贝雷梁(贝雷片)拼装结构力学参数

贝雷梁(贝雷片)拼装结构力学参数
贝雷梁(贝雷片)拼装结构力学参数

贝雷梁拼装结构力学参数

贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X型,桥面板和护轮木用松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,设计时采用的容许应力如下:

木料——顺木纹弯应力、压应力及承压应力为16.2MPa;受弯时顺木纹剪应力为2.7 MPa。弹性模量E=98.5×105MPa。

钢料——16锰钢拉应力、压应力及弯应力为1.3×210=273 MPa;剪应力为1.3×160=208 MPa。

30铬锰钛拉应力、压应力及弯应力为0.85×1300=1105 MPa;剪应力为0.45×1300=585 MPa。

现有进口贝雷梁多系20世纪40年代的产品,材料屈服点强度为351 MPa,其容许应力按0.7×351=245 MPa考虑,销子容许应力可考虑与国产销子一样。

构件重量如下表(单位:kg):

其它构件容许荷载如下:

进口贝雷梁的桁架销子双剪状态容许剪力550KN;弦杆螺栓容许剪力150KN,容许拉力80KN;摆动滚子最大容许荷载210KN。国产贝雷梁的栓滚最大容许荷载250KN,平滚每一滚子最大荷载60KN;其余可参考进口贝雷的数值。

桁架片力学性质见下表:

另有计算简化成单杆系可采用:I x=685.12×10-8m4,y=0.0028m,截面积A=146.45×10-4m。

拼装钢桥梁几何特性表:

桁架容许内力表:

注:

1、进口贝雷截面面积等是按4ft槽钢查国外钢结构资料得出;

2、进口贝雷桁片惯矩(英制单位)转引自“贝雷桁片手册”(载1964年公路设计资料第五期),其桁片断面率系由惯矩计算得出;

3、国产与进口桁片容许弯矩系单排单层的数值,各由其容许应力计算得出。如规定的容许应力与前述不同,应另行计算;

4、三排单层贝雷的容许弯矩可按单排单层的乘以3再乘以不均匀系数0.9;双排双层的可按单排单层的乘以4再乘0.9;三排双层的可按单排单层的乘以8再乘0.8;

5、表列国产贝雷的力学性质未计入加强弦杆。

常用地岩土和岩石物理力学全参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

砂岩 15.7 9.6 0.28 0.21 5.2 石灰石 39.8 36.0 0.18 0.25 14.5 页岩 66.8 49.5 0.17 0.21 25.3 大理石 68.6 50.2 0.06 0.22 26.6 花岗岩 10.7 5.2 0.20 0.41 1.2 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时 间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长, tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

贝雷梁计算书

跨彭高河立交桥双层贝雷梁计算书 中南大学 高速铁路建造技术国家工程实验室 二0一^年七月二十日

目录 1.1...................................................................................................................... 计算依据................................................................... 1.2...................................................................................................................... 搭设方案................................................................... 、贝雷梁设计验算........................................................... 2.1.荷载计算 (4) 2.2.贝雷梁验算 (4) 方木验算 (4) 2.2.2方木下工字钢验算 (5) 2.2.3翼缘下部贝雷梁验算 (6) 2.2.4腹板、底板下贝雷梁验算 (7) 2.3.迈达斯建模验算 (8) 2.4.贝雷梁下部型钢验算 (9) 2.5.钢管立柱验算 (10)

、贝雷梁设计方案 1.1.计算依据 (1)设计图纸及相关详勘报告; (2)《贝雷梁设计参数》; (3)《装配式公路钢桥多用途使用手册》; (4)《钢结构设计规范》(GB50017-2003); (5)《铁路桥涵设计规范》; 12搭设方案 图1.1箱梁截面(单位mm 图1.2贝雷梁横向布置图(单位m) 表1.1贝雷梁参数

