最小二乘类辨识算法
各类最小二乘算法

β N −1 H* = N 0
β N −2
β 2( N −1) WN = 0
β 2( N −2)
0 ⋱ 1
三、递推算法 ∵
k θ(k ) = ∑ β i =1
∧
2(k −i) h (i )h T (i )
2随着采样次数的增多数据量不断增加ls估计有可能出现所谓的数据饱和现象导致递推算法不能接近参数真二关于数据饱和现象的分析所谓数据饱和现象就是随着时间的推移采集到的数据越来越多新数据所提供的信息被淹没在老数据的海洋之中
Ⅴ 各种最小二乘类参数辨识算法 §1 概 述
最小二乘类参数辨识算法(一次完成算法、递推算法) 最小二乘类参数辨识算法 (一次完成算法 、 递推算法 ) 是一种 最基本和常用的参数估计方法。但研究和应用表明, 最基本和常用的参数估计方法。 但研究和应用表明, 这一算 法仍存在明显的不足。 法仍存在明显的不足。 一、LS 算法的主要不足之处 1、当模型噪声为有色噪声时,LS 估计不再是无偏估计、一致 、当模型噪声为有色噪声时, 估计不再是无偏估计、 估计。 估计。 2、随着采样次数的增多,数据量不断增加,LS估计有可能出 、随着采样次数的增多,数据量不断增加, 估计有可能出 现所谓的“数据饱和”现象, 现所谓的“数据饱和”现象,导致递推算法不能接近参数真 值。
于是有: 于是有:
α P ( k ) P − 1 ( k − 1) = I − P ( k ) h ( k ) h T ( k )
则:
ˆ θ ( k ) = P ( k ) H * T Z * = P ( k ) α H * −1T Z * −1 + h ( k ) z ( k ) k k k k
第五章 最小二乘法辨识

服从正态分
❖ 4)有效性
❖ 定理4:假设 (k) 是均值为零,方差为 2I 的正态
白噪声,则最小二乘参数估计量
^
是有效估计
量,即参数估计误差的协方差达到Cramer-Rao不
等式的下界
E (^
^
)(
)T
2E
(
T N
N
) 1
M 1
❖ 其中M为Fisher信息矩阵。
4、适应算法
❖ 随着更多观测数据的处理,递推最小二乘法对线性 定常系统的参数估计并非越来越精确,有时会发现
❖ 现举例说明最小二乘法的估计精度 ❖ 例5.1:设单输入-单输出系统的差分方程为
y(k) a1y(k 1) a2 y(k 2) b1u(k 1) b2u(k 2) (k)
❖ 设 u(k)是幅值为1的伪随机二位式序列,噪声 (k)是 一个方差 2可调的正态分布 N(0, 2 )随机序列。
❖ 为了克服数据饱和现象,可以用降低旧数据影响的 办法来修正算法。而对于时变系统,估计k时刻的 参数最好用k时刻附近的数据估计较准确。否则新 数据所带来的信息将被就数据所淹没。
❖ 几种算法:渐消记忆法,限定记忆法与振荡记忆法
❖ 矩阵求逆引理:设A为 n n 矩阵,B和C为 n m 矩阵,
并且A, A和 BCT I CT都A是1B 非奇异矩阵,则有矩
阵恒等式
A BCT 1 A1 A1B(I CT A1B)1CT A1
❖
令
A
PN1
,B
N 1
,C
T N 1
,根据引理有
PN1
T N 1 N 1
1
❖ 算法中,^ N 为2n+1个存贮单元(ai ,bi ,i 1,2, , n), 而 PN 是 (2n 1) (2n 1)维矩阵,显然,将 N 换成 PN 后,存贮量大为减少(因为n为模型的阶数,一般 远远小于N)
(完整word版)多种最小二乘算法分析+算法特点总结

