专题4.6 因式分解-完全平方公式(专项练习)-2020-2021学年八年级数学下册基础知识专项讲练
人教版八年级数学上册运用完全平方公式因式分解同步练习题

人教版八年级数学试题第2课时 完全平方公式一.填空1.( )2+=+22520y xy ( )2. 2.=+⨯-227987981600800( -- 2)= . 3.已知3=+y x ,则222121y xy x ++= .4.已知0106222=++-+y x y x 则=+y x .5.若4)3(2+-+x m x 是完全平方式,则数m 的值是 .6.158-能被20至30之间的两个整数整除,那么这两个整数是 . 二.把下列各式分解因式: 7.32231212x x y xy -+ 8.442444)(y x y x -+ 9.22248)4(3ax x a -+10.2222)(4)(12)(9b a b a b a ++-+- (11).2222224)(b a c b a --+ (12).22222)(624n m n m +- (13).115105-++-m m m x x x三.利用因式分解进行计算:(14).419.36.7825.03.2541⨯-⨯+⨯ (15).2298196202202+⨯+ (16).225.15315.1845.184+⨯+四.(17).将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.(18).已知212=-b a ,2=ab 求:42332444b a b a b a -+-的值.(19).已知n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示: (1)a 与b 的平方和; (2)a 与b 的积; (3)ba ab +.【课外拓展】(20).已知△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.(21).已知c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不论为x,y 何值,整式5422+-xy y x 总为正值.一、填空1.2,25x x y +2.800,798,43.924.-2 5.7或-16. 26、24 二.把下列各式分解因式:7.【解】32231212x x y xy -+=232x(x y )-8.【解】442444)(y x y x -+=42244224(2)(2)x x y y x x y y ++-+ =22222()()()x y x y x y ++-9.【解】22248)4(3ax x a -+=2223[(4)16]a x x +- =2223[(4)16]a x x +-=223(2)(2)a x x +- 10.【解】2222)(4)(12)(9b a b a b a ++-+- =2[3()2()]a b a b -++=2(5)a b -(11).【解】2222224)(b a c b a --+=22222222(2)(2)a b c ab a b c ab +-++-- =222222[()][()]a b c a b c +---=()()()()a b c a b c a b c a b c +++--+-- (12).【解】22222)(624n m n m +-=222226[()4]m n m n -+-=226()()m n m n -+- (13).【解】115105-++-m m m x x x=125(21)m xx x --+=125(1)m x x --三.利用因式分解进行计算:(14).【解】419.36.7825.03.2541⨯-⨯+⨯ =1(25.378.6 3.9)4+-=1(25.378.6 3.9)4+-=25(15).【解】2298196202202+⨯+ =2(20298)+=90000(16).【解】225.15315.1845.184+⨯+ =2(184.515.5)+=40000 四.(17).【解】12x ±五.(18).【解】42332444b a b a b a -+-=2222(44)a b a ab b --+=222(2)a b a b -- 而212=-b a ,2=ab .所以42332444b a b a b a -+-=222(2)a b a b -- =-144⨯=-1. (19).【解】(1)因为n b a m b a =-=+22)(,)(, 所以22222,2a ab b m a ab b n ++=-+=. 即22.a b m n +=+所以a 与b 的平方和为m n +. (2)由(1)可知:1()4ab m n =- 所以a 与b 的积为1()4m n - (3)由(1)(2)可知,22.a b m n +=+1()4ab m n =- 所以ba ab +=22a b ab +=1()4m n m n +-44m nm n+=-【课外拓展】(20).证明:因为ca bc ab c b a ++=++222,所以222222222a b c ab bc ca ++=++. 即222()()()0a b b c c a -+-+-=. 所以0,0,0a b b c c a -=-=-=所以a=b=c.此三角形为等边三角形. (21).【解】△ABC 是等边三角形.理由是: ∵0)(22222=+-++c a b c b a ∴2222220a b c ba bc ++--= ∴22()()0a b b c -+-=所以0,0,a b b c -=-= 所以a=b=c.∴△ABC 是等边三角形.(22).证明:5422+-xy y x =2(2)110xy -+≥>. 即不论为x,y 何值,整式5422+-xy y x 总为正值.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
《第4章因式分解》期末复习能力提升训练(附答案)2020-2021学年八年级数学北师大版下册

2021年北师大版八年级数学下册《第4章因式分解》期末复习能力提升训练(附答案)一.因式分解的意义1.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣62.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣1 3.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.4.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.5.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).6.多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.7.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.8.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.9.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.二.公因式10.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.11.2x3y2与12x4y的公因式是.12.多项式m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣16中,它们的公因式是.三.提公因式法因式分解13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.15.