第七章 傅里叶变换 之一

合集下载

傅里叶变换概念及公式推导

傅里叶变换概念及公式推导

傅里叶变换概念及公式推导傅里叶变换是一种数学工具,用于将一个函数从时域(时间域)转换为频域。

傅里叶变换的基本概念是,任何一个周期性函数都可以表示为一系列不同频率的正弦和余弦函数的叠加。

通过傅里叶变换,我们可以将原始信号分解成许多不同频率的正弦和余弦波。

F(ω) = ∫[−∞,+∞] f(t) e^(−iωt) dt其中,F(ω)表示频域中的函数,与f(t)相对应。

为了推导傅里叶变换的公式,我们首先将复数e^(−iωt)展开为正弦和余弦函数的形式:e^(−iωt) = cos(ωt) − i sin(ωt)然后将这个展开式代入变换公式中,得到:F(ω) = ∫[−∞,+∞] f(t) (cos(ωt) − i sin(ωt)) dt为了求解这个积分,我们可以利用欧拉公式,将复数表示为以指数函数的形式:F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(t) sin(ωt) dt将第一个积分的积分变量由t替换为−t,得到:F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(−t) sin(ωt) dt由于f(t)是一个偶函数(即f(−t)=f(t))F(ω) = ∫[−∞,+∞] f(t) e^(iωt) dt − i ∫[−∞,+∞] f(t)sin(ωt) dt记F(ω)的实部为Re[F(ω)],虚部为Im[F(ω)],我们可以将公式进一步简化为:Re[F(ω)] = ∫[−∞,+∞] f(t) cos(ωt) dtIm[F(ω)] = − ∫[−∞,+∞] f(t) sin(ωt) dt这就是傅里叶变换的实部和虚部的计算公式,也称为余弦分量和正弦分量的公式。

通过计算这两个积分,我们可以得到函数在不同频率上的分量。

这些频率分量相当于原始函数在频域中的表现,有助于我们理解原始函数的频率特征。

要注意的是,以上推导过程是针对连续时间信号的傅里叶变换。

傅里叶变换及其应用

傅里叶变换及其应用

傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种重要的数学工具和数学分析方法,广泛应用于信号处理、图像处理、通信系统、量子力学等领域。

通过将一个函数表示成一组正弦和余弦函数的叠加,傅里叶变换能够将时域中的信号转化为频域中的信号,从而使得复杂的信号处理问题变得更加简单。

本文将介绍傅里叶变换的原理、性质以及其在实际应用中的几个重要方面。

一、傅里叶变换的原理和基本定义傅里叶变换是将一个函数f(x)表示成指数函数的叠加的过程。

设f(x)在时域上是以周期T为基本周期的连续函数,那么其傅里叶变换F(k)在频域上将成为以1/T为基本周期的连续函数。

傅里叶变换的基本定义如下:F(k) = ∫[f(x) * e^(-i2πkx/T)]dx其中,i是虚数单位,k是频率变量。

通过这样的变换,我们可以将时域上的函数转换为频域上的函数,从而可以更加清晰地分析信号的频谱特征。

二、傅里叶变换的性质傅里叶变换具有一些重要的性质,这些性质使得傅里叶变换成为一种强大的工具。

1. 线性性质:傅里叶变换具有线性性质,即若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则对应线性组合的傅里叶变换为aF(k) +bG(k),其中a和b为常数。

2. 时移性质:若f(x)的傅里叶变换为F(k),则f(x - a)的傅里叶变换为e^(-i2πak/T)F(k),即时域上的平移将对频域上的函数进行相位调制。

3. 频移性质:若f(x)的傅里叶变换为F(k),则e^(i2πax/T)f(x)的傅里叶变换为F(k - a),即频域上的平移将对时域上的函数进行相位调制。

4. 尺度变换性质:若f(x)的傅里叶变换为F(k),则f(ax)的傅里叶变换为1/|a|F(k/a),即函数在时域上的尺度变换会对频域上的函数进行缩放。

5. 卷积定理:若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则f(x) * g(x)的傅里叶变换为F(k)G(k),即在频域上的乘积等于时域上的卷积。

傅里叶变换及其应用

傅里叶变换及其应用

傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种将一个函数(或信号)从时域(时间域)转换为频域的数学技术。

它是由法国数学家傅里叶(Jean-Baptiste Joseph Fourier)提出的,因此得名。

傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用,并且为这些领域的发展做出了重大贡献。

一、傅里叶变换的定义和性质傅里叶变换可以将一个连续函数表示为正弦和余弦的加权和,它的数学公式如下:F(ω) = ∫[f(t) * e^(-iωt)] dt其中,F(ω)表示频域上的函数,f(t)表示时域上的函数,e^(-iωt)是复指数函数。