贝雷梁技术参数及使用手册

装配式公路钢桥使用手册

目录 一、装配式公路钢桥的由来 (1) 二、装配式公路钢桥的性能与特点 (3) 三、装配式公路钢桥的组成与结构 (3) 四、常用资料 (23) 五、架设准备作业 (27) 六、桥梁架设作业 (30) 七、桥梁的撤收 (38) 八、桥梁的使用与维护 (39) 九、器材的管理 (39)

装配式公路钢桥 一、装配式公路钢桥的由来 世界上被广泛使用的贝雷钢桥(也称装配式公路钢桥,组合钢桥)不仅在发达国家用途广泛,而且在发展中国家的架桥工程中也深受欢迎。最初的贝雷军用钢桥由英国的唐纳德·贝雷(Sir Donald Bailey)工程师在1938年第二次世界大战初期设计。他的设计概念要以最少种类的单元构件,用它拼装成各种不同荷载、不同跨径的桥梁,只需利用易于得到的一般中型卡车运输,只用非熟练工人(Unskilled Labor)以人力来搭建(图1-1)。 图1-1 人工架设 在第二次世界大战期间,这种军用钢桥被大量用于欧洲及远东战场。战后,许多国家把贝雷钢桥经过一些改进转为民用,如美国、日本、原苏联。贝雷钢桥在我国交通建设、抗洪抢险中起过重要作用。20世纪60年代,我国采用国产钢16Mn 把贝雷钢桥设计成装配式公路钢桥,即至今一直在国内广泛生产并使用的“321”装配式公路钢桥。这种桁架不仅用于临时便桥(图1-2)或加强桥梁(图1-3),还大量用作施工支架(图1-4)、龙门架(图1-5)、缆索吊立柱(图1-6)。 图1-2临时便桥

图1-3加强浮桥 图1-4施工支架 图1-5龙门式车辆临时通道 图1-6缆索吊立柱

二、装配式公路钢桥的性能与特点 装配式公路钢桥是由单销连接桁架单元作为桥跨结构主梁的下承式桥梁。其结构简单,适应性强、互换性好、拆装方便、架设速度较快、载重量大;主要用于架设单跨临时性桥梁,保障履带式荷载500千牛、轮胎式荷载300千牛(轴压力130千牛)以下的各种车辆通过江河、断桥、沟谷等障碍,并可用于抢修被破坏的桥梁,还可用于构筑施工塔架、支承架、龙门架等多种装配式钢结构。其最大跨径可达69米,车行道宽度3.7米;允许通行速度:轮式车辆30千米/小时、履带式车辆5千米/小时;人工架设时,作业人员30~40名;器材可用通用型载重汽车载运,每辆车装载3~4纵长米桥梁器材。 三、装配式公路钢桥的组成与结构 装配式公路钢桥由桁架式主梁、桥面系、连接系、构础等4部分组成,并配有专用的架设工具。主梁由每节3米长的桁架用销子连接而成(图3-1),位于车行道的两侧,主梁间用横梁相连,每格桁架设置两根横梁(图3-2);横梁上设置4组纵梁,中间两组为无扣纵梁,外侧两组为有扣纵梁;纵梁上铺设木质桥板(图3-3),桥板两侧用缘材固定(图3-4),桥梁两端设有端柱。横梁上可直接铺U 型桥板。主梁通过端柱支承于桥座(支座)和座板上(图3-5),桥梁与进出路间用桥头搭板连接,中间为无扣搭板,两侧为有扣搭板(图3-6),搭板上铺设桥板、固定缘材。全桥设有许多连接系构件如斜撑、抗风拉杆、支撑架、联板等,使桥梁形成稳定的空间结构。 图3-1 用桁架销连接主梁

