因式分解___完全平方式
完全平方公式一鼎数学

完全平方公式一鼎数学
完全平方公式是指一个二次三项式可以表示为一个完全平方的形式。
对于一元二次方程ax^2 + bx + c,如果可以写成形式(a ± b)^2,那么它就是一个完全平方。
完全平方公式可以用来因式分解一元二次方程,也可以用来求解一元二次方程的根。
完全平方公式可以表示为,(a ± b)^2 = a^2 ± 2ab + b^2。
这个公式可以帮助我们将一个二次三项式写成一个完全平方,从而更容易地进行因式分解或求解方程。
从代数的角度来看,完全平方公式是二次多项式的一个重要性质。
它可以帮助我们理解二次多项式的因式分解和根的性质。
当我们遇到一个二次多项式时,可以通过完全平方公式来判断它是否可以因式分解为两个一次多项式的平方。
从几何的角度来看,完全平方公式可以帮助我们理解平方的几何意义。
一个完全平方可以表示为一个正方形的面积,其中边长为(a ± b)。
这有助于我们直观地理解完全平方的概念,以及它在代数中的应用。
从应用的角度来看,完全平方公式在物理、工程等领域也有广
泛的应用。
例如,在物理学中,完全平方公式可以用来分析二次函数的最值和零点,从而帮助我们理解物体的运动规律和力学性质。
总的来说,完全平方公式是代数中一个重要的概念,它不仅可以帮助我们理解二次多项式的性质,还可以应用到实际问题中去。
通过多个角度的理解和应用,我们可以更好地掌握完全平方公式的概念和用法。
因式分解-完全平方公式

a +2ab+b =3a(x+y)2
2
2
(3)-x +4xy-4y 解:原式=-(x2_4xy+4y2) 2_ 2 =-[x 2x2y+(2y) ] a 2 a b + b 2 =-(x-2y)
2_ 2
注意: 用完全平方公式分解因式: 首先要考虑能不能提取 公因式。然后观察是否 符合完全平方公式。当 平方项系数为负数时,应 先将负号提出来。
一 号 题
二 号 题
三 号 题
1号题: 对下列式子因式分解并填空: (a+3)2 ① a2+6a+9 = ________________ -s2-t2+2st=_____________ -(s-t)2 (m+n)2+4m(m+n)+4m2=___________ (3m+n)2
2号题 因式分解下列各题:
(1)-x2+2xy-y2
(2)x2-6xyz+9y2z2
(3)(x+y)2+6(x+y)+9
3号题 用简便算法计算: 20052-4010×2003+20032 的值。
用完全平方公式分解获?
1、完全平方式 a
2
2ab b
2
及特征;
2、用完全平方公式分解因式。
用完全平方公式分解因式
a 2ab b
2
2
之辨析篇
例1.判别下列各式是不是完全平方式. x2+y2 不是 x2-2xy-y2 不是
2 2 - 2 是
x2 2xy y 2 是
讨论:完全平方式有什么特点?
因式分解中的完全平方公式

对于简单题型,首先要识别出多项式是否符合完 全平方公式的形式,然后确定$a$和$b$的值, 最后按照公式进行因式分解。
复杂题型解析及思路点拨
例题
$4x^2 + 12xy + 9y^2 - 25$
解析
思路点拨
观察该多项式,可以发现前三项 符合完全平方公式$a^2 + 2ab + b^2$的形式,其中$a = 2x, b = 3y$,而最后一项是常数项。因此, 可以将前三项因式分解为$(2x + 3y)^2$,然后与常数项组合进行 进一步的因式分解。
提取公因式法应用
01
在多项式中识别公因式,并将其 提取出来。这有助于简化多项式 ,并使其更容易识别出完全平方 项。
02
对提取公因式后的多项式进行观 察,判断是否可以通过完全平方 公式进行因式分解。
分组分解法应用
将多项式中的项进行分组,使 得每组内部能应用完全平方公 式。分组的方式可以根据多项 式的特点灵活选择。
对每个分组应用完全平方公式 进行因式分解,得到分组内的 因式。
将各分组的因式相乘,得到整 个多项式的因式分解结果。
04 典型例题解析与技巧指导
简单题型解析及思路点拨
1 2 3
例题
$x^2 + 2x + 1$
解析
观察该多项式,可以发现它符合完全平方公式 $a^2 + 2ab + b^2$的形式,其中$a = x, b = 1$。
教师点评和总结归纳
针对学生完成情况,教师给予及时的点评和反馈,指出学生在解题过程中的优点和 不足。
教师总结完全平方公式在因式分解中的应用及注意事项,强调公式运用的灵活性和 多样性。
教师可结合学生实际情况,对部分难题进行详细讲解和示范,帮助学生更好地理解 和掌握完全平方公式。
分解因式公式法---完全平方公式