第一部分:程序设计思路、辨识结果分析和算法特点总结 (3)一:RLS遗忘因子法 (3)RLS遗忘因子法仿真思路和辨识结果 (3)遗忘因子法的特点: (4)二:RFF遗忘因子递推算法 (4)仿真思路和辨识结果 (4)遗忘因子递推算法的特点: (6)三:RFM限定记忆法 (6)仿真思路和辨识结果 (6)RFM限定记忆法的特点: (7)四:RCLS偏差补偿最小二乘法 (7)仿真思路和辨识结果 (7)RCLS偏差补偿最小二乘递推算法的特点: (9)五:增广最小二乘法 (9)仿真思路和辨识结果 (9)RELS增广最小二乘递推算法的特点: (11)六:RGLS广义最小二乘法 (11)仿真思路和辨识结果 (11)RGLS广义最小二乘法的特点: (13)七:RIV辅助变量法 (14)仿真思路和辨识结果 (14)RIV辅助变量法的特点: (15)八:Cor-ls相关最小二乘法(二步法) (15)仿真思路和辨识结果 (15)Cor—ls相关最小二乘法(二步法)特点: (17)九:MLS多级最小二乘法 (17)仿真思路和辨识结果 (17)MLS多级最小二乘法的特点: (21)十:yule_walker辨识算法 (21)仿真思路和辨识结果 (21)yule_walker辨识算法的特点: (22)第二部分:matlab程序 (23)一:RLS遗忘因子算法程序 (23)二:RFF遗忘因子递推算法 (24)三:RFM限定记忆法 (26)四:RCLS偏差补偿最小二乘递推算法 (29)五:RELS增广最小二乘的递推算法 (31)六;RGLS 广义最小二乘的递推算法 (33)七:Tally辅助变量最小二乘的递推算法 (37)八:Cor-ls相关最小二乘法(二步法) (39)九:MLS多级最小二乘法 (42)十yule_walker辨识算法 (46)第一部分:程序设计思路、辨识结果分析和算法特点总结一:RLS遗忘因子法RLS遗忘因子法仿真思路和辨识结果仿真对象如下:其中, v(k )为服从N(0,1)分布的白噪声。
系统辨识—最小二乘法

最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。
③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。
例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。
预测模型辨识的等价准则主要是使预测误差平方和最小。
递归最小二乘法辨识参数

递归最小二乘法辨识参数递归最小二乘法(Recursive Least Squares, RLS)是一种参数辨识方法,它使用递归算法来求解最小二乘法中的参数。
在许多领域中,例如系统辨识、自适应控制、信号处理等,递归最小二乘法都是一个广泛使用的方法。
递归最小二乘法的基本思想是:通过递归迭代来更新参数估计值,使其逼近最优解。
在递归过程中,每一次迭代时,都会通过当前的测量值来更新参数的估计值,同时保留历史测量值的影响,从而获得更精确的估计值。
具体地说,在递归过程中,首先需要定义一个初始参数向量,然后通过观测数据序列来递归更新参数向量。
假设有一个如下所示的线性关系:y(k) = Φ(k) * θ + v(k)其中,y(k)是被观测到的输出值,Φ(k)是与该输出值相关的输入向量,θ是待辨识的参数向量,v(k)是误差项。
递归最小二乘法的目标就是通过观测数据来估计θ的值。
在递归最小二乘法中,首先需要定义一个初始的参数向量θ0,然后通过数据序列递归地更新θ的值。
每一次迭代时,都会用最新的观测数据来更新参数向量,使得估计值更接近真实值。
具体来说,每次观测到新的数据之后,都会根据当前参数估计值和新的观测值来计算估计误差,并更新参数向量。
具体的迭代步骤如下:1.从数据序列中读取观测值y(k)和输入向量Φ(k);2.计算估计值y(k)hat和估计误差e(k):y(k)hat = Φ(k) * θ(k-1)e(k) = y(k) - y(k)hat3.计算卡尔曼增益K(k)和参数估计值θ(k):K(k) = P(k-1) * Φ(k) / (λ + Φ(k)' * P(k-1) * Φ(k))θ(k) = θ(k-1) + K(k) * e(k)其中,P(k-1)是先前迭代步骤中的误差协方差矩阵,λ是一个小的正数,用于确保逆矩阵的存在性。
需要注意的是,递归最小二乘法的计算量相对较大,因此通常需要对算法进行优化,以提高计算效率和精度。
最小二乘参数辨识方法

《系统辨识基础》第17讲要点第5章 最小二乘参数辨识方法5.9 最小二乘递推算法的逆问题辨识是在状态可测的情况下讨论模型的参数估计问题,滤波是在模型参数已知的情况下讨论状态估计问题,两者互为逆问题。
5.10 最小二乘递推算法的几种变形最小二乘递推算法有多种不同的变形,常用的有七种情况:① 基于数据所含的信息内容不同,对数据进行有选择性的加权; ② 在认为新近的数据更有价值的假设下,逐步丢弃过去的数据; ③ 只用有限长度的数据;④ 加权方式既考虑平均特性又考虑跟综能力; ⑤ 在不同的时刻,重调协方差阵P (k ); ⑥ 设法防止协方差阵P (k )趋于零; 5.10.1 选择性加权最小二乘法 把加权最小二乘递推算法改写成[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()()1()()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI ΛΛ算法中引进加权因子,其目的是便于考虑观测数据的可信度.选择不同的加权方式对算法的性质会有影响,下面是几种特殊的选择:① 一种有趣的情况是Λ()k 取得很大,在极限情况下,算法就退化成正交投影算法。
也就是说,当选择⎩⎨⎧=-≠-∞=0)()1()(,00)()1()(,)(k k k k k k k h P h h P h ττΛ 构成了正交投影算法⎪⎪⎩⎪⎪⎨⎧--=--=--+-=)1()]()([)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆk k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI 算法初始值取P ()0=I 及 ()θε0=(任定值),且当0)()1()(=-k k k h P h τ时,令K ()k =0。
最小二乘参数辨识方法及原理

