高考知识点绝对值不等式
高考数学含绝对值的不等式的解法

三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。
不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。
下面将对高考数学中常见的不等式知识点进行详细介绍。
一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。
要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。
2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。
3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。
二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。
要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。
2. 计算抛物线的顶点坐标,即x₀=-b/2a。
3. 根据a的正负性确定抛物线的上升段或下降段。
4. 根据a的正负性确定不等式的解集。
三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。
要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。
2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。
高考数学含绝对值的不等式的解法

作业:
; 养生 hnq913dgk 先进技术。有一个日本老板想自己酿造啤酒,但是,德国人对啤酒酿造技术严格保密。日本老板到了德国后想尽了各种方法仍 旧无法进到啤酒厂内,实在没办法,他就天天到啤酒厂门口转悠,就发现这个啤酒厂的老板每天乘坐一辆黑色轿车进出工厂大 门。有一天,当德国老板的黑色轿车驶过来时,日本老板从工厂门口装成横过马路突然跌倒的样子,故意将自己的一条腿伸到 车轮下,结果腿被压断了。当时德国有一条法律,车祸肇事者要坐牢。这位德国老板为了不把车祸声张出去,便将日本老板送 进医院抢救,十分抱歉地说:‘很对不起,你客居异乡又伤了腿,今后打算怎么办呢?我该怎样补偿你呢?’这位日本老板从 容地说:‘没关系,等我的伤好了之后,你只要让我在你的工厂看大门,我就不追究你的责任了。’就这样,等腿好后他在那 家啤酒厂看了三年的大门,偷偷学习了三年的技术,将啤酒的生产流程、工艺配方等一一了解透彻后才回到日本。“三年后, 德国啤酒商发现日本人不再购买他的啤酒了,而且他们在东南亚的市场也在逐渐失去。一调查才知道是日本人抢了自己的生意, 当这位德国老板到日本拜访他的同行时,才发现抢走他生意的日本老板正是被自己的车压断了腿的‘看门人’。咱们且不谈日 本人利用苦肉计窃取啤酒技术机密是否合法,但是他的精神却是值得称道的。”“日本人就是精明。”张钢铁喝了口茶,感叹 道。“1970年你们仅凭着一股热情就跑到上海去学习啤酒酿造技术,精神也不比日本人差,甚至还比他强。”马启明借机夸赞 道,“70年,文化大革命还没有结束呢,你们一没技术设备,二没经验就办起了啤酒厂,真是了不起,太伟大了!”适当的时 候人是不会反感别人的表扬。“我们是小人物,哪里谈得上伟大,当时就是凭着一股子干革命的热情。”“小人物也能做出伟 大的事情!”马启明对花开啤酒厂职工有了一个新的认识。“从上海学习啤酒技术以后,最初,几个职工制作了现在看起来世 界上独一无二的小型酵母罐,底下大,上面小,就像个大坛子,给酵母罐加上麦汁和酵母,上面用盖子塞紧,结果到第三天时, 你猜,怎么着?”马启明疑惑地看着张钢铁,知道后面肯定还有戏剧性的故事,但张钢铁的话却戛然而止。马启明不知道到底 发生了什么,往前凑了一下,问:“怎么了?”张钢铁喝了一口水,顿了顿,大笑道:“你肯定想不到,第三天,‘蹦’地一 声盖子飞了,原来,大家都不知道发酵会产生那么多的气,把盖子压得紧紧的,盖子不飞才怪呢,还好,没有伤着人,哈哈 哈„„”“噗”地一声,马启明把嘴里的水全喷到地上了。“哈哈哈„„”一提到那段历史,办公室里的人都笑个不停。张钢 铁看了一下墙上的石英钟,笑着给大家说道:“好了,今天就讲到这,欲知后事
绝对值不等式的解法

高考必考!绝对值不等式的解法1.绝对值的定义(1)几何意义实数a 在数轴上所对应的点A 到原点O 的距离叫做数a 的绝对值,记作“|a|”。
(2)代数意义⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a 2.不等式的基本性质(1)对称性:如果b a >,那么a b <.(2)传递性:如果b a >且c b >,那么c a >.(3)同向可加性:如果b a >,那么c b c a +>+.(4)乘法单调性:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <.3.绝对值三角不等式(1)如果b a ,是实数,那么||b a +≤||||b a +(当且仅当ab ≥0时,“=”成立).(2)如果b a ,是实数,那么||||b a -≤||b a -≤||||b a +.(当且仅当左侧不等式中ab ≤0时,“=”成立;当且仅当右侧不等式中ab ≥0时,“=”成立).(3)如果c b a ,,是实数,那么||c a -≤||||c b b a -+-(当且仅当))((c b b a --≥0时,“=”成立).4.绝对值不等式的解法(1)a x ≤和a x ≥型该型不等式是解决其他绝对值不等式的基础,其他绝对值不等式的求解最终转化为该型不等式得解。
