高一数学知识点必修二:直线与方程
高一数学必修2 直线与方程 精讲

一、直线的一般式方程【知识要点】1. 一般式:0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线. 2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=; 与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=;(2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时, 则11112222//A B C l l A B C ⇔=≠; 1l 与2l 重合111222A B C A B C ⇔==; 1l 与2l 相交1122A BA B ⇔≠. 【经典例题】例1、已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .例2、(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程;(2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程.例3、已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.例4、直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交; (2)只与x 轴相交;(3)只与y 轴相交; (4)是x 轴所在直线; (5)是y 轴所在直线.【经典练习】1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12ab D .12||ab 4. 直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ). A. 相交不垂直 B. 垂直 C. 平行D. 重合5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = . 8.根据下列各条件写出直线的方程,并且化成一般式: (1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴; (3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得:(1)l 1和l 2相交; (2)l 1⊥l 2; (3)l 1//l 2; (4)l 1和l 2重合.二、两条直线的交点坐标【知识要点】1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩.若方程组有惟一解,则两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点, 其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.【经典例题】例1、判断下列各对直线的位置关系. 如果相交,求出交点坐标. (1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.例2、求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.例3、已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限.例4、若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.【经典练习】1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ). A. 平行 B. 相交 C. 垂直 D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ). A. 1 B. -1 C. 2 D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . 8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.三、两点间的距离【知识要点】1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-; 当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量; (2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.【经典例题】例1、在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.例2、直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.例3、如图,已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -.oxA (1,a )B (1,b )y【经典练习】1.已知(2,1),(2,5)A B --,则|AB |等于( ). A. 4 B.10 C. 6 D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ). A. 1 B. -5 C. 1或-5 D. -1或53.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ). A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+= 6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 . 7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . 8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.四、点到直线的距离及两平行线距离【知识要点】1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A BA B++-==++.【经典例题】例1、求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.例2、在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.例3、求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3.例4、求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程. .