12(a+b)+36 就是一个完全平方式。即
(a+b)2-12(a+b)+36=(a+b)2-2×(a+b)×6+62 m2 - 2 ×6 +62 解: (a+b)2-12(a+b)+36 ×m = (a+b)2-2×(a+b)×6+62 =(a+b-6)2
现在回头来看看我们上课时提出的问题,
快速口算
完全平方式 a2 2ab b2 (a b)2
左边:① 项数:共三项,即a、b两数的平方项
,a、b两数积的2倍。
② 次数:左边每一项的次数都是二次。
③ 符号:左边a、b两数的平方项必须同号。
右边:是a、b两数和(或差)的平方。
当a、b同号时,a2+2ab+b2=(a+b)2
当a、b异号时,a2-2ab+b2=(a-b)2
∴ 2a2+4b-3=2×(-1)2+4×2-3
=7
考考你
(2)已知a、b、c是△ABC的三边的长,且满 足 a2+2b2+c2-2b(a+c)=0,试判断△ABC的 形状。 温馨提示:将条件a2+2b2+c2-2b(a+c)=0变形 为a2+2b2+c2-2ab-2bc=0,左边与完全平方式 十分相似。可将其奏成两个完全平方式的和, 然后利用非负数性质就能解决问题了。
3、深刻理解
下列各式是不是完全平方式,为什么? 是 (1) x2-4x+4______________ 不是,缺乘积项 (2) x2+16 _________________ 不是,缺乘积项的2倍 (3 ) 9m2+3mn+n2_____________________ 不是,平方项异号 (4)-y2-12xy+36x2 是 __________________ 不是,只有一个平方项 2 (5) -m +10mn-25n2______________ (6 )
完全平方公式因式分解

灵活应用: 灵活应用:
(1)2006 − 6
2 2 2 2
2
(2)13 − 2 ×13 × 3 + 9 (3)11 + 39 + 66 ×13
小结
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 正确选取a,b. 注意 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中 (3)在因式分解中,通常先观察 在因式分解中, 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
注意: 注意
(1)正确选取 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清
分解因式
(1)3am + 3an + 6amn
2 2
(2) − a
2
− 4b + 4ab
2
2
(3) -8a(2a+b)-b
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 注意 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中,通常先观察 在因式分解中, 在因式分解中 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
2 就得到
a + 2ab + b = (a + b) 2 2 2 a − 2ab + b = (a − b )
a + 2ab+ b = (a+ b) 2 2 2 a − 2ab+ b = (a − b )
完全平方公式分解因式