常用的岩土和岩石物理力学参数

(E, ν与) (K, G) 的转换关系如下: K E 3(1 2 ) G E (7.2) 2(1 ) 当 ν值接近 0.5 的时候不能盲目的使用公式 3.5,因为计算的 K 值将会非常的高,偏离 实际值很多。最好是确定好 K 值 (利用压缩试验或者 P 波速度试验估计 ),然后再用 K 和 ν 来计算 G 值。 表 7.1 和 7.2 分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值) (Goodman,1980) 表 7.1 干密度 (kg/m 3) E(GPa) ν K(GPa) G(GPa) 砂岩 19.3 0.38 26.8 7.0 粉质砂岩 26.3 0.22 15.6 10.8 石灰石 2090 28.5 0.29 22.6 11.1 页岩 2210-257 11.1 0.29 8.8 4.3 大理石 2700 55.8 0.25 37.2 22.3 花岗岩 73.8 0.22 43.9 30.2 土的弹性特性值(实验室值) (Das,1980) 表 7.2 松散均质砂土 密质均质砂土 松散含角砾淤泥质砂土 密实含角砾淤泥质砂土 硬质粘土 软质粘土 黄土 软质有机土 冻土 3 弹性模量 E(MPa) 泊松比 ν 干密度 (kg/m ) 1470 10-26 0.2-0.4 1840 34-69 0.3-0.45 1630 1940 0.2-0.4 1730 6-14 0.2-0.5 1170-1490 2-3 0.15-0.25 1380 610-820 2150 各向异性弹性特性——作为各向异性弹性体的特殊情况, 横切各向同性弹性模型需要5 中弹性常量: E E 3 , ν12 , ν 和 G 13 ;正交各向异性弹性模型有 9 个弹性模量 E 1, 13 1,E 2,E 3, ν12 , ν , ν 和 G 23。这些常量的定义见理论篇。 1323 ,G 12,G 13 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。 一些学者已经给出了用 各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表 3.7 给出了各向 异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表 7.3 E x (GPa) E y (GPa) νyx νzx G xy (GPa) 砂岩 43.0 40.0 0.28 0.17 17.0 砂岩 15.7 9.6 0.28 0.21 5.2

贝雷片力学参数.doc

贝雷片力学参数 贝雷架可以是国产或进口,国产贝雷架也称为321钢桥,其基本组成单元是贝雷片,见图 1 。贝雷片由上下弦杆、竖杆及斜杆焊接而成,上下弦杆分别为 双[10 槽钢,斜杆和竖杆为I8 工字钢,桁架构件材料为16Mn,每片桁架重 2.7kN, 单位长重量为0.9kN/m。上下弦杆的一端为阴头,另一端为阳头,统称为接头, 见图2;阴阳头都有销栓孔,两节贝雷片连接时,将一节的阳头插入另一节的阴 头内,对准销子孔,插上销子即可。上、下弦杆内有螺栓孔,通过螺栓来拼组加 强弦杆或双层贝雷片,图 3 为加强弦杆的螺栓图。 (a) (b) 图1 贝雷片构造( 尺寸单位:mm,)(a)贝雷片三维图,(b) 贝雷片三视图 图2 接头 图3 加强弦杆螺栓(单位:m m) 贝雷片的基本力学特性见表1、2。

表1 贝雷梁单元杆件力学性能 杆件名材料断面型式横断面(cm 2) 惯性矩(cm4) 2) 惯性矩(cm4) 容许承载力 (kN) 弦杆16Mn ][10 2×12.74 397 560 竖杆16Mn I8 9.52 99 210 斜杆16Mn I8 9.52 99 171.5 表2 材料、屈服强度及容许应力(MPa) 部件材料[ s ] [ ] [ ] 构件16Mn 350 273 208 销子30CrMnTi 1300 1105 585 表3 相当梁模型时贝雷架几何特性 结构构造几何特性 抗弯截面模量截面惯性矩抗弯刚度 W z(cm I z(cm EI z(kN.m 3) 4) 2) 3) 4) 2) 单排单层不加强3578.5 250497.2 526044.12 加强7699.1 577434.4 1212612.24 双排单层不加强7157.1 500994.4 1052088.24 加强15398.3 1154868.8 2425224.48 三排单层不加强10735.6 751491.6 1578132.36 加强23097.4 1732303.2 3637836.72 双排双层不加强14817.9 2148588.8 4512036.48 加强30641.7 4596255.2 9652135.92 三排双层不加强22226.8 3222883.2 6768054.72 加强45962.6 6894390 14478219 表4 相当梁模型时贝雷架容许内力表 不加强贝雷梁 梁型 容许内力 单排单层双排单层三排单层双排双层三排双层弯矩(kN.m)788.2 1576.4 2246.4 3265.4 4653.2 剪力(kN)245.2 490.5 698.9 490.5 698.9 加强贝雷梁 桥型 容许内力 单排单层双排单层三排单层双排双层三排双层弯矩(kN.m)1687.5 3375 4809.4 6750 9618.8 剪力(kN)245.2 490.5 698.9 490.5 698.9