【经典练习】1.点(0,5)到直线y =2x 的距离是( ).A. 52B. 5C. 32D. 522.动点P 在直线40x y +-=上,O 为原点,则OP 的最小值为( ).A.10 B. 22 C. 6 D. 23.(03年全国卷)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a =( ). A .2 B .-2C .21-D .21+4.两平行直线51230102450x y x y ++=++=与间的距离是( ).A.213 B. 113C. 126D. 5265.直线l 过点P (1,2),且M (2,3),N (4,-5)到l 的距离相等,则直线l 的方程是( ).A. 4x+y -6=0B. x +4y -6=0C. 2x +3y -7=0或x +4y -6=0D. 3x +2y -7=0或4x+y -6=0 6.两平行直线2y x =和25y x =+间的距离是 .7.与直线l :51260x y -+=平行且到l 的距离为2的直线的方程为 .8.(1)已知点A (a ,6)到直线3x -4y =2的距离d =4,求a 的值.(2)在直线30x y +=求一点P , 使它到原点的距离与到直线320x y +-=的距离相等.五、直线与方程复习【知识要点】理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;能根据两条直线的斜率判定平行或垂直;握直线方程的几种形式(点斜式、两点式及一般式);能用解方程组的方法求两直线的交点坐标;掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.【经典例题】例1、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线PA 的方程为10x y -+=,则直线PB 的方程是( ).A.240x y --=B. 210x y --= 2C.50x y +-=D.270x y +-=例2、一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,求该直线方程.例3、光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),求BC 所在直线的方程.【经典练习】1. 在x 轴和y 轴上的截距分别为-2、3的直线方程是( ). A. 2360x y --= B. 3260x y --=C. 3260x y -+=D. 2360x y -+=2.若直线0Ax By C ++=通过第二、三、四象限,则系数A 、B 、C 需满足条件( ). A. A 、B 、C 同号 B. AC <0,BC <0C. C =0,AB <0D. A =0,BC <03. 到两坐标轴距离相等的点的轨迹方程是( ). A. x -y =0B. x +y =0C. |x |-y =0D. |x |-|y |=04.下列四种说法中的正确的是( ).A. 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B. 经过任意两个不同点111222(,),(,)P x y P x y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示C. 不经过原点的直线都可以用方程1x ya b+=表示 D. 经过定点A (0,b )的直线都可以用方程y =kx +b 表示5.已知点(0,1)P -,点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是( ).A .(-2,1)B .(2,1)C .(2,3)D .(-2,-1) 6.已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 . 7.点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是 . 8.求经过直线772400x y x y +-=-=和的交点,且与原点距离为125的直线方程.9.已知点A 的坐标为(4,4)-,直线l 的方程为3x +y -2=0,求:(1)点A 关于直线l 的对称点A ′的坐标; (2)直线l 关于点A 的对称直线l '的方程.第24讲 §3.2.3 直线的一般式方程¤学习目标:根据确定直线位置的几何要素,探索并掌握直线方程的一般式,体会一般式与直线其它方程形式之间的关系.¤知识要点:1. 一般式(general form ):0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠. 如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. ¤例题精讲:【例1】已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .解:(1)12l l ⊥时,12120A A B B +=,则110m m ⨯+⨯=,解得m =0.(2)12//l l 时,12211m m m m--=≠--, 解得m =1. 【例2】(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程; (2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程. 解:(1)由题意得所求平行直线方程4(3)(2)0x y -+-=,化为一般式4140x y +-=. (2) 由题意得所求垂直直线方程(3)2(0)0x y ---=,化为一般式230x y --=.【例3】已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.分析:由两直线平行,所以斜率相等且为34-,再由点斜式求出所求直线的方程. 解:直线l:3x +4y -12=0的斜率为34-, ∵ 所求直线与已知直线平行, ∴所求直线的斜率为34-, 又由于所求直线过点(-1,3),所以,所求直线的方程为:33(1)4y x -=-+,即3490x y +-=.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式00()()0A x x B y y -+-=而直接写出方程,即3(1)4(3)0x y ++-=,再化简而得.【例4】直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.分析:由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征. 解:(1)当A ≠0,B ≠0,直线与两条坐标轴都相交. (2)当A ≠0,B =0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线. 