三相桥式全控整流电路课程设计文稿
三相桥式全控整流电路课程设计

电力电子技术课程设计说明书三相桥式全控整流电路系、部:电气与信息工程系专业:自动化目录第1章绪论 (1)1. 电子技术的发展趋势 (1)2. 本人的主要工作 (2)第2章主电路的设计及原理 (3)1. 总体框图 (3)2. 主电路的设计原理 (3)2.1带电阻负载时 (4)2.2阻感负载时 (7)3. 触发电路 (8)4. 保护电路 (9)5. 参数计算 (10)5.1 整流变压器的选择 (10)5.2 晶闸管的选择 (11)5.3 输出的定量分析 (11)第3章MATLAB的仿真 (12)1. MATLAB仿真软件的简介 (12)2. 仿真模拟图 (13)3. 仿真结果 (13)第4章结束语 (15)参考文献 (16)第1章绪论1. 电子技术的发展趋势当今世界能源消耗增长十分迅速。
目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。
预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。
它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。
随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。
下面着重讨论电力电子技术在电力系统中的一些应用。
在高压直流输电(HVDC)方面的应用直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。
三相桥式全控整流电路课程设计报告

电力电子技术课程设计题目院系专业姓名年级指导教师年月摘要电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。
近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。
本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。
但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。
本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。
在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。
在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。
关键字:MCU ; SCR; 电力电子; 导通角; KEIL-C目录摘要 (2)1、原理及方案 (4)2、主电路的设计及器件选择 (5)2.1 三相全控桥的工作原理 (5)2.2 参数计算 (7)3、触发电路设计 (10)3.1 集成触发电路 (10)3.2 KJ004的工作原理 (10)3.3 集成触发器电路图 (11)4、保护电路的设计 (13)4.1 晶闸管的保护电路 (13)4.2 交流侧保护电路 (14)4.3 直流侧阻容保护电路 (15)5、MATLAB 建模与仿真 (16)5.1 MATLAB建模 (16)5.2 MATLAB 仿真 (18)5.3 仿真结构分析 (19)课程设计体会 (21)1 原理及方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
(完整版)三相桥式全控整流电路课程设计

第1章课程设计目的与要求1.1课程设计目的“电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
因此,通过电力电子计术的课程设计达到以下几个目的:1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力;2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。
3)培养独立思考、独立收集资料、独立设计的能力;4)培养分析、总结及撰写技术报告的能力。
1.2课程设计的预备知识熟悉电力电子技术课程、电机学课程的相关知识。
1.3 课程设计要求1、单相桥式相控整流的设计要求为:负载为感性负载,L=700mH,R=500欧姆.2、技术要求:1)、电源电压:交流100V/50Hz2)、输出功率:500W3)、移相范围0º~90º按课程设计指导书提供的课题,根据基本要求及参数独立完成设计。
第2章课程设计方案的选择2.1整流电路单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
而负载性质又分为带电阻性负载、电阻-电感性负载和反电动势负载时的工作情况。
单相桥式全控整流电路(电阻-电感性负载)电路简图如下:TLu(a)图2.1此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
单相全控桥式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相全控桥式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高了一半。
根据以上的分析,我选择的方案为单相全控桥式整流电路(负载为电阻-电感性负载)。
三相桥式全控整流电路的设计 课程设计

大学自动化学院电力电子课程设计报告单位(二级学院):自动化学院学生姓名:专业:电气工程与自动化班级:学号:指导教师:设计时间:2011 年 6 月大学自动化学院制课程设计目的及要求一.课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、提高学生课程设计报告撰写水平。
二.课程设计的要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。
(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。
(3)能正确设计电路,画出线路图,分析电路原理。
(4)按时参加课程设计指导,定期汇报课程设计进展情况。
(5)广泛收集相关技术资料。
(6)独立思考,刻苦钻研,严禁抄袭。
(7)按时完成课程设计任务,认真、正确地书写课程设计报告。
(8)培养实事求是、严谨的工作态度和认真的工作作风。
摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,过电压,保护电路。
目录1主电路设计及原理 (5)1.1 主电路设计 (5)1.2 主电路原理说明 (5)2 触发电路的设计 (9)2.1 电路图的选择 (9)2.2 触发电路原理说明 (11)3 保护电路的设计 (12)3.1 过电压保护 (13)3.2 过电流保护 (15)4 各参数的计算 (17)4.1 输出值的计算 (17)4.2 输出波形的分析 (19)5 应用举例 (20)6 心得体会 (29)参考文献 (29)三相桥式全控整流电路的设计1主电路设计及原理1.1 主电路设计其原理图如图1所示。
三相桥式全控整流电路课程设计