傅里叶变换有一些重要的性质,如线性性、时移性、频移性、对称性等。

这些性质使得傅里叶变换成为一种非常有用的工具,在信号处理中广泛应用。

二、傅里叶级数与傅里叶变换的关系傅里叶级数是傅里叶变换的一种特殊形式,主要用于分析周期性信号。

傅里叶级数可以将一个周期为T的函数展开成正弦和余弦函数的和。

而傅里叶变换则适用于非周期性信号,它可以将一个非周期性函数变换为连续的频谱。

傅里叶级数和傅里叶变换之间存在着密切的关系,它们之间可以相互转换。

傅里叶级数展开的周期函数可以通过将周期延拓到无穷大,得到其对应的傅里叶变换。

而傅里叶变换可以通过将频谱周期化,得到其对应的傅里叶级数。

三、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中有着重要的应用。

通过将信号从时域转换到频域,我们可以分析信号的频谱特性,如频率成分、幅度、相位等。

这对于音频、图像、视频等信号的处理非常有帮助,例如音频信号的降噪、图像的去噪、视频的压缩等。

2. 图像处理傅里叶变换在图像处理中也有广泛的应用。

通过对图像进行傅里叶变换,可以将图像从时域转换为频域,进而进行频域滤波和频域增强等操作。

这些操作可以实现图像的模糊处理、边缘检测、纹理分析等。

3. 通信在通信领域中,傅里叶变换是无线通信、调制解调、信道估计等技术的基础。

傅氏变换

傅氏变换


1 2



( )e
j t
d
1 2


e
j t

j
d

1
2
1 2


( )e
j t
d
1 2


sin t


d


1



sin t
0

d
28
因为

sin
0

d

2
,则
, 2 sin t 0 d 0, , 2
研究机械系统受冲击力作用后的运动情况等.
研究此类问题就会产生我们要介绍的单位脉
冲函数.
15
在原来电流为零的电路中, 某一瞬时(设为 t=0)进入一单位电量的脉冲,现在要确定电路 上的电流i(t). 以q(t)表示上述电路中的电 量函数, 则 0, t 0;
由于电流强度是电荷函数对时间的变化率, 即 d q (t ) q(t t ) q (t )
f (t )
1 2




1 2



e jw t d 1 c o s d
1

1 2


s in w w
1
jw t d e 1

1



s in w w
jw t e d
26
0, 例3 证明单位阶跃函数u (t ) 1 的傅氏变换为 1 j ( ).
t 0; t 0

傅里叶变换知识点总结

傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。

一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。

它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。

2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。

(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。

(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。

二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。

对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。

2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。

(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。

(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。

3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。

三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。

2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。

傅里叶变换

傅里叶变换

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。

理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。

我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。

傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。

这都是一个信号的不同表示形式。

它的公式会用就可以,当然把证明看懂了更好。

对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。

幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。

傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。

也就是说,用无数的正弦波,可以合成任何你所需要的信号。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。