a x a a x <<-⇔≤a x a x ≥⇔≥或a x ≤(2)c b ax ≤+和c b ax ≥+型把b ax +看成一个整体X ,转化为a x ≤和a x ≥型去解。
【例】 解不等式312≤-x . 解:由312≤-x 得:3123≤-≤-x ,解得 21≤≤-x .所以原不等式的解集为}21|{≤≤-x x .(3)c b x a x ≤-+-和c b x a x ≥-+-型(★考点)该型绝对值不等式的解法概括为以下三种:①数形结合思想;②零点分段讨论法;③函数与方程思想。
绝对值不等式(高考版2)

秒杀秘籍:()bx naxmxf-+-=绝对值不等式(二)例1:解不等式;例3:(2016•池州二模)设函数f (x )=|2x ﹣1|+|x ﹣3|.(Ⅰ)求函数f (x )的最小值;(Ⅱ)若任意x ,y ∈R ,不等式f (x )>m (|y+1|﹣|y ﹣1|)恒成立,求m 的取值范围.例4:设函数f (x )=2|x ﹣1|+|x+2|.(Ⅰ)求不等式f (x )≥4的解集;(Ⅱ)若不等式f (x )<|m ﹣2|的解集是非空集合,求实数m 的取值范围.(Ⅱ)f(x )在(﹣∞,1]上递减,[1,+∞)上递增,所以,f (x )≥f (1)=3,由于不等式f (x )<|m ﹣2|的解集是非空的集合,所以,|m ﹣2|>3,解之,m <﹣1或m >5,即实数m 的取值范围是(﹣∞,﹣1)∪(5,+∞). 例5:关于x 的二次方程x 2+6x +|a +2|+|2a -1|=0有实根,求a 的取值范围. 解:∵原方程有实根,Δ=36-4[|a +2|+|2a -1|]≥0,∴|a +2|+|2a -1|≤9. ①当a ≥12时,∵a +2+2a -1≤9,∴12≤a ≤83.②当-2≤a <12时,∵a +2+1-2a ≤9,∴-2≤a <12.③当a <-2时,∵-a -2+1-2a ≤9,∴-103≤a <-2.综上所述,由①②③得a的取值范围为108,33⎡⎤-⎢⎥⎣⎦。
秒杀秘籍:()b x n a x m x f ---=结论:系数大的决定最值,类似于二次函数,系数大的为正,开口向上,有最小值;系数大的为负,开口向下,有最大值。
例6:已知函数f(x)=|3x -6|-|x -4|. (1)作出函数y =f(x)的图象; (2)解不等式|3x -6|-|x -4|>2x.(1)f(x)=|3x -6|-|x -4|=22x x 24x 10 2x 42x 2 x 4-<⎧⎪-≤≤⎨⎪->⎩.此函数有最小值f(2)=—2,再求出另一个零点对应的值f(4)=6,连接两点,中间段斜率为4,根据异号相减原理,左边为减函数,斜率为—2,右边为增函数,斜率为2。
绝对值不等式公式大全

绝对值不等式公式大全下面是一些常见的绝对值不等式及其推导和解法。
1.绝对值的定义:对于任意实数x,绝对值,x,定义如下:-当x≥0时,x,=x。
-当x<0时,x,=-x。
2.单个绝对值不等式:2.1,x,>a时,有以下不等式:-方程的解集为:x>a或x<-a。
-解法:将,x,>a拆解为x>a或x<-a,然后根据实际问题分析确定解集。
2.2,x,<a时,有以下不等式:-方程的解集为:-a<x<a。
-解法:将,x,<a拆解为x>-a且x<a,然后根据实际问题分析确定解集。
3.绝对值的性质:3.1,a+b,≤,a,+,b该性质成立是因为绝对值函数具有非负性质,并且,a+b,的取值范围比,a,+,b,的取值范围要小。
3.2,a-b,≥,a,-,b该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了加法的逆运算。
3.3,a-b,≥,b,-,a该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了减法的逆运算。
4.绝对值不等式的加法运算法则:若,a,≤,b,则有以下结论:-,a+x,≤,b+x-,x+a,≤,x+b解法:根据2.1的解法,将,x,≤a拆解为-a≤x≤a,根据性质3.1,可得,a+x,≤,a,+,x,≤,a,+,b。
5.绝对值不等式的乘法运算法则:若0≤a≤b-,a*x,≤,b*x,其中x可以是任意实数。
解法:对于给定的,x,≤a(根据2.2的解法得到),将其乘以非负的实数k,则有,k*x,≤a*k,根据性质3.1,可得,k*x,≤a*k≤b*k。
6.绝对值不等式的复合运算法则:若,a,≤b且,c,≤d,则有以下结论:-,a+c,≤,b+d-,a-c,≤,b-d解法:根据4的解法,分别将,a+c,和,a-c,展开为,a+x,的形式,并应用3.1的性质,可以得到上述结论。
这些是常见的绝对值不等式及其推导和解法,通过这些公式和方法,我们可以更方便地求解一些数学问题。
但需要注意的是,在应用绝对值不等式时,需要根据具体问题来确定解集,并判断是否需要考虑特殊情况,提高解题的准确性和完整性。