' ' ' f cy ( x, y) , f cy ( x, y) x , f cy ( x, y) y ] T ;
Y ( x, y ) = f r ( x, y) f c ( x, y) ;
i 1 i 1 n n
如果定义
h(k ) [ y(k 1), y(k 2),, y(k n),u(k 1),u(k 2),, u(k n)]
[a1 , a2 ,, an , b1 , b2 ,, bn ]
T
z (k ) h(k ) v(k )
z ( k ) y ( k ) v( k )
z
1、问题的提出
v(k )
t (k )
G (k )
y (k )
z (k )
m次独立试验的数据
f (t )
(t1 , y1 ) (t2 , y2 )
t
(tm , ym )
z(k ) a0 a1h1 (k ) a2h2 (k ) an hn (k ) v(k )
2.1 利用最小二乘法求模型参数
例:表 1 中是在不同温度下测量同一热敏电阻的阻值,根 据测量值确定该电阻的数学模型, 并求出当温度在 70 C 时
的电阻值。
表 1 热敏电阻的测量值
t (C ) R ()
20.5 765
26 790
32.7 826
40 850
51 873
61 910
73 942
零偏 标度因数 输出轴灵敏 度误差系数 二阶非线性 误差系数 摆轴灵敏度 误差系数
系统辨识各类最小二乘法汇总