电力电子技术课程设计说明书三相桥式全控整流电路系、部: 电气与信息工程系专业: 自动化目录第1章绪论 01、电子技术的发展趋势 02、本人的主要工作 (2)第2章主电路的设计及原理 (2)1、总体框图 (3)2、主电路的设计原理 (3)2、1带电阻负载时 (4)2、2阻感负载时 (6)3、触发电路 (7)4、保护电路 (7)5、参数计算 (8)5、1 整流变压器的选择 (8)5、2 晶闸管的选择 (9)5、3 输出的定量分析 (9)第3章MATLAB的仿真 (10)1、MATLAB仿真软件的简介 (10)2、仿真模拟图 (10)3、仿真结果 (10)第4章结束语 (11)参考文献 (11)第1章绪论1、电子技术的发展趋势当今世界能源消耗增长十分迅速。
目前,在所有能源中电力能源约占40%,而电力能源中有40%就是经过电力电子设备的转换才到使用者手中。
预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术就是利用电力电子器件对电能进行控制与转换的学科。
它包括电力电子器件、变流电路与控制电路三个部分,就是电力、电子、控制三大电气工程技术领域之间的交叉学科。
随着科学技术的发展,电力电子技术由于与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)与高新技术产业(例如:航天、现代化通信等)。
下面着重讨论电力电子技术在电力系统中的一些应用。
在高压直流输电(HVDC)方面的应用直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。
三相桥式全控整流电路的工作原理课设

BKP1KP3KP5KP4KP6KP2Ra b cu 图1 三相桥式全控整流电路ωtωtωta b c a b uu 00uu三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a 、b 、c 三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a 、b 、c 三相电源相接的三个晶闸管分别为 VT 、VT 。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。
很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。
为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。
晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。
为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。
图1是电路接线图。
为了分析方便起见,把一个周期等分6段(见图2)。
在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6被触发导通。
三相桥式全控整流电路课程设计报告

三相桥式全控整流电路课程设计报告目录一、课程概述 (2)1. 课程背景与目的 (2)2. 课程设计任务及要求 (4)二、三相桥式全控整流电路基本原理 (4)1. 三相桥式整流电路结构 (6)1.1 电路组成及工作原理 (7)1.2 电路特点分析 (8)2. 三相桥式全控整流电路工作原理 (9)2.1 触发脉冲的控制 (10)2.2 整流过程的分析 (12)三、电路设计 (14)1. 电路主要参数计算 (15)1.1 输入参数设定 (17)1.2 输出参数计算 (18)1.3 散热设计考虑 (19)2. 电路元器件选择与配置 (20)2.1 整流器件的选择依据 (22)2.2 滤波电容的选择方法 (23)2.3 其他元器件的选择及布局设计 (24)四、仿真分析与实验验证 (26)1. 仿真分析 (27)1.1 仿真模型建立 (28)1.2 仿真结果分析 (29)2. 实验验证过程介绍及结果分析 (30)一、课程概述本课程设计旨在帮助学生深入理解和掌握三相桥式全控整流电路的基本原理、结构特点和工作过程,培养学生分析问题和解决问题的能力。
通过对三相桥式全控整流电路的设计与实现,使学生在理论知识与实际操作相结合的基础上,提高自己的专业素养和实践能力。
课程背景介绍:简要介绍三相桥式全控整流电路的发展历程、应用领域及其在现代电力系统中的重要性。
课程目标设定:明确本课程设计的目标,包括理论知识的学习和实际应用能力的培养。
课程内容安排:详细阐述本课程设计的主要内容,包括三相桥式全控整流电路的基本原理、结构特点、工作原理及参数计算等。
课程实验与测试:通过实验和测试,验证所学理论知识的正确性,培养学生的实际操作能力和团队协作精神。
课程总结与反思:对本课程设计的过程进行总结,分析存在的问题和不足,并提出改进措施,为今后的学习和工作打下坚实的基础。
1. 课程背景与目的随着现代电力电子技术的飞速发展,整流电路在各个领域的应用越来越广泛。
三相全控整流电路课程设计