高中的绝对值不等式(精华版)适合高三复习用可直接打印

绝对值不等式绝对值不等式|a b^|a| |b|, |a - b卜|a | |b |基本的绝对值不等式:||a|-|b|| < |a ± b| < |a|+|b|y=|x-3|+|x+2| > |(x-3)-(x+2)|=|x-3-x-2|=|-5|=5所以函数的最小值是5,没有最大值|y|=||x-3卜|x+2|| < |(x-3)-(x+2)|=|x-3-x-2|=|-5|=5由|y| < 5 得-5 < y < 5即函数的最小值是-5 ,最大值是5也可以从几何意义上理解,|x-3|+|x+2| 表示x到3, -2这两点的距离之和,显然当-2 < x < 3时,距离之和最小,最小值是5;而|x-3|-|x+2| 表示x到3, -2这两点的距离之差,当x< -2时,取最小值-5 ,当x> 3时,取最大值5[变题1 ]解下列不等式:(1)| x+1|>2 - x ;(2)| x2- 2x -6|<3 x [思路]利用丨f(x) | <g(x) = -g(x)vf(x)vg(x) 和丨f(x)丨>g(x) = f(x)>g(x) 或f(x)v-g(x) 去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。
解:⑴原不等式等价于X+1>2—x或x+1<—(2 - x)1 1解得或无解,所以原不等式的解集是{ x | x>^}⑵原不等式等价于—3 X< X2—2x —6<3 X即『X2-2x-6>-3x (x2+ x-6>0 ”(x + 3)(x-2) > 0 xv-3 或x>2 { => { => 二*[x2-2x-6^3x l x2-5x-67 l(x + 1)(x-6) v 0 k-V: 62< X<6所以原不等式的解集是{ X|2< X<6}2 2I 3x I1 .解不等式(1 )1 x-x 2-2 | >X2-3X-4 ; (2) x2:4 <1解:(1)分析一可按解不等式的方法来解.原不等式等价于:x-x 2-2>x 2-3X-4①或x-x 2-2<-(x 2-3X-4)②解①得:1- - 2 v X<1+ 2解②得:x>-3故原不等式解集为{ x | x>-3 }分析二Tl x-x 2-2 | = | x2-x+2 |17而 x -x+2 = (x-) + . >04 4所以| x-x 2-2 |中的绝对值符号可直接去掉 .故原不等式等价于 x 2-x+2>x 2-3X -4 解得:x>-3•••原不等式解集为{ x>-3 }3x(2)分析不等式可转化为-1 w 二 < 1求解,但过x - 4程较繁,由于不等式| x^X 4 w 1两边均为正,所以可平方后 求解.二 9x 2w (x 2-4) 2 (x 工土 2)=x 4-17x 2+16> 0二 x 2w 1 或 x 2> 16 =-1 w x w 1 或 x > 4 或 x w -4注意:在解绝对值不等式时,若I f(x) |中的f(x)的值 的范围可确定(包括恒正或恒非负,恒负或恒非正 ),就可直 接去掉绝对值符号,从而简化解题过程 .第2变含两个绝对值的不等式[变题 2]解不等式(1) | x - 1|<| x + a | ; (2) | x-2 | +I x+3 I >5.[思路](1 )题由于两边均为非负数,因此可以利用丨 f(x) I 〈| g(x) |= f 2(x) 〈 g 2(x)两边平方去掉绝对值符号。
MS绝对值不等式(高考版)

绝对值不等式(一) 秒杀秘籍:绝对值不等式c b x a x cb x a x ≤-+-≥-+- 绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数例1:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.例3:不等式|x +1|+|x -1|<3的实数解为________.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1节绝对值不等式最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a (-a,a)∅∅|x|>a (-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x-1|+|x+2|<2的解集为∅.()(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.()(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.()(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.()答案(1)×(2)√(3)×(4)×(5)√2.不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).答案 A3.(选修4-5P19习题T9改编)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.