它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。

这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。

在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。

这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。

傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。

傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。

这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。

这个积分的结果就是信号在频域上的表示。

傅里叶变换的一个重要应用是信号滤波。

在信号处理中,我们经常需要去除一些噪声或者干扰信号。

这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。

这个过程被称为频域滤波。

傅里叶变换还可以用于信号压缩。

在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。

这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。

这个过程被称为频域压缩。

傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。

傅里叶变换课件

傅里叶变换课件

快速傅里叶变换的算法原理
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其基本思想是将DFT运算分解为一系列简单 的复数乘法和加法运算。
FFT算法可以分为基于分治策略的递归算法和基于蝶形运算的迭代算法。其中,递归算法将DFT运算 分解为两个子序列的DFT运算,迭代算法则通过一系列蝶形运算逐步逼近DFT的结果。
,实现图像的压缩。
解压缩
通过插值或重构算法,可以恢复 压缩后的图像,使其具有原始的
质量和细节。
压缩与解压缩算法
常见的压缩与解压缩算法包括 JPEG、PNG等。这些算法在压 缩和解压缩过程中都利用了傅里
叶变换。
06
傅里叶变换在通信系统中的应用
调制与解调技术
调制技术
利用傅里叶变换对信号进行调制,将 低频信号转换为高频信号,以便在信 道中传输。
在频域中,可以使用各种滤波器 对图像进行滤波操作,以减少噪 声、平滑图像或突出特定频率的
细节。
边缘增强
通过在频域中增强高频成分,可以 突出图像的边缘信息,使图像更加 清晰。
对比度增强
通过调整频域中的频率系数,可以 改变图像的对比度,使图像更加鲜 明。
图像的压缩与解压缩
压缩
通过减少图像的频域表示中的频 率系数,可以减少图像的数据量
快速傅里叶变换的应用
• FFT在信号处理、图像处理、语音处理等领域有着广泛的应用。例如,在信号处理中,可以通过FFT将时域信号转换为频域 信号,从而对信号进行频谱分析、滤波等操作。在图像处理中,可以通过FFT将图像从空间域转换到频域,从而对图像进行 去噪、压缩等操作。在语音处理中,可以通过FFT对语音信号进行频谱分析,从而提取语音特征、进行语音合成等操作。
分析、系统优化等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T 2 T 2
T 2 T 2
sin nwt cos mwt d t 0 sin nwt sin mwt d t 0
T 2 T 2
(n, m 1,2,3, , n m),
T 2
cos nwt cos mwt d t 0 (n, m 1,2,3, , n m),
而{1, coswt, sinwt, ..., cos nwt, sin nwt, ...}的函 数的长度计算如下:
2
T 2

T 2
bm T sin mwt cos nwt d t
m 1
2
T 2
T an T cos nwt d t an 2 2 T 2 2 即 an T fT (t ) cos nwt d t T -2
2
ห้องสมุดไป่ตู้T 2
同理, 为求bn, 计算[fT(t), sin nwt], 即


Sa函数介绍-内插函数
Sa函数定义为 sin x Sa ( x) , x 严格讲函数在x 0处是无定义的, 但是因为 sin x lim 1 x 0 x 所以定义Sa(0) 1, 用不严格的形式就写作 sin x 1, 则函数在整个实轴连续 x x0
而在工程上所应用的函数, 尤其是物理量的变 化函数, 全部满足狄氏条件. 实际上不连续函 数都是严格上讲不存在的, 但经常用不连续函 数来近似一些函数, 使得思维简单一些.
在区间[-T/2,T/2]上满足狄氏条件的函数的全 体也构成一个集合, 这个集合在通常的函数加 法和数乘运算上也构成一个线性空间V, 此空 间的向量就是函数, 线性空间的一切理论在此 空间上仍然成立. 更进一步地也可以在此线性 空间V上定义内积运算, 这样就可以建立元素 (即函数)的长度(范数), 及函数间角度, 及正交 的概念. 两个函数f和g的内积定义为:
2
T 2
因此, 任何满足狄氏条件的周期函数fT(t), 可表 示为三角函数形式的傅利叶级数如下:
a0 fT (t ) (an cos nwt bn sin nwt ) (1.1) 2 n1
为求出a0 , 计算[ fT ,1], 即

T 2
T 2
fT ( t )d t
T 2
T T a0 a0 2 2 T d t (an T cos nw t d t bn T sin nw t d t ) T 2 2 2 2 2 n 1
[ f , g ] T f (t ) g (t ) d t
2
T 2
一个函数f(t)的长度为
|| f || [ f , f ]

T 2
T 2
f (t ) d t
2
而施瓦兹不等式成立 : [ f , g] f g 即 T f (t ) g (t ) d t
2 T 2 T 2 T 2 T 2
T p j( n - m ) -T2 e e d t 2p -p e d 0 2p t 2p d t T 其中 wt , 则d ,dt d T T 2p
T 2
j nwt - j mwt
这是因为
pe
-
p
j( n - m )
1 d e j( n - m ) j( n - m ) -p 1 j( n - m )p - j( n - m )p [e -e ] j( n - m ) 1 - j( n - m )p j 2 ( n - m )p e [e - 1] 0 j( n - m ) cos( n - m ) j sin( n - m ) d

T 2 T 2
-
fT ( t )sin nw t d t
T 2
T a0 T sin nw t d t am 2T cos mw t sin nw t d t 2 2 2 m 1
bm T sin mw t sin nw t d t
m 1
2
n
T 2
bn T sin nw t d t
傅里叶变换
之一
傅里叶(Fourier)级数展开
傅里叶(Jean Baptiste Joseph Fourier)
傅里叶(Jean Baptiste Joseph Fourier,1768~1830), 法国数学家、物理学家。 主要贡献是在研究热的传播 时创立了一套数学理论。
1807年向巴黎科学院呈交《热的传播》论文,推导出著名 的热传导方程 ,并在求解该方程时发现解函数可以由三 角函数构成的级数形式表示,从而提出任一数都可以展成 三角函数的无穷级数。傅立叶级数(即三角级数)、傅立 叶分析等理论均由此创始。
-p
p
p
cos(n - m) d sin(n - m) d 0(n m)
-p -p
p
p
由此不难验证