点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式.第24练 §3.2.3 直线的一般式方程※基础达标1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12abD .12||ab 4.(2000京皖春)直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ).A. 相交不垂直B. 垂直C. 平行D. 重合 5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = .※能力提高8.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴;(3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.※探究创新10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得: (1)l 1和l 2相交;(2)l 1⊥l 2;(3)l 1//l 2;(4)l 1和l 2重合.第25讲 §3.3.1 两条直线的交点坐标¤学习目标:进一步掌握两条直线的位置关系,能够根据方程判断两直线的位置关系,理解两直线的交点与方程的解之间的关系,能用解方程组的方法求两直线的交点坐标.¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.¤例题精讲:【例1】判断下列各对直线的位置关系. 如果相交,求出交点坐标.(1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.解:(1)解方程组231003420x y x y -+=⎧⎨+-=⎩, 得22x y =-⎧⎨=⎩.所以,l 1与l 2相交,交点是(-2,2).(2)解方程组12nx y n ny x n-=-⎧⎨-=⎩,消y 得 22(1)n x n n -=+.当1n =时,方程组无解,所以两直线无公共点,1l //2l .当1n =-时,方程组无数解,所以两直线有无数个公共点,l 1与l 2重合. 当1n ≠且1n ≠-,方程组有惟一解,得到1n x n =-,211n y n -=-, l 1与l 2相交. ∴当1n =时,1l //2l ;当1n =-时,l 1与l 2重合;当1n ≠且1n ≠-,l 1与l 2相交,交点是21(,)11n n n n ---. 【例2】求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.解:设所求直线的方程为28(21x y x y λ+-+-+=,整理为(2)(12)x y λλλ++-+-=.∵ 平行于直线4370x y --=, ∴ (2)(3)(12)40λλ+⨯---⨯=,解得2λ=. 则所求直线方程为4360x y --=.【例3】已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限. 解:应用过两直线交点的直线系方程,将方程整理为(3)(21)0a x y x y -+-+-=.对任意实数a 恒过直线30x y -=与210x y -+=的交点为(15,35),∴ 直线系恒过第一象限内的定点为(15,35).所以,无论a 为何值时直线总经过第一象限.点评:化为111222()()0A x B y C A x B y C λ+++++=后,解方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩所得到的解,为何就是直线恒过的定点坐标?实质就是方程组的解能使方程成立,即点在直线上.【例4】若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.解:如图,直线2x +3y -6=0过点A (3,0),B (0,2),直线l :y =kx 3-必过点(0,-3).当直线l 过A 点时,两直线的交点在x 轴;当直线l 绕C 点逆时针(由位置AC 到位置BC )旋转时,交点在第一象限. 根据303033AC k --==-,得到直线l 的斜率k >33. ∴倾斜角范围为(30,90)︒︒. 点评:此解法利用数形结合的思想,结合平面解析几何中直线的斜率公式,抓住直线的变化情况,迅速、准确的求得结果. 也可以利用方程组的思想,由点在某个象限时坐标的符号特征,列出不等式而求.第25练 §3.3.1 两条直线的交点坐标※基础达标1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ).A. 平行B. 相交C. 垂直D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ).A. 1B. -1C. 2D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . ※能力提高8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.※探究创新10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.第26讲 §3.3.2 两点间的距离¤学习目标:探索并掌握两点间的距离公式. 初步了解解析法证明,初步了解由特殊到一般,再由一般到特殊的思想与“数”和“形”结合转化思想.¤知识要点:1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.¤例题精讲:【例1】在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.解:∵ 点P 在直线20x y -=上,∴ 可设(,2)P a a , 根据两点的距离公式得22222(5)(28)5,542640PM a a a a =-+-=-+=即,解得3225a a ==或,∴3264(2,4)(,)55P 或. ∴ 直线PM 的方程为8585643248258555y x y x ----==----或, 即4340247640x y x y -+=--=或.【例2】直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.解:找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点. 设'(,)A a b , 则12144124022b a a b +⎧⨯=-⎪⎪-⎨+-⎪⨯--=⎪⎩,解得01a b =⎧⎨=⎩, 所以线段22|'|(41)(30)32A B =-+-=. 