{(h, k) \to (0, 0)} F(h, k)$。
由于这是一重极限,可以使用一元极限的计算方法,比如夹逼定理或洛必达法则。
以上就是求解二重极限的路径法和极限法的详细介绍。
学术界对于二重极限的计算方法还有很多探索,包括利用极坐标、球坐标等多种数学工具。
计算方法论文

《计算方法》期末论文论文题目最小二乘法及其应用学院专业班级姓名学号指导教师日期目录摘要········…………………………………………………………………正文……………………………………………………………………………1、最小二乘法基本原理………………………………………………2、曲线拟合问题…………………………………………………………3、实际建模应用……………………………………………………………4、学习感想··················································最小二乘法及其应用摘要:最小二乘法,又称最小平方法,是一种数学技术。
它通过最小误差的平方和寻找数据函数的最佳匹配。
最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。
如已知两变量为线性关系bxa=,对y+其进行)2n次观测而获得n对数据。
若将这n对数据代入方程求解n(>a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找“最接近”这n个观测点的直线。
最小二乘法的数学依据是实际值(观察值)与理论值(趋势值)的离差平方和为最小。
据此来拟合回归方程或趋势方程。
论文--综合除法的计算方法及其应用

本科学生毕业论文(设计)题目综合除法的计算方法及其应用XX崤学号院系信息工程学院专业数学与应用数学指导教师马招丽职称副教授2017年12 月1 日师大学文理学院本科毕业论文(设计)任务书系别:信息工程学院专业:数学与应用数学班级:14数教a班学生:崤学号:论文题目:综合除法的计算方法及其应用一、毕业论文(设计)的目的(一)培养学生综合运用所学知识进行科学研究和独立分析问题、解决问题的能力,培养学生严谨的科学态度,实事和认真负责的工作作风。
(二)通过撰写毕业论文(设计),进一步深化所学知识,运用正确的研究方法,收集相关资料,进行调查研究,提高写作能力。
(三)进一步加深对基础理论的理解,扩大专业知识面,完成教学计划规定的基本理论、基本方法和基本技能的综合训练,力求在收集资料、查阅文献、调查研究、方案设计、外文应用、计算机处理、撰文论证、文字表达等方面加强训练,实现所学知识向能力的转化。
(四)鼓励学生勇于探索和大胆创新。
二、毕业论文(设计)的要求(一)毕业论文(设计)选题应符合本专业培养目标的要求,具有理论意义和实际价值。
(二)毕业论文(设计)有一定的深度和广度,份量适中。
(三)毕业论文(设计)的正文容文题相符,结构合理,层次分明,合乎逻辑;概念准确,语言流畅;论点鲜明,论据充分,自圆其说。
(四)毕业论文(设计)应当反映出学生查阅文献、获取信息的能力,综合运用所学知识分析问题与解决问题的能力,研究方案的设计能力,研究方法和手段的运用能力,外语和计算机的应用能力及团结协作能力。
(五)毕业论文(设计)书写格式规,符合《师大学文理学院全日制本科生毕业论文(设计)管理实施细则》的要求。
指导教师(签字):主管院、系领导(签字):2017年9月26日师大学文理学院本科毕业设计(论文)原创性声明本人重声明:所呈交的毕业设计(论文),是本人在指导教师的指导下独立研究、撰写的成果。
设计(论文)中引用他人的文献、数据、图件、资料,均已在设计(论文)中加以说明,除此之外,本设计(论文)不含任何其他个人或集体已经发表或撰写的成果作品。
培养小学生数学计算技能方法论文

培养小学生数学计算技能的方法与其他数学教学内容相比较而言,计算无疑更显枯燥,计算的练习更显乏味。
在平时的教学工作中对于运算顺序、注意什么、什么地方容易出错、哪些地方可以简便计算,该讲的都已经讲明白了,但错误还是不断地出现。
学生学得压抑,老师也觉得教起来没“意思”,而且情况越来越严重。
因此必须对目前的现状进行剖析,不断地反思,积极地寻找对策。
一、目前学生的状况现状一:口算能力差。