分解因式:2m(m﹣n)2﹣8m2(n﹣m)四.运用公式法因式分解16.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个17.请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.18.已知,求下列各式的值:(1)x2+2xy+y2(2)x2﹣y2.五.提公因式法与公式法的综合运用19.因式分解:4a3﹣16a=.20.因式分解:(1)﹣3ma2+12ma﹣12m;(2)n2(m﹣2)+4(2﹣m).21.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.六.分组分解法因式分解22.分解因式:2x2+7xy﹣15y2﹣3x+11y﹣2=.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.因式分解:(1)6x2﹣13x+5(2)1﹣x2+2xy﹣y225.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.七.十字相乘法等因式分解26.你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.八.实数范围内分解因式27.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1九.因式分解的应用28.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.202229.已知x2﹣3x+1=0,则=.30.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.参考答案一.因式分解的意义1.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.2.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.3.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.4.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.5.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.6.解:x2+mx+6因式分解得(x﹣2)(x+n),得x2+mx+6=(x﹣2)(x+n),(x﹣2)(x+n)=x2+(n﹣2)x﹣2n,x2+mx+6=x2+(n﹣2)x﹣2n,﹣2n=6,m=n﹣2.解得n=﹣3,m=﹣5,故答案为:﹣5.7.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)8.解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.9.解:设另一个因式为2x2+mx﹣,∴(x﹣3)(2x2+mx﹣)=2x3﹣5x2﹣6x+k,2x3+mx2﹣x﹣6x2﹣3mx+k=2x3﹣5x2﹣6x+k,2x3+(m﹣6)x2﹣(+3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴另一个因式为:2x2+x﹣3.二.公因式10.解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.11.解:∵2x3y2=2x3y•y,12x4y=2x3y•6x,∴2x3y2与12x4y的公因式是2x3y,故答案为:2x3y.12.解:m(m﹣3)+2(3﹣m)=m(m﹣3)﹣2(m﹣3)=(m﹣3)(m﹣2);m2﹣4m+4=(m﹣2)2;m4﹣16=m4﹣24=(m2+4)(m2﹣4)=(m2+4)(m+2)(m﹣2).各项都含有m﹣2,因此它们的公因式是m﹣2.三.提公因式法因式分解13.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.14.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.15.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).四.运用公式法因式分解16.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.17.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.18.解:x+y=2,xy=()2﹣()2=4,x﹣y=2(1)x2+2xy+y2=(x+y)2=(2)2=24;(2)x2﹣y2=(x+y)(x﹣y)=2×2=8.五.提公因式法与公式法的综合运用19.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)20.解:(1)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2;(2)原式=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).21.解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).六.分组分解法因式分解22.解:∵2x2+7xy﹣15y2=(x+5y)(2x﹣3y),∴可设2x2+7xy﹣15y2﹣3x+11y﹣2=(x+5y+a)(2x﹣3y+b),a、b为待定系数,∴2a+b=﹣3,5b﹣3a=11,ab=﹣2,解得a=﹣2,b=1,∴原式=(x+5y﹣2)(2x﹣3y+1).故答案为:(x+5y﹣2)(2x﹣3y+1).23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.解:(1)原式=(2x﹣1)(3x﹣5);(2)原式=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y);25.解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=15.七.十字相乘法因式分解26.解:(1)设x2+x=y,则原式=(y﹣4)(y+3)+10=y2﹣y﹣2=(y﹣2)(y+1)=(x2+x﹣2)(x2+x+1)=(x+2)(x﹣1)(x2+x+1);(2)设x2+6=m,原式=(x2+6+7x)(x2+6+5x)+x2=(m+7x)(m+5x)+x2=m2+12xm+35x2+x2=m2+12xm+36x2=(m+6x)2=(x2+6x+6)2;(3)设x+y=m,xy=n(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(m﹣2n)(m﹣2)+(n﹣1)2=m2﹣2m﹣2mn+4n+n2﹣2n+1=m2﹣2m﹣2mn+n2+2n+1=m2﹣2m(1+n)+(n+1)2=(m﹣n﹣1)2=(x+y﹣xy﹣1)2=(y﹣1)2(1﹣x)2八.实数范围内分解因式27.解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.九.因式分解的应用28.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.29.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.30.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.。