【例3】已知AO 是△ABC 中BC 边的中线,证明|AB |2+|AC |2=2(|AO |2+|OC |2). 解:以O 为坐标原点,BC 为x 轴,BC 的中垂线为y 轴,建立如图所示坐标系xOy . 设点A (a ,b)、B (-c ,0)、C (c ,0),由两点间距离公式得:|AB |=22()a c b ++,|AC |=22()a c b -+,|AO |=22a b +, |OC |=c .∴ |AB |2+|AC |2=2222()a b c ++, |AO |2+|OC |2=222a b c ++.∴ |AB |2+|AC |2=2(|AO |2+|OC |2).点评:此解体现了解析法的思路. 先建立适当的直角坐标系,将△ABC 的顶点用坐标表示出来,再利用解析几何中的“平面内两点间的距离公式”计算四条线段长,即四个距离,从而完成证明. 还可以作如下推广:平行四边形的性质:平行四边形中,两条对角线的平方和,等于其四边的平方和.三角形的中线长公式:△ABC 的三边长为a 、b 、c ,则边c 上的中线长为2221222a b c +-. y xB (-c ,0) A (a ,b )C (c ,0) O【例4】已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -. 解:由|()()|f a f b -=22|11|a b +-+,在平面直角坐标系xoy 中,取两点(1,),(1,)A a B b ,则2||1,OA a =+ 2||1O B b =+, ||||AB a b =-.△O AB 中,||||||||OA OB AB -<,∴ 22|11|a b +-+<||a b -. 故原不等式成立.点评:此证法为数形结合法,由22a b +联想到平面内点到原点的距离公式,构造两点与三角形,将要证明的不等式转化为三角形中三边的不等关系.第26练 §3.3.2 两点间的距离※基础达标1.已知(2,1),(2,5)A B --,则|AB |等于( ).A. 4B. 10C. 6D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ).A. 1B. -5C. 1或-5D. -1或5 3.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ).A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+=6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 .7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . ※能力提高8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.oxA (1,a )B (1,b )y※探究创新10.燕隼(sun )和红隼是同属于隼形目隼科的鸟类.它们的体形大小如鸽,形略似燕,身体的形态特征比较相似.红隼的体形比燕隼略大.通过抽样测量已知燕隼的平均体长约为31厘米,平均翅长约为27厘米;红隼的平均体长约为35厘米,平均翅长约为25厘米. 近日在某地发现了两只形似燕隼或红隼的鸟. 经测量,知道这两只鸟的体长和翅长分别为A (32.65厘米,25.2厘米),B (33.4厘米,26.9厘米). 你能否设计出一种近似的方法,利用这些数据判断这两只鸟是燕隼还是红隼?第27讲 §3.3.3 点到直线的距离及两平行线距离¤学习目标:探索并掌握点到直线的距离公式,会求两条平行直线间的距离. 体会数形结合、转化的数学思想,培养研究探索的能力.¤知识要点:1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B y C ++=,即002A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A B A B++-==++. ¤例题精讲:【例1】求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.解:设所求直线l 的方程为310(3)0y x x y λ+-+-=, 整理得(31)(3)100x y λλ++--=.由点到直线的距离公式可知,22101(31)(3)d λλ==++-, 解得3λ=±. 代入所设,得到直线l 的方程为14350x x y =-+=或.【例2】在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.解:直线方程化为450x y --=. 设2(,4)P a a , 则点P 到直线的距离为22222|445||4(1/2)4|4(1/2)417174(1)a a a a d ------+===+-.高一数学21 当12a =时,点1(,1)2P 到直线的距离最短,最短距离为41717. 【例3】求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3. 解:由点线距离公式,得22|(2)4(1)(1)(64)|(2)(1)m m m d m m +-+--+=+++ =22|3|(2)(1)m m m ++++. 假设3d =,得到222(3)9[(2)(1)]m m m +=+++,整理得21748360m m ++=.∵ 248417361400∆=-⨯⨯=-<, ∴ 21748360m m ++=无实根.∴ 3d ≠,即直线L 与点(4,1)P -的距离不等于3.点评:此解妙在反证法思路的运用. 先由点线距离公式求出距离,然后从“距离不等于3”的反面出发,假设距离是3求m ,但求解的结果是m 无解. 从而假设不成立,即距离不等于3.另解:把直线L :(2)(1)(64)0m x m y m +-+-+=按参数m 整理,得(4)260x y m x y --+--=.由{40260x y x y --=--=,解得{22x y ==-. 所以直线L 恒过定点(2,2)Q -. 点P 到直线L 取最大距离时, PQ ⊥L ,即最大距离是PQ =22(24)(21)-+-+=5. ∵ 5<3, ∴直线L 与点(4,1)P -的距离不等于3.点评:此解妙在运用直线系111222()()0A x B y C A x B y C λ+++++=恒过一个定点的知识,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 由运动与变化观点,当直线PQ ⊥L 时,点线距离为最大.【例4】求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程.解:直线1l 的方程化为4620x y +-=. 设正中平行直线的方程为460x y C ++=, 则2222|2||5|4646C C ----=++,即|2||5|C C +=+,解得72C =-. 所以正中平行直线方程为74602x y +-=. 点评:先化一次项系数为相同,巧设正中平行直线方程,利用两组平行线间距离相等而求.结论:两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=的正中平行直线方程为12()/20Ax By C C +++=。