十道口算题大部分学生只能做对六、七道,甚至有的学生只能算对三四道,只有极少数学生能全部做对。
现状二:经常抄错题目中的数字或运算符号。
现状三:竖式计算正确率不高。
该点小数点的没点,该添零的没有添零……现状四:乘法口诀不过关。
有的背的颠三倒四,有的必须从第一句开始背才想得起来。
现状五:能简便计算的没有简算或算错了,不能简算的胡乱简算。
现状六:计算器成了学生偷懒的工具。
二、剖析及对策“读数和计数、知道时间、购物付款和找零、计重和测量、看懂浅易的时间表及简单的图表及图示,以及完成与此有关的必要计算”以及“估算和近似计算的能力”是成人生活、工作及进一步学习的需要。
由此可见,数与计算将伴随人的一生。
一个人在成人以后所需的数学知识,基本上在小学阶段就学全了。
我们在日常教学中采取了以下教学方法:(一)严格要求是前提在小学阶段,特别是小学中、低年级是计算教学的重要阶段,必须过好计算关,首要的是保证计算的正确,这是核心。
如果计算错了,其它就没有意义了。
但如果只讲正确,不要求合理、灵活,同样影响到计算能力的提高。
如:20以内的加减法,有的学生用凑十法和用看加算减计算,有的则靠摆学具或掰手指、脚趾、逐一数数做加减法,计算结果都正确,但后者显然达不到要求。
又如:在两位数加、减两位数中,有各种计算方法,可以从低位算起,也可以从高位算起,要引导学生认真观察,具体分析,灵活运用。
在三四个数的连加中,关键是会凑整,如果不会凑整,也影响到计算的正确度,要做到比较熟练也是困难的。
论文字数怎么算

论文字数怎么算
论文字数的计算方法是指计算一篇文章、论文或者其他文本内容中的字符总数。
文字数量的计算通常将字母、数字、标点符号和空格都算作一个字符。
以下是一个简单的计算文字数量的步骤:
1. 将文本内容复制到一个文本编辑器或者文字处理软件中。
2. 在文本编辑器中选择要计算数量的文本内容。
3. 查看文本编辑器或者文字处理软件的底部状态栏,一般会显示选定文本的字符总数。
4. 如果没有底部状态栏显示字符总数,可以使用文本编辑器的“查找和替换”功能,将特殊字符(如空格)替换成空字符串,并计算文本替换之前的总字符数。
定积分的计算方法研究毕业论文

定积分的计算方法研究毕业论文
一、研究背景
积分作为一种货币形式存在,可以用在零售、旅游、金融、教育等行
业领域,支持企业客户的关系管理和客户价值增长。
企业积分计算方法不
仅可以帮助企业构建客户的长期关系,还可以保持企业的竞争力,并赋予
客户价值。
近年来,各行各业均采用积分计算方法。
随着科技的发展和技
术的进步,企业的积分计算方法也发生了很大的变化,这也体现在企业积
分计算方法的实现上。
企业积分系统的研究有助于提高企业客户关系的管
理效率,提高客户满意度,实现客户管理的长期发展目标。
二、研究内容
1、确定企业积分计算方法的发展状况。
企业积分计算方法是根据客户实际情况确定的,一般包括客户的属性、行为、环境、关系等。
企业可以考虑采用多种计算方法,比如购买、贡献、参与、奖励等;也可以考虑采用多种客户定位方法,如投资能力、消费意
愿等来定位客户,从而确定客户的积分数量。
2、研究企业积分计算方法的实现过程。
企业积分计算方法的实现过程首先要确定企业计算积分的目的,然后
确定企业积分计算的方法,接着确定企业客户的数量和分级客户的积分标准,最后对企业积分计算方法进行评价。
定积分计算的总结论文

定积分计算的总结论文标题:定积分的计算方法总结摘要:定积分是微积分学中的重要内容,该文通过总结定积分的计算方法,包括基本定积分的计算、利用定积分计算面积和体积、变量替换求解定积分等方面的知识,探讨了定积分在实际问题中的应用,总结了定积分的计算方法,为读者提供了一种关于定积分计算的综合信息。
关键词:定积分;计算方法;面积;体积;变量替换1.引言定积分是微积分学中的重要工具,用于求解一条曲线所围成的面积、计算一些曲面的体积等。
在物理、经济学和工程学等领域,定积分的应用广泛。
本文主要总结并归纳定积分的计算方法,以及定积分在实际问题中的应用。
2.定积分的基本计算方法2.1基本不定积分首先,我们需要了解基本不定积分的常用公式,如幂函数积分、三角函数积分、指数函数积分等。