完全平方公式分解因式在代数学中,完全平方公式是一种因式分解方法,用于将一个二次三项式分解为两个二次项的乘积。
它由以下公式给出:a^2 + 2ab + b^2 = (a + b)^2其中a和b是任意实数。
在这篇文章中,我们将详细介绍完全平方公式的应用和证明,并提供一些例子来帮助读者理解。
首先,让我们来看看为什么这个公式成立。
我们将用代数的方法来证明它。
首先,考虑一个二次三项式(a+b)^2、根据乘法法则,我们可以将其展开为:(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2我们可以看到,展开后得到的结果是一个完全平方公式。
因此,我们证明了完全平方公式的正确性。
现在,让我们用完全平方公式来分解一些二次三项式。
考虑以下的二次三项式:x^2+6x+9我们注意到,这个三项式是一个完全平方公式。
具体来说,它可以分解为:x^2+6x+9=(x+3)^2通过使用完全平方公式,我们可以将一个二次三项式化简为一个更简单的二次项表达式。
这在解决数学问题和方程时非常有用。
接下来,我们将提供一些例子,以帮助读者更好地理解完全平方公式的应用。
例子1:将二次三项式x^2+10x+25分解为两个二次项的乘积。
根据完全平方公式,我们可以将其分解为:x^2+10x+25=(x+5)^2因此,x^2+10x+25可以写成(x+5)^2的形式。
例子2:将二次三项式4x^2-12x+9分解为两个二次项的乘积。
首先,我们要注意到这个三项式不是一个完全平方公式。
因此,我们需要找到适当的因式分解方法。
我们可以使用因式分解法将其分解为两个一次项的乘积:4x^2-12x+9=(2x-3)(2x-3)通过展开右边的表达式,我们可以验证等式的正确性。
因此,4x^2-12x+9可以写成(2x-3)^2的形式。
总结起来,完全平方公式是一种因式分解方法,用于将二次三项式分解为两个二次项的乘积。
完全平方公式因式分解 四环节

——完全平方公式
永城市黄口乡初级中学
梁宏求
问题:1、根据学习用平方差公式分解因式的经验和 方法,• 析和推测什么叫做运用完全平方公式分解 分 因式? 将整式乘法的平方差公式反过来写即是分解因式的 平方差公式.同样道理,把整式乘法的完全平方公 式反过来写即分解因式的完全平方公式.
习题 第3题。
(2)、(4)、(5)都不是
例5,分解因式:(1) 16x2+24x+9
分析:在(1)中,16x2=(4x)2,9=32,24x=2· 3, 4x· 所以16x2+24x+9是一个完全平方式,即
16x2+24x+9= (4x)2+ 2· 3 +32 4x·
a b a2 + x+9=(4x)2+2· 3+32 4x·
=(4x+3)2.
例5:
分解因式:(2) –x2+4xy–4y2.
解:(2) –x2+4xy-4y2
= -(x2-4xy+4y2)
= -[x2-2· 2y+(2y)2] x·
= - (x-2y)2
例6: 分解因式: (1) 3ax2+6axy+3ay2;
(2) (a+b)2-12(a+b)+36. 分析:在(1)中有公因式3a,应先 提出公因式,再进一步分解。
解:(1)3ax2+6axy+3ay2 (2)(a+b)2-12(a+b)+36 =3a(x2+2xy+y2) =(a+b)2-2· (a+b)· 2 6+6 =3a(x+y)2 =(a+b-6)2.
3因式分解---完全平方公式