贝雷梁(贝雷片)拼装结构力学参数

贝雷梁拼装结构力学参数 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X型,桥面板和护轮木用松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,设计时采用的容许应力如下: 木料——顺木纹弯应力、压应力及承压应力为16.2MPa;受弯时顺木纹剪应力为2.7 MPa。弹性模量E=98.5×105MPa。 钢料——16锰钢拉应力、压应力及弯应力为1.3×210=273 MPa;剪应力为1.3×160=208 MPa。 30铬锰钛拉应力、压应力及弯应力为0.85×1300=1105 MPa;剪应力为0.45×1300=585 MPa。 现有进口贝雷梁多系20世纪40年代的产品,材料屈服点强度为351 MPa,其容许应力按0.7×351=245 MPa考虑,销子容许应力可考虑与国产销子一样。 构件重量如下表(单位:kg):

其它构件容许荷载如下: 进口贝雷梁的桁架销子双剪状态容许剪力550KN;弦杆螺栓容许剪力150KN,容许拉力80KN;摆动滚子最大容许荷载210KN。国产贝雷梁的栓滚最大容许荷载250KN,平滚每一滚子最大荷载60KN;其余可参考进口贝雷的数值。 桁架片力学性质见下表: 另有计算简化成单杆系可采用:I x=685.12×10-8m4,y=0.0028m,截面积A=146.45×10-4m。 拼装钢桥梁几何特性表:

桁架容许内力表: 注: 1、进口贝雷截面面积等是按4ft槽钢查国外钢结构资料得出; 2、进口贝雷桁片惯矩(英制单位)转引自“贝雷桁片手册”(载1964年公路设计资料第五期),其桁片断面率系由惯矩计算得出; 3、国产与进口桁片容许弯矩系单排单层的数值,各由其容许应力计算得出。如规定的容许应力与前述不同,应另行计算; 4、三排单层贝雷的容许弯矩可按单排单层的乘以3再乘以不均匀系数0.9;双排双层的可按单排单层的乘以4再乘0.9;三排双层的可按单排单层的乘以8再乘0.8; 5、表列国产贝雷的力学性质未计入加强弦杆。

施工临时贝雷梁钢便桥计算书

目录 1. 工程概况 (2) 2.参考规范及计算参数 (4) 2.1.主要规范标准. (4) 2.2.计算荷载取值 (5) 2.3.主要材料及力学参数 (6) 2.4.贝雷梁性能指标 (8) 3.上部结构计算 (8) 3.1.桥面板计算 (8) 3.2.16b槽钢分布梁计算 (9) 3.3.贝雷梁内力计算 (10) 4.杆系模型应力计算结果 (15) 4.1.计算模型 (15) 4.2.计算荷载取值 (15) 4.3.贝雷梁计算结果 (17) 4.4.墩顶工字横梁计算结果 (25) 4.5.钢立柱墩计算结果 (28) 5.下部结构验算 (30) 6.稳定性验算 (32)

7.结论 (32)

1.工程概况 根据现状道路控制条件,李家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m (27m)+12m。桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28.673m。第三跨20.4m宽度跨径为24m,另外3m范围跨径27m。钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+2×0.45m,24m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+0.9m,其余跨径均选用双排单层标准贝雷梁,梁高均为1.5m;贝雷梁上等间距布置横向连接工字钢,型号I25b;工字钢以上等间距布置桥面板支撑槽钢;桥面板采用8mm厚花纹钢板,上铺9cm沥青混凝土。钢便桥下部结构为横梁立柱接桩(板)基础。横梁根据受力情况由3片或2片梁高1.0m的工字钢拼接而成。立柱为直径1.0m的钢管柱,与横梁、基础栓接,方便安装与拆卸。钢管柱之间采用横向钢管连接,加强横向稳定。基础分为承台桩基和板式扩大基础两种形式,平面位置受限位置用承台桩基础,桩基直径Ф1.2m;其他位置采用板式扩大基础。钢便桥桥型平面布置图、立面布置图及横断面图如图1-1至图1-4所示。

