(完整版)非线性光学材料小结

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性光学材料

一、概述

20 世纪60 年代, Franken 等人用红宝石激光束通过石英晶体,首次观察到倍频效应,从而宣告了非线性光学的诞生,非线性光学材料也随之产生。

定义:可以产生非线性光学效应的介质

(一)、非线性光学效应

当激光这样的强光在介质传播时,出现光的相位、频率、强度、或是其他一些传播特性都发生变化,而且这些变化与入射光的强度相关。

物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p 。在光强度不是很高时,分子的诱导偶极矩p 线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E 的非线性函数,如下表示:

p = α E + β E2 + γ E3 + ⋯⋯

式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应) ,γ为二阶分子超极化率(三阶效应) 。即基于电场强度E 的n 次幂所诱导的电极化效应就称之为n 阶非线性光学效应。

对宏观介质来说,

p = x (1) E + x(2) E2 + x (3)E3 + ⋯⋯

其中x (1) 、x(2) 、x(3) ⋯⋯类似于α、β、γ⋯⋯,表示介质的一阶、二阶、三阶等n 阶非线性系数。因此,一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。

目前研究较多的是二阶和三阶非线性光学效应。

常见非线性光学现象有:

①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。

②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。

③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。

④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与

物质相互作用的规律提供手段。

⑤自聚焦。介质在强光作用下折射率将随光强的增加而增大。激光束的强度具有高斯分布,光强在中轴处最大,并向外围递减,于是激光束的轴线附近有较大的折射率,像凸透镜一样光束将向轴线自动会聚,直到光束达到一细丝极限(直径约5×10-6米),并可在这细丝范围内产生全反射,犹如光在光学纤维内传播一样。

与自聚焦同样原理的另一种现象叫自散焦。

⑥光致透明。弱光下介质的吸收系数(见光的吸收)与光强无关,但对很强的激光,介质的吸收系数与光强有依赖关系,某些本来不透明的介质在强光作用下吸收系数会变为零。

(二)、非线性光学材料种类

1、无机非线性光学晶体

2、有机非线性光学晶体

3、无机- 有机杂化材料等

(三)、应用:广泛应用于激光技术和光谱技术

1、在倍频激光器中获得倍频光

2、用作光学参量振荡器,制成宽光谱范围的课调谐单色光源

3、实现将红外光变为可见光的频率转换

4、被认为是用于开发光计算机的关键材料

二、常见的非线性光学材料

2. 1 无机非线性光学材料

在二次非线性光学材料应用上,无机材料很长时间处于主要地位,取得了巨大的进展,至今已在许多装置中获得应用。与有机材料比,无机材料通常更稳定,它们中许多材料都允许各向异性离子交换,使之可用于导波器材料,并且它们都有比有机材料纯度更高的晶体形式。其中包括KTP ( KTiO2PO4 ) 型材料、KDP ( KH2 PO4 ) 型材料、钙钛矿型(LiNbO3 、KNbO3 等) 材料、半导体材料( Te 、Ag3AsS3 、CdSe 等) 、硼酸盐系列材料(包括KB5 、BBO、LBO 和KBBF) 等,另外还有如沸石分子筛基材料、玻璃型和配合物型材料等。

2. 1. 1 KDP 型晶体

主要包括KH2 PO4 和四方晶系的一些同构物及其氘代物晶体等。此类晶体生长简单,容易得到高质量的单晶,能够得到90°的相位匹配,适合于高功率倍频。虽然它们的非线性系数较小,但在高功率下并不妨碍获得高的转换效率。

2. 1. 2 KTP 型晶体

主要包括KTiOPO4 以及正交晶系的同构物等。KTP 晶体具有非线性系数大,吸收系数低,不易潮解,很难脆裂,化学稳定性好,易加工和倍频转换效率高等优点,是一种优良的非线性光晶体,但紫外透过能力差限制了它在紫外区的应用。

2. 1. 3 硼酸盐晶体

如偏硼酸钡(BBO) ,三硼酸锂(LBO) 等。此类晶体的共同特点是紫外透光范围特别宽。其中BBO 和LBO 的优点是非线性系数大,转换效率高,透光范围宽,光损伤阈值高,化学稳定性好和易于机械加工。

2. 1. 4 半导体材料

如Te 、Ag3AsS3 、CdSe , GaP , GaAs , α一SiC和β一SiC 等,通过调节材料的能隙,有效地改变电子的跃迁几率,从而控制材料的非线性光学响应。此类材料大多具有较高的非线性光学系数,缺点是晶体质量不高,光损伤阈值太低。

2. 1. 5 钙钛矿型晶体

相关文档
最新文档