2020-2021学年八年级数学下册第四章 因式分解 单元测试题(含答案)

2020-2021学年八年级数学下册第四章因式分解单元测试题(时间120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)1.下列从左边到右边的变形中,是因式分解的是( )A.(3-x)(3+x)=9-x2 B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是( )A.x2-xy B.x2+xy C.x2-y2 D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是( )A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a+1)2D.2a(2a-1)2 4.将下列多项式因式分解,结果中不含有因式a+1的是( )A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+1 5.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2 B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为( )A.-10 B.±10 C.14 D.-147.已知a-b=1,则a2-b2-2b的值为( )A.4 B.3 C.1 D.08.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是( )A.x2+2x=x(x+2) B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)9.对于任何整数m,多项式(4m+5)2-9都能( )A.被8整除B.被m整除C.被m-1整除D.被2m-1整除10.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2 C.24,3 D.64,8二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.多项式4xy2+12xyz的公因式是________.12.分解因式:axy-ay2=________.13.如果x2+2x+k可以用完全平方公式进行因式分解,那么k=________.14.若3x2-mx+n进行因式分解的结果为(3x+2)(x-1),则mn=________.三、解答题(本大题共6个小题,共54分,解答题应写出必要的文字说明、证明过程或演算步骤)15.(12分)因式分解:(1)3m 2n -12mn +12n ;(2)n 2(m -2)-n(2-m);(3)(a +b)3-4(a +b);(4)8(x 2-2y 2)-x(7x +y)+xy.16.(6分)不解方程组⎩⎪⎨⎪⎧2x +y =6,x -3y =1,求7y(x -3y)2-2(3y -x)3的值.17.(8分)某商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?18.(8分)利用因式分解计算:(1)-1317×19-1317×15;(2)-101×190+1012+952.19.(10分)我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x +a)(x +b)=x 2+(a +b)x +ab ,即x 2+(a +b)x +ab =(x +a)(x +b)是否可以用于因式分解呢?当然可以,而且也很简单.如:(1)x 2+5x +6=x 2+(3+2)x +3×2 =(x +3)(x +2);(2)x 2-5x -6=x 2+(-6+1)x +(-6)×1 =(x -6)(x +1).请你仿照上述方法,把下列多项式因式分解:(1)x 2-8x +7;(2)x2+7x-18.20.(10分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上)21.计算:1.222×9-1.332×4=________.22.若x2+x=1,则3x4+3x3+3x+1的值为4.23.232-1可以被10和20之间某两个整数整除,则这两个数是________.24.若4x-3是多项式4x2+5x+a的一个因式,则a=________.25.甲、乙两位同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),乙看错了a,分解结果为(x+1)(x+9),则2a+b=________.二、解答题(本大题共3个小题,共30分)26.(8分)如图是一种混凝土排水管,其形状为空心的圆柱体,它的内径d=68 cm,外径D=88 cm,长h=200 cm,浇制一节这样的排水管需要多少立方米的混凝土?(结果保留π)27.(10分)设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.28.(12分)如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请问用这两个图可以验证公式法因式分解中的哪个公式?(2)若图1中的阴影部分的面积是12,a-b=3,求a+b的值;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.参考答案2020-2021学年八年级数学下册第六章因式分解单元测试题(时间120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中1.下列从左边到右边的变形中,是因式分解的是(B)A.(3-x)(3+x)=9-x2 B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是(C)A.x2-xy B.x2+xy C.x2-y2 D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是(D)A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是(C)A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+1 5.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B)A.4x2-4x+1=(2x-1)2 B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为(A)A.-10 B.±10 C.14 D.-147.已知a-b=1,则a2-b2-2b的值为(C)A.4 B.3 C.1 D.08.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是(D)A.x2+2x=x(x+2) B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)9.对于任何整数m,多项式(4m+5)2-9都能(A)A.被8整除 B.被m整除C.被m-1整除D.被2m-1整除10.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B)A.8,1 B.16,2 C.24,3 D.64,8二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.多项式4xy2+12xyz的公因式是4xy.12.分解因式:axy-ay2=ay(x-y).13.