最新18米贝雷梁栈桥计算书

18米贝雷梁栈桥计算 书

18米贝雷梁栈桥计算书 一、计算依据 ㈠、《建筑结构静力计算实用手册》; ㈡、《xxx互通立交桥工程》施工图; ㈢、《公路桥涵施工技术规范》; ㈣、《公路桥涵设计规范》; ㈤、《贝雷梁使用手册》; 二、设计要点 1、设计荷载为55吨,栈桥净宽5.0米,单跨18米,桥梁 总长72米。 2、桥面以0.15m×0.15m方木并排铺设,方木下以I20工字 钢为纵梁,I20工字钢下I36工字钢为横梁,架设在贝雷 梁纵梁上。 3、桥梁台、墩、基础为片石混凝土。 4、用国产贝雷片支架拼装成支架纵梁,支架结构均采用简支 布置。 三、施工荷载计算取值 ㈠、恒载 1、方木自重取7.5KN/m3; 2、钢构自重取78KN/m3;

3、I20工字钢自重:0.28KN/m; 4、I36工字钢自重:0.66KN/m; 5、贝雷自重取1KN/m(包括连接器等附属物); 6、片石混凝土自重取20KN ㈡、荷载组合 根据《建筑荷载设计规范》,均布荷载设计值=结构重要性系数×(恒载分项系数×恒载标准值)。恒载分项系数为1.2。 ㈢荷载分析 混凝土罐车为三轴车,考虑自重为550kn,根据车辆的重心,前轮轴重110kn,两个后轴分别为220kn后轴间距为1.3米,轮间距为1.9米。 图2 四、各构件验算 (一)桥面检算 栈桥桥面方木直接搁置于间距L=1米的I20工字钢, 取单位长度(2.4米)桥面宽进行计算。假设一根后轴作用在计算部位。桥面五跨连续梁考虑,

1、荷载组合 桥面: q=1.2×220/2=132kN 2、截面参数及材料力学性能指标 1、方木力学性能 W= a3/6=1503/6=5.63×105mm3 I= a4/12=1504/12=4.22×107mm4 2、承载力检算(按三等跨连续梁计算) 方木的力学性能指标按《公路桥涵钢结构及木结构设计规范》(JTJ025-86)中的A-3类木材并按湿材乘0.9的折减系数取值,则: [σ]=12×0.9=10.8MPa,E=9×103×0.9=8.1×103MPa a强度 M max=0.289Fl=0.289×132×1=38.2KNm σmax=M max /W=38.2×103×103/5.63×106=6.78MPa≤[σ0] 合格 b刚度 荷载: q=1.2×220/2=132kn f=2.716×Fl3/(100EI)=2.716×132×10003/(100×8.1×103× 4.22×107)=0.011mm≤[f0]=1000/400=2.5mm 合格 (二)纵梁I20工字钢检算

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν () 其中 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = () 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν () 这些值应该和排水常量k 和ν作比较,来估计压缩的效果。重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。 固有的强度特性 在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面: s 13N f φσσ=-+ () 其中 )sin 1/()sin 1(N φφφ-+=