基本不定积分是求解定积分的基础,需要熟练掌握。
2.2基本定积分的计算基本定积分的计算可以通过牛顿-莱布尼茨公式进行求解,即通过求解不定积分的差来得到定积分的值。
此外,还可以通过分部积分法等方法来简化计算。
3.利用定积分计算面积和体积3.1曲线围成的面积通过定积分的计算方法,可以求解一条曲线所围成的面积。
常见的曲线有直线、抛物线、三角函数曲线等。
通过将曲线用函数表达式表示,并确定积分上下限,可以通过定积分的计算求解面积值。
3.2曲面的体积利用定积分的计算方法,可以计算曲面围成的体积。
例如,通过确定边界曲线的函数表达式,设置积分上下限,可以通过定积分计算出曲面体积的值。
4.变量替换求解定积分变量替换是定积分计算中常用的方法之一,可以将复杂的定积分转化为简单的形式。
通过选择适当的变量替换,使被积函数形式简单化,从而更容易计算定积分。
5.定积分的应用定积分在实际问题中有广泛的应用,如物体质量、质心的计算、平均值的求解、几何问题的解决等。
本文还介绍了一些实际问题,并利用定积分的计算方法得到解答。
6.结论本文总结了定积分的计算方法,包括基本定积分的计算、利用定积分计算面积和体积、变量替换求解定积分等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.编程解一元二次方程x^2 + bx + c =0 其中b =两位学号
c = (-1)^ b
程序:private sub command1_click()
Dim a as integer ,b as integer,c as integer
Dim p as integer ,x1 as integer,x2 as integer
end sub
2.编写程序计算 A =
程序:private sub form_click()
Dimi as integer ,n as integer,p as integer
Fori = 1 to 10000
P= p + 1/i
Next i
A= format(a,”0.000”)
Text1 = val(a)
舍入地方法比较多,有收尾法(只入不舍)、去尾法(只舍不入)和四舍五入法等,一般常用人们所熟知的四舍五入法。
当然在计算过程中,这类误差往往是有舍有入的,而且单从一次的舍入误差来看也许是微不足道的,但应当注意的是,在数值计算中,当计算机上完成了千百万次运算之后,舍入误差的积累却可能是十分惊人的,这些误差一经迭加或传递,对精度可能有较大的影响。所以,在做数值计算时,对舍入误差应予以足够的重视。
2 测量误差
在数学模型中往往包含一些由观测或实验得来的物理量,如电阻、电压、温度、长度等,由于测量工具精度和测量手段的限制,它们与实际量大小之间必然存在误差,这种误差称为测量误差。上面近似公式中地球半径是要经过测量得到,然而无论使用什么工具,其误差是无法避免的。
3 截断误差
由实际问题建立起来的数学模型,在很多情况下要得到准确解是困难的,通常要用数值方法求出它的近似解。例如常用有限过程逼近无限过程,用能计算的问题代替不能计算的问题。这种数学模型的精确解与由数值方法求出的近似解之间的误差称为截断误差,由于截断误差是数值计算方法固有的,故又称为方法误差。
误差按其来源可分为模型误差、观测误差、截断误差和舍人误差等。
1 模型误差
用数值计算方法解决实际问题时,首先必须建立数学模型。由于实际问题的复杂性,在对实际问题进行抽象与简化时,往往为了抓住主要因素而忽略了一些次要因素,这样就会使得建立起来的数学模型只是复杂客观现象的一种近似描述,它与实际问题之间总会存在一定的误差。
(六)综合评判:
数值计算的误差分析是针对已建立数学模型的数值计算方法进行的,它是一个重要而复杂的问题,如果方法是近似的由于原始数据有误差,而每一步运算又会产生新的舍人误差,并传播前面各步已引入的误差,所以逐步分析误差是可行的。误差分析是估计整个计算过程积累误差的界,以判断数值计算结果的可靠性,这是一个很复杂的问题。
=
≈
=
其中两个偏导数应该是在点( 1, 2)处的值。
近似值y的相对误差的估计式为:
=
以上式子中的 及 分别为各个 对 的绝对误差和相对误差的增长因子,分别表示绝对误差和相对误差经过传播后增大或缩小的倍数。