直线与方程知识点归纳

直线与方程知识点归纳直线与方程是高中数学中的一个重要内容,既是代数学又是几何学的一部分。
直线是平面几何的基本概念,而方程是数学中的基本工具。
在直线与方程的学习中,我们需要掌握直线的性质、方程的基本概念及解法,以及直线与方程之间的相互关系。
下面将详细介绍这些知识点。
一、直线的性质1.直线的定义:直线是由一点和一个方向确定的无限延伸的图形。
2.直线的特点:直线上的任意两点都可以确定这条直线;直线上的任意两点可以确定直线上的向量,该向量表示了直线的方向。
3.直线与坐标系:平面直角坐标系中,直线可以用方程来表示,方程形式多样,包括一般式、点斜式、斜截式和截距式等。
4.直线的倾斜性:斜率是刻画直线倾斜程度的重要指标,表示直线上一点到另一点的纵向距离与横向距离之比,不同的斜率代表不同的倾斜情况。
5.直线的截距:截距是直线与坐标轴的交点距离原点的距离,直线与x轴相交的点称为x截距,与y轴相交的点称为y截距。
二、方程的基本概念及解法1.方程的定义:方程是已知数与未知数之间相等关系的陈述,它包含了等号、数和运算符号。
2.方程的分类:方程可分为代数方程和几何方程。
代数方程是指包含有变量的代数式,并且通过变量能满足等号关系;几何方程是指与几何概念有关的方程。
3. 一元一次方程的解法:对于形如ax+b=0的方程,可以利用加法、减法、乘法、除法等基本运算,将未知数从方程中分离出来,从而求得方程的解。
4. 二次方程的解法:对于形如ax^2+bx+c=0的方程,可以利用求根公式和配方法等解法,求得方程的解。
5.系数与根的关系:通过分析方程的系数与方程根之间的关系,可以确定方程的特征,包括判别式和根与系数之间的关系等。
6.方程的实根与虚根:根据判别式的值,可以判断方程的根是实数还是虚数,并进一步获取方程的解集。
7.方程的应用:方程是数学在现实问题中的重要应用工具,在物理、经济、工程等领域中都有广泛的应用。
三、直线与方程的相互关系2.直线方程的求法:通过已知直线上的两个点可以得到直线的斜率,从而得到直线的方程。
直线与方程知识点总结

直线与方程知识点总结一、直线的表示1、比例表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线上任意的一点P(x,y)都满足比例关系:$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$2、斜截式:也叫斜率表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线可用如下斜率表达式:$$y-y_1=k(x-x_1)$$其中,k为斜率,可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$k=\frac{y_2-y_1}{x_2-x_1}$$3、标准方程:直线可以用标准方程表达:$$Ax+By+C=0$$其中,A、B、C可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$A=y_2-y_1,B=x_1-x_2,C=x_2y_1-x_1y_2$$二、方程的表示1、一元一次方程:一元一次方程可以按如下形式表示:$$Ax+B=0$$其中,A、B为常数,A≠0,解析解可以表示为:$$x=-\frac{B}{A}$$2、一元二次方程:一元二次方程可以按如下形式表示:$$Ax^2+Bx+C=0$$其中,A、B、C为常数,A≠0,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$3、二元一次方程:二元一次方程可以按如下形式表示:$$Ax+By+C=0$$其中,A、B、C为常数,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$$$y=\frac{-A\pm\sqrt{B^2-4AC}}{2B}$$4、同次及非同次线性方程组:。
直线与方程知识点

直线与方程知识点直线是数学中的基本概念之一,它在几何学、代数学和物理学中都有广泛的应用。
本文将介绍直线的定义、特征和常见的方程形式,以及如何用这些知识点解决与直线相关的问题。
一、直线的定义与特征直线是由无数个无限接近的点组成的。
这些点在直线上是无序排列的,并且在直线的两个方向上都是无限延伸的。
直线没有宽度和厚度,只有长度。
直线具有以下特征:1.无限延伸性:直线在两个方向上都是无限延伸的,没有终点。
2.点的共线性:直线上的任意两个点都是共线的,即它们可以用一条直线连接起来。
3.独一性:通过直线上的任意两个点,只有一条直线可以过去。
二、直线的方程形式直线的方程是用来描述直线的数学表达式。
常见的直线方程形式有点斜式和截距式。
1.点斜式方程:点斜式方程是通过直线上的一个已知点和直线的斜率来表示直线的方程。
假设已知直线上的一个点为P(x1,y1),直线的斜率为k,那么点斜式方程为y - y1 = k(x - x1)。
2.截距式方程:截距式方程是通过直线在坐标系的截距来表示直线的方程。
截距是指直线与坐标轴的交点。
假设直线与x轴的交点为A(a,0),与y轴的交点为B(0,b),那么截距式方程为x/a + y/b = 1。
三、如何确定直线的方程要确定直线的方程,我们需要已知直线上的一个点和直线的斜率或两个截距点。
1.已知斜率和已知点:如果已知直线上的一个点P(x1,y1)和直线的斜率k,可以使用点斜式方程y - y1 = k(x - x1)来确定直线的方程。
2.已知两个截距点:如果已知直线与x轴的交点A(a,0)和与y轴的交点B(0,b),可以使用截距式方程x/a + y/b = 1来确定直线的方程。
四、直线的性质与应用直线在几何学和代数学中有许多重要的性质和应用。
下面是几个常见的例子:1.直线的斜率:斜率是直线的一个重要属性,表示直线的倾斜程度。
斜率可以通过直线上任意两点的坐标计算得到。
如果两点的坐标分别为(x1,y1)和(x2,y2),那么斜率k = (y2 - y1) / (x2 - x1)。
高中数学必修2知识点总结:第三章_直线与方程2