yk(k)=1.5*yk(k-1)-0.7*yk(k-2)+uk(k-1)+0.5*uk(k-2)+y1(k); end figure(3); plot(yk); title('对应输出曲线');
theta=[0;0;0;0]; p=10^6*eye(4);
9
for t=3:N h=([-yk(t-1);-yk(t-2);uk(t-1);uk(t-2)]); x=1+h'*p*h; p=(p-p*h*1/x*h'*p); theta=theta+p*h*(yk(t)-h'*theta);
12
p=(p-p*h*1/x*h'*p); theta=theta+p*h*(yk(t)-h'*theta);
a1t(t)=theta(1); a2t(t)=theta(2); b1t(t)=theta(3); b2t(t)=theta(4); d1t(t)=theta(5); d2t(t)=theta(6);
end 5、RGLS 试验程序(部分) for t=3:N
he=([-e(t-1);-e(t-2)]); xe=1+he'*pe*he; pe=(pe-pe*he*1/xe*he'*pe); thete=thete+pe*he*(e(t)-he'*thete);
c1t(t)=thete(1); c2t(t)=thete(2);
7
RELS: 当噪声模型: e k = D Z −1 ∗ v k ( v(k) 为白噪声 )时,我们采用增广最 小二乘方法。能辨识出参数(包括噪声参数)的无偏估计。 RGLS: 当噪声模型: e k =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用数据序列{z(k)}和{h(k)}
极小化下列准则函数
L
J ( ) [z(k) hT (k) ]2 k 1
使 J 最小的 的估计值
估计
ˆ,称为的最小二乘
12
4.3 最小二乘问题的提法
设时不变 SISO 动态过程的数学模型为
A(z 1)z(k) B(z 1)u(k) n(k)
所要解决的最小二乘问题
则有
J ( )
0
ˆWLS
)
ˆWLS
H
T L
LZL
21
当
H
T L
L
Z
L
可逆时(称为正则)时
ˆWLS
(
H
T L
L
H
L
)1
H
T L
LZL
充分条件
2 J ( ) 2
ˆWLs
2H
T L
L
H
L
0
因 L 0
所以 J ( ) WLS min , ˆWLS 是唯一的 22
通过极小化(16)式
,计算的逆矩阵
H
T L
ΛL H L
(要求必须是正则矩阵),按照式(16)即可计
算出过程参数 θ 的估计值 θˆWLS 。这种方法
称为“一次完成算法”,它为理论分析提供了
便利,但在计算时需要对矩阵求逆,如果矩阵
维数过大,矩阵求逆的计算量将急剧增加,对
计算机造成一定的负担。较为实用的方法是
“递推算法”,即把式(16)化成递推计算的形
[a1, a2 ,L , ana , b1, b2 ,L , bnb ]T 14
对 k 1,2, , L
(4)式构成一个线性方程组
可以写成
zL H L nL
其中
zL
nL
[z(1), z(2), [n(1),n(2),
z(L)]T n(L)]T
15
hT (1) z(0)
计算 ˆWLS 称为加权最小二乘法
取 L I
则(16)式变化成
ˆLS
(
H
T L
H
L
)1
H
T L
ZL
L k 1
h(k
)hT
(k
)
1
L k 1
h(k
)
z
(k
)
ˆLS - 最小二乘估计值
23
上述最小二乘法的计算步骤为:首先获取一批
足够数量的过程输入输出数据 zL 和 HL ,
并确定加权矩阵 ΛL
如何利用过程的输入、输出数据
确定多项式 A(z 1 ) 和 B(z 1 ) 的系数
13
在最小二乘问题中,一般对模型作以下假设
首先,模型的阶次 na , nb 已定
且一般 na nb
其次,将(3)模型写成最小二乘格式
z(k) hT (k) n(k)
式中
h(k) [z(k 1),L , z(k na ),u(k 1),L ,u(k nb )]T
K = 1 时 (1) L1 1
K = L 时 (L) 1
19
准则函数 J ( ) 可写成二次型形式
J ( ) (z L H L )T L (z L H L )
L - 加权矩,一般为正定的对角矩阵
(1) 0
0
L 0 (2)
0
0
0
(L)
20
设 WLS
使
J ( ) WLS min
u(k) 和 z(k) 分别是过程的输入和输出 G(z 1 ) - 描述输入输出关系的模型,称为过程模型
4
G(z 1 ) 通常可以表示成
G(z 1 ) B(z 1 ) A(z 1 )
其中
A(z 1 B(z
) 1 )
1 a1z 1 b1z 1
a2 z 2 b2 z 2
a bnb
c
E{nL} 0
ov{nL
}
2 n
I
2 n
-
n(k)的方差
E{n(k)u(k l)} 0 k,l
最后,假设数据长度 L (na nb )
18
4.4 最小二乘问题的解
取准则函数
L
J ( ) (k)[z(k) hT (k) ]2 k 1
(k) - 加权因子,对 k, (k) 0 如 (k) Lk 0 1
E{n(L)}
E{n2 (1)} E{n(1)n(2)}
cov{nL}
E{nL nLT
}
E{n(2)n(1)}
E{n2 (2)}
E{n(L)n(1)} E{n(L)n(2)}
E{n(1)n(L)}
E{n(2)n(L)}
n
E{n2 (L)}
17
在最小二乘法中
假定 {n(k)} 是白噪声序列
A(z 1 )z(k) B(z 1 )u(k) 1 v(k) C(z 1 )
7
经比较
各种方法所用过程模型一样 只是噪声模型有所不同
8
4.2最小二乘辨识算法
内容
基本概念 最小二乘问题的提法 最小二乘问题的解 最小二乘参数估计值的统计性质 噪声方差估计 最小二乘参数估计的递推算法
z na
na
z nb
5
{n(k)}为噪声
可以表示成均值为零的平稳随机系列
n(k) N (z 1 )v(k)
N (z 1 ) D(z 1 ) C(z 1 )
式中
C(z 1) 1 c1z 1 c2 z 2 D(z 1) 1 d1z 1 d2 z 2
cnc z nc d nd z nd
第4 章 最小二乘类参数辨识方法
1
主要内容
引言 最小二乘辨识算法 自适应辨识算法 偏差补偿最小二乘法 增广最小二乘算法 广义最小二乘法 辅助变量法 系统的结构辨识
2
4.1 引言
如果
仅仅关心所要辨识的过程输入输出特性 可以将所过程视为“黑箱” 而不考虑过程的内部机理
3
过程的“黑箱”结构
HL
hT
(2)
z(1)
hT
(
L)
z(L 1)
z(1 na ) z(1 na )
z(L na )
u(0) u(1 nb )
u(1)
u(2 nb )
u(L 1) u(L nb )
16
另外
设模型的噪声 n(k) 特征为
E{n(1)}
E{nL }
E{n(2)}
0
6
各种方法所用的辨识模型结构略有不同
最小二乘法(受控自回归 CAR模型)
A(z 1 )z(k) B(z 1 )u(k) v(k)
增广最小二乘法(受控自回归滑动平均 CARMA模型)
A(z 1 )z(k) B(z 1 )u(k) D(z 1 )v(k)
广义最小二乘法(动态调节 DA模型)
9
11.2 最小二乘法的基本概念
最小二乘法
1795年高斯在其著名的星体运动轨迹预报研究 工作中提出的,后来成了估计理论的奠基石。
10
假设
过程的输入输出关系可以描述成以下最小二乘格式
z(k) hT (k) n(k)
z(k) ― 输出
― 参数
h(k) ― 观测数据向量 n(k) ― 均值为零的随机噪声