T 2
T 2 T 2
cos nwt d t 0 sin nwt d t 0
(n 1,2,3, ), (n 1,2,3, ), (n, m 1,2,3, ),
1. 连续或只有有限个第一类间断点 2. 只有有限个极值点 这两个条件实际上就是要保证函数是可积函 数.
第一类间断点和第二类间断点的区别:
第二类间断点
第一类间断点
不满足狄氏条件的例子: f (t ) tg t
存在第二类间断点 1 f (t ) sin( ) t 在靠近0处存在着无限多个极值点.
傅里叶生平
1768年3月21日生于法国中部欧塞尔一个裁缝家庭,1830年5月16日 卒于巴黎。
9岁父母双亡,被当地教堂收养。
12岁由一主教送入地方军事学校读书。
17岁回乡教数学。
1794到巴黎,成为高等师范学校的首批学 员; 次年到巴黎综合工科学校执教。
傅里叶生平
1798年随拿破仑远征埃及时任军中文书和 埃及研究院秘书,

jwn t
1 jwnt - jwn T fT ( )e d e T n - - 2
T 2
例 定义方波函数为
1 | t | 1 f (t ) 0 | t | 1
如图所示:
f(t)
1
-1
o
1
t
现以f(t)为基础构造一周期为T的周期函数fT(t), 令T=4, 则
1801年回国后任伊泽尔省地方长官。 1817年由于对热传导理论的贡献当选为科 学院院士。 1822年任该院终身秘书,后又任法兰西学 院终身秘书和理工科大学校务委员会主席。
在工程计算中, 无论是电学还是力学, 经常要 和随时间而变的周期函数fT(t)打交道. 例如:
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表单 位时间振动的次数, 单位时间通常取秒, 即每秒重 复多少次, 单位是赫兹(Herz, 或Hz).
方波
吉布斯 现象 4个正弦波的逼近
100个正弦波的逼近
研究周期函数实际上只须研究其中的一个周 期内的情况即可, 通常研究在闭区间[-T/2,T/2] 内函数变化的情况.
并非理论上的所有周期函数都可以用傅里叶 级数逼近, 而是要满足狄利克雷(Dirichlet)条 件, 即在区间[-T/2,T/2]上
f 4 (t )
n -
f (t 4n),

2p 2p p np w , w n nw T 4 2 2
f4(t)
-1
T=4
1
3
t

1 T2 cn T fT ( t )e - jwn t dt T -2 1 2 1 1 - jwn t - jwn t f 4 ( t )e dt e dt T -2 T -1 1 1 1 - jwn t jwn - jwn e e -e -Tjwn Tjwn -1 2 sin wn 1 Sa (wn ) ( n 0, 1, 2,) T 4 T wn 2
最常用的一种周期函数是三角函数 fT(t)=Asin(wt+j) 其中w=2p/T
t 而Asin(wt+j)又可以看作是两个周期函数 sinwt和coswt的线性组合 Asin(wt+j)=asinwt+bcoswt
人们发现, 所有的工程中使用的周期函数都可 以用一系列的三角函数的线性组合来逼近.

而利用三角函数的指数形式可将级数表示为:
j - j
e e 由cos 2 fT ( t ) a0 2 a0 2
e -e ,sin - j 2
j
- j
得:
j nw t - j nw t e j nw t e - j nw t e -e an - j bn 2 2 n 1 an - j bn j nw t an j bn - j nw t e e 2 2 n 1
如令wn=nw (n=0,1,2,...)
a0 且令c0 , 2 an - jbn cn , n 1,2,3, 2 an jbn c- n , n 1,2,3, 2 fT (t ) c0 cn e
n 1

jw n t
c- n e
- jw n t
2
2
T 2
2 即 bn T fT ( t )sin nw t d t T -2
T bn 2
T 2
最后可得:
a0 fT (t ) (an cos mwt bn sin nwt ) (1.1) 2 n 1 T 2 2 其中 a0 T fT (t ) d t T -2 T 2 2 an T fT (t ) cos nwt d t (n 1,2, ) T -2 T 2 2 bn T fT (t ) sin nwt d t (n 1,2, ) T -2
相关文档
最新文档