高中数学必修2知识点总结:第三章_直线与方程2直线与方程3.1直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示, k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. .....4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k = y2-y1/x2-x1 3.1.2 两条直线的平行与垂直1、两条直线的平行① 若两条直线的斜率都存在,则:k1 = k2 = L1∥L2或者..L1与L2重合② 两条不重合直线平行的判定条件:⑴ 两条直线的斜率都不存在;⑵ 两条直线的斜率存在,且k1 = k2...(若已知两条直线的斜率存在且平行,则应k1 = k2 且纵截距不相等;若已知两条直线的斜率不存在且平行,则应横截距不相等)2、两条直线垂直①若两条直线的斜率都存在,则:k1 k2 = - 1 = L1 ⊥ L2 .....②两条直线垂直的判定条件:⑴ 两条直线:一条斜率不存在,另外一条k =0 ;⑵ 两条直线的斜率存在:k1 k2 = - 1 3、利用系数来判断平行与垂直★ 已知L1: A1x+B1y+C1=0 , L2 : A2x+B2y+C2=0 那么:① A1B2-A2B1=0两条直线平行或重合....两条直线相交③ A1A2 + B1B2 = 0..② A1B2-A2B1 ≠0两条直线垂直..★ 如果已知两条直线的一般式方程,则可以通过系数关系求解相应的参数的值。
高中数学必修二直线与直线方程题型归纳总结

高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
高中数学必修二第三章知识点总结

高中数学必修二第三章知识点总结一、直线与方程1.直线的倾斜角定义: x 轴正向 与直线 向上方向 之间所成的角叫直线的倾斜角。
特别地,当直线与 x 轴平行或重合时 ,我们规定它的倾斜角为 0 度。
因此,倾斜角的取值范围是0°≤α< 180°2.直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常 用 k 表示。
即 k tan 。
斜率反映直线与轴的倾斜程度。
当0 ,90 时, k 0;当90 ,180 时, k 0 ; 当90 时, k 不存在。
②过两点的直线的斜率公式:ky 2 y 1(x 1 x 2 )x 2x 1注意下面四点: (1) 当 x 1 x 2 时,公式右边无意义,直线的斜率不存在,倾斜角为 90°;(2) k 与 P 1、P 2 的顺序无关; (3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4) 求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3.直线方程①点斜式: yy 1k (x x 1 ) 直线斜率 k ,且过点 x , y11注意: 当直线的斜率为 0°时, k=0,直线的方程是 y=y 1。
l当直线的斜率为 90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因上每一点的横坐标都等于 x 1,所以它的方程是 x x= 1。
②斜截式: y kx b ,直线斜率为 k ,直线在 y 轴上的截距为 b③两点式:y y 1 x x 1 ( x 1x 2 , y 1 y 2 )直线两点x , y , x 2 , y 2y 2 y 1x 2 x 111④截矩式:xy 1 a b其中直线 l 与 x 轴交于点 ( a,0) ,与 y 轴交于点 (0, b) ,即 l 与 x 轴、 y 轴的 截距 分别为 a,b 。
⑤一般式: AxByC 0 (A , B 不全为 0)12注意: ○ 各式的适用范围○特殊的方程如:平行于 x 轴的直线: y b ( b 为常数);平行于 y 轴的直线: x a ( a 为常数);4.直线系方程:即具有某一共同性质的直线(1)平行直线系平行于已知直线A 0 xB 0 yC 00( A 0,B 0 是不全为0 的常数)的直线系:A 0 xB 0 yC 0 (C 为常数)(2)垂直直线系垂直于已知直线 A 0 x B 0 y C 0 0 ( A 0 , B 0 是不全为 0 的常数)的直线系:B 0 x-A 0 y+m=0 (m为常数)(3)过定点的直线系(ⅰ)斜率为k 的直线系: yy 0k xx 0 ,直线过定点 x 0 , y 0 ;(ⅱ)过两条直线 l 1 : A 1x B 1 y C 1 0 ,l 2 : A 2 x B 2 y C 2 0 的交点的直线系方程为A 1xB 1 yC 1A 2 xB 2 yC 20(为参数),其中直线 l 2 不在直线系中。
直线与方程知识点总结

直线与方程 知识点 总结一、概念明白得:一、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。
二、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 一、直线的五个方程:①点向式:)0(11≠-=-uv vy y u x x 其中,②点向式:0)()(11=-+-y y b x x a③点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ④斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;⑤两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中,将已知两点),(),,(2211y x y x 直接带入即可; ⑥截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑦一样式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会常经常使用到直线的“一样式方程”。
二、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可(可简记为“方程组思想”)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:
直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:(
)直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
⑤一般式:(A,B不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于x轴的直线:
(b为常数);平行于y轴的直线:
(a为常数);
(4)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
(5)两直线平行与垂直
当,时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则
(8)点到直线距离公式:一点到直线的距离
(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。