321贝雷梁重量及尺寸资料

“321”钢桥构件目录和轮廓尺寸 序号构件名称 构件重量 构件轮廓尺寸(mm) 单位N 1 桁架片2700 3115*176*1500 2 销子个30 55*200 3 加强弦杆根800 3115*176*100 4 横梁根2450 5850*122*370 5 横梁夹具个30 238*50*354 6 有扣纵梁片1070 2990*753*138 7 无扣纵梁片1050 168*185*170 8 阳头端柱根690 168*185*1706 9 阴头端柱根700 281*185*1706 10 斜撑根110 1040*83*100 11 支撑架片210 1270*540*80 12 联板块40 360*90*34 13 抗风拉杆根330 30*4809 14 桥面板块400 3960*190*70 15 护轮木根440 2990*140*140 16 U型标准钢桥面板块2100 2996*800*104.5 17 U型中央钢桥面桥块1300 2996*482*104.5 18 钢路缘根240 2996*70*200 19 支座个380 450*450*145 20 支座板块1840 1344*900*200 21 搭板支座块460 645*450*300 22 有扣搭板片1430 2990*772*158 23 无扣搭板片1410 2990*772*120 24 桁架螺栓个30 38*270

25 弦杆螺栓个25 38*200 26 斜撑螺栓个7.4 22*128 27 撑架螺栓个7 22*118 28 护木螺栓个9.8 20*238 29 U型钢桥头搭板块2200 2996*800*124.5 30 挂钩螺栓个 5.6 50*30*100 31 路缘连接螺栓个 2.0 20*42.5 32 摇滚个1020 1020*350*255 33 平滚个600 650*290*190 34 摇滚样盘个190 1090*600*75 35 平滚样盘个230 1588*450*80 36 阳头斜面弦杆根310 1187*176*100 37 阴头斜面弦杆根270 1185*176*100 38 弦杆接头个60 300*176*100 39 菱形千斤顶个210 510*480*120 40 座架个80 410*100*78 41 阴头垫铁块20 55*120*110 42 托梁根80 863*70*100

贝雷梁检算标准范本

兰州至乌鲁木齐第二双线新建铁路工程 八盘峡黄河特大桥(70+2×100+70)m预应力混凝土连续梁 边跨现浇段贝雷支架检算 计算:张磊李建宁 复核:李军张国奇 审核:李子奇 兰州交通大学土木工程学院

2010年12月

目录 1.设计依据......................................................................................................................... - 4 - 2.贝雷梁布置图................................................................................................................. - 4 - 3.箱梁自重荷载分布的简化............................................................................................. - 5 - 4.贝雷梁上部型钢横梁检算............................................................................................. - 5 - 5.贝雷梁力学特性............................................................................................................. - 7 - 6.翼缘板下部贝雷梁检算................................................................................................. - 8 - 7.腹板、底板下贝雷梁检算........................................................................................... - 10 - 8.贝雷梁下部型钢横梁验算........................................................................................... - 12 - 9.钢管立柱受力检算....................................................................................................... - 14 - 10.承台局部承压验算..................................................................................................... - 15 -

土石坝中土石料的物理力学性质

土石坝中土石料的物理力学性质 摘要 随着筑坝技术的发展,近代的高土石坝大量地使用了当地的粗颗粒土石料(以下简称土石料)。铁路、公路以及一些高层、重型建筑物,目前也遇到了此类材料的问题。“土石料”一词,一般泛指诸如砂卵石、石料、石碴料、风化料、砾质土、冰磺土以至人工掺合土等粗颗粒的土石材料。其最大粒径一般都超过75(60)毫米而达到600甚至800毫米以上。近年来,由于筑坝技术的发展,对筑坝材料的要求已逐渐放宽。土石料中的物理力学性质对土石坝的设计,施工有很大的影响,所以我们要修好土石坝,必须研究清楚土石坝的各种物理力学性质。 关键字 土石料砂卵石石碴料风化料物理力学性质