解析由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴|x+1|+|x-2|的最小值为3.要使原不等式有解,只需|a|≥3,则a≥3或a≤-3.答案(-∞,-3]∪[3,+∞)4.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.解析∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2. 答案 25.(2016·江苏卷)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a . 证明 因为|x -1|<a 3,|y -2|<a 3, 所以|2x +y -4|=|2(x -1)+(y -2)| ≤2|x -1|+|y -2|<2a 3+a3=a . 故原不等式得证.考点一 绝对值不等式的解法【例1-1】 (2016·全国Ⅰ卷)已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的解析式及图象知,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5. 故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13,或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13,或1<x <3,或x >5. 【例1-2】 (2017·全国Ⅰ卷)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,f (x )=-x 2+x +4, f (x )≥g (x )⇔x 2-x +|x +1|+|x -1|-4≤0. ①当x >1时,f (x )≥g (x )⇔x 2+x -4≤0, 解之得1<x ≤17-12.②当-1≤x ≤1时,f (x )≥g (x )⇔(x -2)(x +1)≤0, 则-1≤x ≤1.③当x <-1时,f (x )≥g (x )⇔x 2-3x -4≤0,解得-1≤x ≤4, 又x <-1,∴不等式此时的解集为空集.综上所述,f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤17-12. (2)依题意得:-x 2+ax +4≥2在[-1,1]上恒成立. 则x 2-ax -2≤0在[-1,1]上恒成立.则只需⎩⎨⎧12-a ·1-2≤0,(-1)2-a (-1)-2≤0,解之得-1≤a ≤1.故a 的取值范围是[-1,1].规律方法 1.本题利用分段函数的图形的几何直观性,求解不等式,体现了数形结合的思想.2.解绝对值不等式的关键是去绝对值符号,常用的零点分段法的一般步骤:求零点;划分区间,去绝对值符号;分段解不等式;求各段的并集.此外,还常用绝对值的几何意义,结合数轴直观求解. 【训练1】 已知函数f (x )=|x -2|. (1)求不等式f (x )+x 2-4>0的解集;(2)设g (x )=-|x +7|+3m ,若关于x 的不等式f (x )<g (x )的解集非空,求实数m 的取值范围.解 (1)不等式f (x )+x 2-4>0,即|x -2|>4-x 2. 当x >2时,不等式可化为x 2+x -6>0,解得x >2; 当x <2时,不等式可化为x 2-x -2>0,解得x <-1. 所以原不等式的解集为{x |x >2或x <-1}. (2)依题意,|x -2|<3m -|x +7|解集非空, ∴3m >|x -2|+|x +7|在x ∈R 上有解, 又|x -2|+|x +7|≥|(x -2)-(x +7)|=9, 所以3m >9,解得m >3.故实数m 的取值范围是(3,+∞). 考点二 绝对值不等式性质的应用【例2-1】 设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.(1)证明设f (x )=|x -1|-|x +2|=⎩⎨⎧3,x ≤-2,-2x -1,-2<x <1,-3,x >1.由-2<-2x -1<0,解得-12<x <12. 因此集合M =⎝ ⎛⎭⎪⎫-12,12,则|a |<12,|b |<12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)解 由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =16a 2b 2-4a 2-4b 2+1=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.【例2-2】 对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m . (1)求m 的值;(2)(一题多解)解不等式|x -1|+|x -2|≤m . 解 (1)不等式|a +b |+|a -b |≥M ·|a |恒成立,即M ≤|a +b |+|a -b ||a |对于任意的实数a (a ≠0)和b 恒成立,只要左边恒小于或等于右边的最小值.