师航教育一对一个性化辅导讲义3因式分解---完全平方公式一、目标要求1.理解完全平方公式的意义。
2.能运用完全平方公式进行多项式的因式分解。
二、重点难点完全平方公式的意义及运用。
1.完全平方公式的意义:公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2意义:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
2.完全平方公式的应用:用完全平方公式分解因式时要先判断是否是完全平方公式,再运用公式分解因式。
知识点一:因式分解---完全平方公式用完全平方公式因式分解:即两个数(整式)的平方和加上(减去)这两个数(整或式)的积的,等于这两个数(整式)的和(差)的平方.如:,其中叫做完全平方式。
注:①与整式乘法中完全平方公式正好相反.②形式和结构特征:左边是一个三项式,其中两项同号且均为一个整式的平方(平方项),另一项是平方项幂的底数的2倍(乘积项),符号可正也可负,右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号3、用公式法进行因式分解的关键要在这个多项式中找出符合公式(平方差公式,完全平方公式)的条件.这就要求必须清楚每个公式的结构特点.不要忽视完全平方公式的中间项,而错误的认为:a2±b2=(a±b)2。
4、理解公式中的字母a、b不仅可以表示数,而且还可以表示单项式,多项式等。
.【例1】把4a2-12ab+9b2分解因式。
分析:多项式4a2-12ab+9b2共有三项,第一项是(2a)2,第三项是(3b)2,4a2+9b2是2a、3b的平方和,第二项正好是2a与3b的积的2倍,所以4a2-12ab+9b2是一个完全平方式,可分解为(2a-3b)2。
解:原式=(2a)2-2·2a·3b+(3b)2=(2a-3b)2。
【例2】把16-8xy+x2y2分解因式。
分析:多项式16-8xy+x2y2共有三项,第一项是42,第三项是(xy)2,而第二项正好是4与xy乘积的2倍,所以16-8xy+x2y2是一个完全平方式,可分解为(4-xy)2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们称之为:运用完全平 方公式分解因式
例题1:把下列式子分解因式
4x2+12xy+9y2
2x2 2 2x 3y 3y2 2x 3 y 2
首2 2首 尾 尾2 =(首±尾)2
请运用完全平方公式把下列各式分解因式:
1 x2 4x 4 原式 x 22
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子 叫做完全平方式
两个“项”的平方和加 上(或减去)这两“项” 的积的两倍
a2 2abb2 a2 2abb2
完全平方式的特点:
1、必须是三项式;
2、有两个“项”的平方;
4
6 a2 2ab 4b2 否
练一练:按照完全平方公式填空:
(1) a2 10a ( 25 ) ( a 5 )2
(2) ( a2 y2 ) 2ay 1 ( ay 1 )2
(3) 1 ( rs ) r 2s2 ( 1 rs )2
4
2
a2 2abb2 ab2
a2 2abb2 ab2
=(a-b-c)(a+b+c) a-b-c<0,a+b+c﹥0 ∴ (a-b-c)(a+b+c) <0
小结:
完全平方式具有:
1、是一个二次三项式;
2、有两个“项”平方,而且有这 两“项”的积的两倍或负两倍;
3、我们可以利用完全平方公 式来进行因式分解.
作业:
•1、课本P119-----120页做在课本上 •2、《有效课堂》
3、有这两“项”积的2倍或-2倍。
首2 2首尾尾2
判别下列各式是不是完全平方式?
1x2 2xy y2 是 2A2 2 AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
下列各式是不是完全平方式?
1 a2 b2 2ab 是
22xy x2 y 2 是 3 x2 4xy4 y 2 是 4a2 6abb2 否 5x2 x 1 是
谢谢观看! 2020
2、下列各式中,不能用完全平方公 式分解的是( C )
A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2
3、把 1 x2 3xy 9 y2 分解因式得
4
( B)
A、
1
B、
1 2
x
3
y
2
4、把
4 9
x2
y2
4 3
xy分(解因A式得)
(5) (a+b)4-18(a+b)2+81
例3,简便方法运算。
(1)2007 2 72 (2)132 213 3 9 (3)112 39 2 66 13
练习题:
1、下列各式中,能用完全平方公式 分解的是( D )
A、a2+b2+ab B、a2+2ab-b2 C、a2-ab+2b2 D、-2ab+a2+b2
A、
2 3
x
y
2
B、
4 3
x
y
2
思考题:
1、多项式:
(x+y)2-2(x2-y2)+(x-y)2能用完全平方公式
分解吗?
2、在括号内补上一项,使多项式成为完全 平方式:
X4+4x2+(
)
已知a、b、c是三角形的三边,请你判断 a2-b2-c2-2bc的值的正负
解: a2-b2+c2-2bc=a2-(b+c)2
因式分解—完全平方公式
我们前面学习了利用平方差公式来分
解因式即:a2-b2=(a+b)(a-b)
例如:
4a2-9b2= (2a+3b)(2a-3b)
回忆完全平方公式
ab 2 a2 2abb2
ab 2 a2 2abb2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
2 a2 6a 9
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
(1)3ax2 6axy 3ay2 (2)(a b)2 12(a b) 36
(3)ax2 2a2x a3 (4) 3x2 6xy 3y2