由以上两个公式,很容易导出两个近似值和与差的绝对误差和相对误差的估计式:
对于绝对误差有: 。即和与差的绝对误差不大于各绝对误差之和。
利用计算机、电子计算机等计算工具来求出数学问题的数值解的全过程,称为数值计算。
关于数值计算中误差的产生与传播以及如何分析与控制各种误差的方法与过程。数据近似值与精确值之差是衡量数据可靠性和精确度的重要方面。应用数值方法在计算机上求解实际问题时,由于模型、测量手段和计算工具等方面的限制,以及计算方法的差异,所得结果往往不是所考虑对象的准确值,而是近似值。
(二)方法综述 :
误差估计的一般公式,本文介绍一种常用的误差估计的一般公式,它是利用函数的泰勒展开得到的。
设二元可微函数 中的自变量 *1, *2相互独立,又 1, 2是自变量 *1, *2的近似值,则 的近似值 。
将函数 在点( 1, 2)处作泰勒展开,并略去其中的高阶无穷小项,即可得到y*的近似值y的绝对误差的估计式为:
综上所述,数值计算中除了可以完全避免的过失误差外,还存在难以回避的模型误差、观测误差、截断误差和舍入误差。显然,四类误差都会影响计算结果的准确性,而在这四种误差来源的分析中,前两种误差是客观存在的,称为固有误差,而固有误差往往是计算工作者不能独立解决的,是需要与各有关学科的科学工作者共同研究的问题;后两种误差是由计算方法所引起的,称为计算误差,计算误差将是数值计算方法的主要研究对象。
Text1 = p
End sub
(四)程序说明:
程序1中利用根的判值定理先确定根是否存在,若根存在,利用根的求值定理求解。
(五)程序运行:
例如用函数 的泰勒(Taylor)展开式的部分和 去近似代替 ,其余项 就是真值 的截断误差。如
当 很小时,可以取前两项来近似代替 的计算,即: ,由泰勒定理可知,这时 与 的误差是:
对数值计算中误差分析
(一)问题背景:
随着科学技术的突飞猛进,无论是工农业生产还是国防尖端技术,例如机电产品的设计、建筑工程项目的设计、气象预报和新型尖端武器的研制、火箭的发射等,都有大量复杂的数值计算问题亟待解决。他们的复杂程度已达到远非人工手算所能解决的地步。数字电子计算机的出现和飞速发展大大推动了数值计算方法的进展,许多复杂的数值计算问题现在都可以通过电算得到妥善解决。
对于相对误差,考虑最坏的情况是所有相对误差同号,当 时,可得:
即和的相对误差不超过各单项中的最大相对误差。
同理可得两个近似值之积、商绝对误差和相对误差的估计式:
在算数的数值稳定性中本文介绍一种方法利用根与系数的关系式,在利用根与系数关系式求第二根时,必须先算出绝对值较大的一个根,然后再求另一个根,才能得到精度较高的结果。
a = 1: b = 5 :c = -1
p = b ^ 2–4*a*c
if p >= 0 then
x1 =(-b + sqr(p)) / (2*a)
x2 = (-b + sqr(p)) / (2*a)
text 1 = x1
text 2 = x2
else text1 =“无解”
text2 =“无解”
end if
4 舍入误差
无论用计算机、计算器计算还是笔算,都只能用有限位小数来代替无穷小数或用位数较少的小数来代替位数较多的有限小数。在上面的近似公式中的 ,因为是一个无理数,在计算机中无法精确表示,只能取有限位,一般取3.14159,而将后面无穷多位舍弃。不仅无理数,即便是十分简单的有理数如1/3,也只能用有限位的计算机数近似地表示为0.333333(保留6位)。因此在用计算机进行数值计算时,由于计算机的位数有限,在数值计算时只能近似地表示这些数字,由此而产生的误差称为舍入误差。
数值计算的误差分析目的是保证方法产生符合精度要求的可靠结果,但对大量方法要定量分析舍人误差积累是非常复杂困难的,上面提供的方法往往也是很难实现的。因此,对舍人误差是否影响计算结果的可靠性进行定性分析是非常重要的,这就是方法的数值稳定性问题。一个方法如果在执行它的过程中,舍人误差的积累不影响产生可靠的结果,则称该方法是数值稳定的,否则称为数值不稳定的。不稳定方法是不能使用的,判断方法数值稳定的一个准则是原始数据的微小变化只会引起最后结果的微小变化。实用上只要方法是数值稳定的,就不必再对它的舍人误差进行定量分析。