因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |, 当且仅当(a -b )(a +b )≥0时等号成立, 即|a |≥|b |时,|a +b |+|a -b ||a |≥2成立,也就是|a +b |+|a -b ||a |的最小值是2,所以M ≤2.因此m =2.(2)不等式|x -1|+|x -2|≤m ,即|x -1|+|x -2|≤2.法一 由于|x -1|+|x -2|表示数轴上的x 对应点到1和2对应点的距离之和; 而数轴上12和52对应点到1和2对应点的距离之和正好等于2,故|x -1|+|x -2|的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤52. 法二 ①当x <1时,不等式为-(x -1)-(x -2)≤2, 解得x ≥12,即12≤x <1.②当1≤x ≤2时,不等式为(x -1)-(x -2)≤2, 即1≤x ≤2.③当x >2时,不等式为(x -1)+(x -2)≤2, 解得x ≤52,即2<x ≤52.综上可知,不等式的解集是⎩⎨⎧⎭⎬⎫x |12≤x ≤52.规律方法 1.求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.2.含绝对值不等式的证明中,要注意绝对值三角不等式的灵活应用.【训练2】 对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.解 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,⎪⎪⎪⎪⎪⎪a -12≤12,所以|4a -3b +2|=|(3a -3b )+⎝ ⎛⎭⎪⎫a -12+52|≤|3a -3b |+|a -12|+52≤3+12+52=6, 则|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6,m 的取值范围是[6,+∞). 考点三 绝对值不等式的综合应用【例3】 (2017·全国Ⅲ卷)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解(1)f (x )=|x +1|-|x -2|=⎩⎨⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.①当x ≤-1时,f (x )=-3≥1无解; ②当-1<x <2时,2x -1≥1, 解得x ≥1,则1≤x <2;③当x ≥2时,f (x )=3≥1恒成立,∴x ≥2. 综上知f (x )≥1的解集为{x |x ≥1}.(2)不等式f (x )≥x 2-x +m 等价于f (x )-x 2+x ≥m , 得m ≤|x +1|-|x -2|-x 2+x 有解,又|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54.当且仅当x =32时,|x +1|-|x -2|-x 2+x =54. 故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,54. 规律方法 1.第(1)问分段讨论,求得符合题意的x 取值范围,最后取并集. 2.(1)不等式恒成立问题,解集非空(不能成立)问题,转化为最值问题解决. (2)本题分离参数m ,利用绝对值不等式的性质求解,避免分类讨论,优化了解题过程.【训练3】 (2016·全国Ⅲ卷)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求实数a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).基础巩固题组 (建议用时:50分钟)1.(1)求不等式|x -1|+|x +2|≥5的解集; (2)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x |-53<x <13,求a 的值.解 (1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-1a <x <5a ,-1a =-53,且5a =13无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a ,5a =-53,且-1a =13,解得a =-3.2.已知函数f (x )=|ax -2|.(1)当a =2时,解不等式f (x )>x +1;(2)若关于x 的不等式f (x )+f (-x )<1m 有实数解,求m 的取值范围.解 (1)当a =2时,不等式为|2x -2|>x +1,当x ≥1时,不等式化为2x -2>x +1,解得x >3.当x <1时,不等式化为2-2x >x +1,解得x <13.综上所述,不等式的解集为⎩⎨⎧⎭⎬⎫x |x >3或x <13. (2)因为f (x )+f (-x )=|ax -2|+|-ax -2| ≥|ax -2-ax -2|=4, 所以f (x )+f (-x )的最小值为4, 又f (x )+f (-x )<1m 有实数解,所以1m >4.则m 的取值范围为⎝ ⎛⎭⎪⎫0,14.3.