三相全控整流电路课程设计一、课程目标知识目标:1. 学生能够理解三相全控整流电路的基本原理和组成。
2. 学生能够掌握三相全控整流电路的电路图及其工作过程。
3. 学生能够解释三相全控整流电路中各元件的作用及其相互关系。
技能目标:1. 学生能够运用所学知识,正确绘制并分析三相全控整流电路。
2. 学生能够通过实验操作,验证三相全控整流电路的输出波形及其特点。
3. 学生能够解决实际应用中与三相全控整流电路相关的问题,具备一定的电路分析与设计能力。
情感态度价值观目标:1. 培养学生对电力电子技术领域的兴趣,激发他们的求知欲和探索精神。
2. 培养学生严谨的科学态度,注重实验操作的安全性和准确性。
3. 培养学生的团队协作精神,学会与他人共同分析问题、解决问题。
课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生已具备一定的电子技术基础,具有较强的逻辑思维能力和动手能力。
教学要求:结合课程性质、学生特点,本课程要求学生在掌握理论知识的基础上,注重实践操作,培养实际应用能力。
通过课程学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。
后续教学设计和评估将围绕这些具体学习成果展开。
二、教学内容本课程教学内容主要包括以下三个方面:1. 三相全控整流电路基本原理- 介绍三相交流电源及其特点- 三相全控整流电路的工作原理- 三相全控整流电路的组成及各元件功能教学内容关联教材章节:第三章第三节“三相全控整流电路”2. 三相全控整流电路分析与设计- 电路图绘制及电路参数计算- 输出电压和电流波形的分析- 三相全控整流电路的触发角度与输出电压关系教学内容关联教材章节:第三章第四节“三相全控整流电路的分析与设计”3. 实践操作与实验- 三相全控整流电路的搭建与调试- 观察不同触发角度下的输出波形- 分析实验数据,验证理论分析结果教学内容关联教材章节:第三章实验“三相全控整流电路实验”教学进度安排:第一周:基本原理学习,电路组成和元件功能介绍第二周:电路分析与设计,触发角度与输出电压关系探讨第三周:实践操作与实验,观察与分析实验现象,总结实验结果三、教学方法为了提高教学质量,充分调动学生的学习兴趣和主动性,本章节将采用以下多样化的教学方法:1. 讲授法:- 对于三相全控整流电路的基本原理、组成和元件功能等理论知识点,采用讲授法进行教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相桥式全控整流电路课程设计文稿
湖北民族学院
三相桥式全控整流电路的设计
学生姓名:林博
指导教师:徐超
专业:电气工程及其自动化
班级: K0312416
学号; K
电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。
近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。
本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。
可是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。
本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。
在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。
在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。
关键字:MCU ; SCR; 电力电子; 导通角; KEIL-C
摘要 (2)
1、原理及方案 (4)
2、主电路的设计及器件选择 (5)
2.1三相全控桥的工作原理 (5)
2.2参数计算 (7)
3、触发电路设计 (10)
3.1集成触发电路 (10)
3.2K J004的工作原理 (10)
3.3集成触发器电路图 (11)
4、保护电路的设计 (13)
4.1晶闸管的保护电路 (13)
4.2交流侧保护电路 (14)
4.3直流侧阻容保护电路 (15)
5、M A T L A B建模与仿真 (16)
5.1M A T L A B建模 (16)
5.2M A T L A B仿真 (18)
5.3仿真结构分析 (19)
课程设计体会 (21)。