类型 土石坝常按坝高、施工方法或筑坝材料分类。 土石坝按照坝高分类,土石坝按坝高可分为:低坝、中坝和高坝。我国《碾压式土石坝设计规范》(SL 274-2001)规定:高度在30米以下的为低坝;高度在30米~70米之间的为中坝;高度超过70米的为高坝。 土石坝按其施工方法可分为:碾压式土石坝;冲填式土石坝;水中填土坝和定向爆破堆石坝等。应用最为广泛的是碾压式土石坝。 按照土料在坝身内的配置和防渗体所用的材料种类,碾压式土石坝可分为以下几种主要类型: 1)、均质坝。坝体断面不分防渗体和坝壳,基本上是由均一的黏性土料(壤土、砂壤土)筑成。 2)、土质防渗体分区坝。即用透水性较大的土料作坝的主体,用透水性极小的黏土作防渗体的坝。包括黏土心墙坝和黏土斜墙坝。防渗体设在坝体中央的或稍向上游且略为倾斜的称为黏土心墙坝。防渗体设在坝体上游部位且倾斜的称为黏土斜墙坝,是高、中坝中最常用的坝型。 3)、非土料防渗体坝。防渗体由沥青混凝土、钢筋混凝土

贝雷梁截面力学参数

贝雷梁截面力学参数 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采 用铬锰钛钢,插销用弹簧钢制造,焊条用T505X 型,桥面板和护轮木用 松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过 上述规定时,不得超过其屈服点的85%。 设计时采用的容许应力如下: 木料——顺木纹弯应力、压应力及承压应力为16.2MPa ; 进口贝雷梁的桁架销子双剪状态容许剪力550KN ;弦杆螺栓容许剪力 150KN ,容许拉力80KN ;摆动滚子最大容许荷载210KN 。国产贝雷梁的栓滚最大容许荷载250KN ,平滚每一滚子最大荷载60KN ;其余可参考 进口贝雷的数值。 桁架片力学性质见下表: 类型高×长(cm) 弦杆截面面率F(cm2) 弦杆惯矩Ix(cm4) 弦杆断面率Wx(cm3) 桁片惯矩Ig(cm4) 桁片断面率Wo(cm3) 国产150×300 25.48 396.6 79.4 250500 3570 进口154.94×304.8 (61×120 ft) 27.48 382.9 75.2 283000 (6800 ft4) 3910 (238.6 ft4) 类型桁片允许弯矩Mo(KN?m) 弦杆回旋半径 α=Ix/F (cm) 自由长度 Ip (cm) 长细比 λ=Ip/R 纵向弯曲系数φ弦杆纵向容许受压荷载 (KN)

国产 975.0 3.94 75 19.0 0.953 663.0 进口 958.0 3.72 76.2 20.5 0.948 638.0 另有计算简化成单杆系可采用:Ix =685.12×10-8m4,y =0.0028m ,截面 积A =146.45×10-4m 。 拼装钢桥梁几何特性表: 1、进口贝雷截面面积等是按4ft 槽钢查国外钢结构资料得出; 2、进口贝雷桁片惯矩(英制单位) 转引自“贝雷桁片手册”(载1964年公路设计资料第五期) ,其桁片断面率系由惯矩计算得出; 3、国产与进口桁片容许弯矩系单排单层的数值,各由其容许应力计算得出。如规定的容许应力与前述不同,应另行计算; 4、三排单层贝雷的容许弯矩可按单排单层的乘以3再乘以不均匀系数0.9;双排双层的可按单排单层的乘以4再乘0.9;三排双层的可按单排单层的乘以8再乘0.8; 5、表列国产贝雷的力学性质未计入加强弦杆。 网络世界无穷力量,希望对工程计算人员相关计算有所帮助 格言网

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

贝雷片计算书案例

支架拼设方案检算说明 1、该方案采用贝雷片拼设的支架进行现浇梁体的施工。 2、贝雷片上方铺设工字钢作为分配梁,工字钢上方直接铺设定型钢模板。 3、为确保模板顺利拆除,在钢管桩顶设置Φ=500mm的钢砂箱。 4、为加快支架安装的速度,所有分配梁、钢管桩、砂箱均统一使用同一规格。