(2015·全国Ⅰ卷)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎨⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a+1,0),C (a ,a +1),△ABC 的面积S =12|AB |·(a +1)=23(a +1)2. 由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞).4.(2018·石家庄三模)在平面直角坐标系中,定义点P (x 1,y 1),Q (x 2,y 2)之间的“直角距离”为L (P ,Q )=|x 1-x 2|+|y 1-y 2|,已知A (x ,1),B (1,2),C (5,2)三点. (1)若L (A ,B )>L (A ,C ),求x 的取值范围;(2)当x ∈R 时,不等式L (A ,B )≤t +L (A ,C )恒成立,求t 的最小值. 解 (1)由定义得|x -1|+1>|x -5|+1, 则|x -1|>|x -5|,两边平方得8x >24,解得x >3. 故x 的取值范围为(3,+∞).(2)当x ∈R 时,不等式|x -1|≤|x -5|+t 恒成立,也就是t ≥|x -1|-|x -5|恒成立, 因为|x -1|-|x -5|≤|(x -1)-(x -5)|=4, 所以t ≥4,t min =4. 故t 的最小值为4.5.设函数f (x )=⎪⎪⎪⎪⎪⎪12x +1+|x |(x ∈R )的最小值为a .(1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求1m +1n 的最小值.解 (1)f (x )=⎩⎪⎨⎪⎧-32x -1,x <-2,-12x +1,-2≤x ≤0,32x +1,x >0.当x ∈(-∞,0)时,f (x )单调递减;当x ∈[0,+∞)时,f (x )单调递增;∴当x =0时,f (x )的最小值a =1.(2)由(1)知m 2+n 2=1,则m 2+n 2≥2mn ,得1mn ≥2,由于m >0,n >0,则1m +1n ≥21mn ≥22,当且仅当m =n =22时取等号. ∴1m +1n 的最小值为2 2.能力提升题组(建议用时:30分钟)6.已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.(1)解不等式:|g (x )|<5;(2)若对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 (1)由||x -1|+2|<5,得-5<|x -1|+2<5,所以-7<|x -1|<3,解不等式得-2<x <4,所以原不等式的解集是{x |-2<x <4}.(2)因为对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|2x -a -(2x +3)|=|a +3|,g (x )=|x -1|+2≥2, 所以|a +3|≥2,解得a ≥-1或a ≤-5,所以实数a 的取值范围是{a |a ≥-1或a ≤-5}.7.(2018·西安模拟)已知函数f (x )=|x -2|,g (x )=|x +1|-x .(1)解不等式f (x )>g (x );(2)若存在实数x ,使不等式m -g (x )≥f (x )+x (m ∈R )成立,求实数m 的最小值. 解 (1)原不等式f (x )>g (x )化为|x -2|+x >|x +1|,当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1.当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1.当x >2时,x -2+x >x +1,解得x >3,即x >3.综上所述,不等式f (x )>g (x )的解集为{x |-3<x <1或x >3}.(2)由m -g (x )≥f (x )+x (m ∈R )可得m ≥|x -2|+|x +1|,由题意知m ≥(|x -2|+|x +1|)min ,∵|x -2|+|x +1|≥|x -2-(x +1)|=3,∴m ≥3,故实数m 的最小值是3.8.(2018·郑州模拟)已知不等式|x -m |<|x |的解集为(1,+∞).(1)求实数m 的值;(2)若不等式a -5x <⎪⎪⎪⎪⎪⎪1+1x -⎪⎪⎪⎪⎪⎪1-m x <a +2x对x ∈(0,+∞)恒成立,求实数a 的取值范围.解 (1)由|x -m |<|x |,得|x -m |2<|x |2,即2mx >m 2,又不等式|x -m |<|x |的解集为(1,+∞),则1是方程2mx =m 2的解,解得m =2(m =0舍去).(2)∵m =2,∴不等式a -5x <⎪⎪⎪⎪⎪⎪1+1x -⎪⎪⎪⎪⎪⎪1-m x <a +2x 对x ∈(0,+∞)恒成立等价于不等式a -5<|x +1|-|x -2|<a +2对x ∈(0,+∞)恒成立.设f (x )=|x +1|-|x -2|=⎩⎨⎧2x -1,0<x <2,3,x ≥2,当0<x <2时,f (x )在(0,2)上是增函数,则-1<f (x )<3,当x ≥2时,f (x )=3.因此函数f (x )的值域为(-1,3].从而原不等式等价于⎩⎨⎧a -5≤-1,a +2>3,解得1<a ≤4. 所以实数a 的取值范围是(1,4].。