设1排钢管桩立柱结构拼设检算成果书 一、检算过程中用到的各种参数 钢材E=2.1×105MPa=2.1×108KPa 单排单层贝雷片I=250497.2cm4, W=3578.5 cm3 [M]=788.2KN.m; [Q]=245.2KN 贝雷片自重305/3=102kg/m=1.02KN/m 22号工字钢I=3400cm4, W=309 cm3, 每延米自重q=42kg/m。 20号工字钢I=2370cm4, W=239 cm3, 每延米自重q=27.9kg/m。 28号工字钢I=7110cm4, W=508 cm3, 每延米自重q=43.4kg/m。 32号工字钢I=11620cm4, W=726 cm3, 每延米自重q=57.7kg/m。 二、腹板部分,设4排贝雷片 钢材E=2.1×105MPa=2.1×108KPa 4排单层贝雷片力学参数 I=250497.2×4=1001988.8cm4,W=14314 cm3 [M]=3152.8KN.m; [Q]=980.8KN 检算过程所应考虑的各种荷载: 1、贝雷片自重q1=102×4=408kg/m=4.08KN/m 2、施工人员荷载q2=2.5×2.75×1=6.875 KN/m 3、振捣荷载q3=2.0×2.75=5.5KN/m 4、模板荷载(在腹板附近处)q4=腹板处模板重量+内模标准架+内模桁架+内模模板系+ 内模支架系+底模系=(34/2/32.6+0.1+0.11+0.15(内模暂考虑15t)+0.3+12/32.6/5×2.5)×10=13.655KN/m 5、梁体自重腹板q5=(2.5+2.5)×0.45×1/2×25=28.125KN/m 顶板q6=(0.65×0.45×1+(0.65+0.3)/2×1.635)×25=26.73KN/m 底板q7=1×0.28×2.75×25=19.25KN/m 6、分配型钢(暂按I22号工字钢间距0.6m)q8=0.042×2.75*1*0.6=0.1925KN/m 贝雷片所受荷载q= q1+ q2 + q3 + q4 + q5 + q6 + q7 + q8 =(6.875+5.5)× 1.4+(4.08+13.655+28.125+26.73+19.25+0.1925)×1.2=127.764KN/m, 贝雷梁跨径按12.95m进行检算,检算时按两跨连续梁受均布荷载进行简化计算M=0.125ql2=0.125×127.764×12.952=2678.293KN.m<[M]=3152.8KN.m 满足要求 Q=0.625ql=0.625×127.764×12.95=1034.0898<[Q] ×1.2=980.8KN×1.2 (剪力在临时结构中可不考虑荷载分项系数,而且可考虑应力提高系数1.2,在进行Q检算过程中如果将荷载分项系数不进行考虑,即能满足结构受力特性,不需考虑应力提高系数) 满足要求 f=0.521ql4/(100EI)=0.521×127.764 ×12.954/(100×2.1×108×1001988.8×10-8)=0.0089m=8.89mm<[f]=l/400=12950/400=32.375mm。 三、底板箱梁中心位置处设三排贝雷片 双排单层贝雷片I=250497.2×3=751491.6cm4,W=10735.5 cm3 [M]=2364.6KN.m; [Q]=735.6KN 检算过程所考虑的荷载: 1、贝雷片自重q1=102×3=305kg/m=3.05KN/m 2、施工人员荷载q2=2.5×2.5×1=6.25 KN/m 3、振捣荷载q3=2.0×2.5=5.0KN/m

施工临时贝雷梁钢便桥计算书

目录 1.工程概况 (1) 2.参考规范及计算参数 (3) 2.1. ................................................................................................................... 主要规范标准3 2.2. ................................................................................................................... 计算荷载取值3 2.3. ...................................................................................................... 主要材料及力学参数4 2.4. ............................................................................................................... 贝雷梁性能指标5 3.上部结构计算 (6) 3.1. ........................................................................................................................桥面板计算6 3.2. ....................................................................................................... 16b槽钢分布梁计算6 3.3. ............................................................................................................... 贝雷梁内力计算7 4.杆系模型应力计算结果 (11) 4.1. ............................................................................................................................ 计算模型11 4.2. ................................................................................................................... 计算荷载取值11 4.3. ............................................................................................................... 贝雷梁计算结果13 4.4墩顶工字横梁计算结果 (21) 4.5钢立柱墩计算结果 (23) 5.下部结构验算 (26) 6.稳定性验算 (28) 7.结论 (28)

相关文档
最新文档