如果x2+2x+k可以用完全平方公式进行因式分解,那么k=1.14.若3x2-mx+n进行因式分解的结果为(3x+2)(x-1),则mn=-2.三、解答题(本大题共6个小题,共54分,解答题应写出必要的文字说明、证明过程或演算步骤)15.(12分)因式分解:(1)3m2n-12mn+12n;解:原式=3n(m2-4m+4)=3n(m-2)2. (2)n2(m-2)-n(2-m);解:原式=n2(m-2)+n(m-2)=n(n+1)(m-2).(3)(a+b)3-4(a+b);解:原式=(a+b)[(a+b)2-4]=(a+b)(a+b+2)(a+b-2).(4)8(x 2-2y 2)-x(7x +y)+xy.解:原式=8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y)(x -4y).16.(6分)不解方程组⎩⎪⎨⎪⎧2x +y =6,x -3y =1,求7y(x -3y)2-2(3y -x)3的值.解:原式=(x -3y)2[7y +2(x -3y)]=(x -3y)2(2x +y).∵⎩⎪⎨⎪⎧2x +y =6,x -3y =1, ∴原式=12×6=6.17.(8分)某商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b)2+a(a +b)+b(a +b)+(b +a)2=2(a +b)2+(a +b)(a +b)=2(a +b)2+(a +b)2=3(a +b)2.因为a +b =10,所以3(a +b)2=300. 答:这座商贸大楼共有商品300种. 18.(8分)利用因式分解计算:(1)-1317×19-1317×15;解:原式=-1317×(19+15)=-1317×34=-26. (2)-101×190+1012+952.解:原式=1012-2×101×95+952=(101-95)2=62 =36.19.(10分)我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x +a)(x +b)=x 2+(a +b)x +ab ,即x 2+(a +b)x +ab =(x +a)(x +b)是否可以用于因式分解呢?当然可以,而且也很简单.如:(1)x 2+5x +6=x 2+(3+2)x +3×2 =(x +3)(x +2);(2)x 2-5x -6=x 2+(-6+1)x +(-6)×1 =(x -6)(x +1).请你仿照上述方法,把下列多项式因式分解:(1)x 2-8x +7;(2)x 2+7x -18.解:(1)原式=x 2+(-7-1)x +(-7)×(-1) =(x -1)(x -7).(2)原式=x 2+(9-2)x +9×(-2) =(x +9)(x -2).20.(10分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵a 2c 2-b 2c 2=a 4-b 4,① ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).② ∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③; (2)写出该题正确的解法. 解:正确的解法如下: ∵a 2c 2-b 2c 2=a 4-b 4, ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2). ∴c 2(a 2-b 2)-(a 2+b 2)(a 2-b 2)=0.∴(a 2-b 2)[c 2-(a 2+b 2)]=0. 分三种情况讨论:①当a 2-b 2=0,c 2-(a 2+b 2)≠0时,则a =b , ∴△ABC 为等腰三角形;②当a 2-b 2≠0,c 2-(a 2+b 2)=0时,则c 2=a 2+b 2, ∴△ABC 为直角三角形;③当a 2-b 2=0,c 2-(a 2+b 2)=0时,则a =b ,c 2=a 2+b 2, ∴△ABC 为等腰直角三角形.综上所述,△ABC 为直角三角形或等腰三角形或等腰直角三角形.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上)21.计算:1.222×9-1.332×4=6.32.22.若x 2+x =1,则3x 4+3x 3+3x +1的值为4.23.232-1可以被10和20之间某两个整数整除,则这两个数是17,15.24.若4x -3是多项式4x 2+5x +a 的一个因式,则a =-6.25.甲、乙两位同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4),乙看错了a ,分解结果为(x +1)(x +9),则2a +b =21.二、解答题(本大题共3个小题,共30分)26.(8分)如图是一种混凝土排水管,其形状为空心的圆柱体,它的内径d =68 cm ,外径D =88 cm ,长h =200 cm ,浇制一节这样的排水管需要多少立方米的混凝土?(结果保留π)解:π(D 2)2h -π(d 2)2h=πh[(D 2)2-(d 2)2]=πh(D 2+d 2)(D 2-d2)=π×200×(882+682)×(882-682)=π×200×(44+34)×(44-34)=π×200×78×10=156 000π(cm 3)=0.156π(m 3).答:浇制一节这样的排水管需要0.156π m 3的混凝土.27.(10分)设y =kx ,是否存在实数k ,使得代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为x 4?若能,请求出所有满足条件的k 的值;若不能,请说明理由.解:能.(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)=(4x 2-y 2)(x 2-y 2+3x 2)=(4x 2-y 2)2.当y =kx 时,原式=(4x 2-k 2x 2)2=(4-k 2)2x 4. 令(4-k 2)2=1,解得k =±3或± 5.∴当k =±3或±5时,原代数式可化简为x 4.28.(12分)如图1所示,边长为a 的大正方形中有一个边长为b 的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请问用这两个图可以验证公式法因式分解中的哪个公式? (2)若图1中的阴影部分的面积是12,a -b =3,求a +b 的值;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.解:(1)a 2-b 2=(a +b)(a -b).(2)依题意,得a 2-b 2=12, ∴a 2-b 2=(a +b)(a -b)=12. ∵a -b =3,∴a +b =4.(3)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(24-1)(24+1)(28+1)(216+1)(232+1)+1=(28-1)(28+1)(216+1)(232+1)+1=(216-1)(216+1)(232+1)+1=(232-1)(232+1)+1 =264-1+1 =264.。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
2020-2021学年北师大版八年级数学下因式分解优生辅导训练含答案

北师大版八年级数学下册《第4章因式分解》经典好题优生辅导训练1.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为()A.﹣1B.0C.3D.62.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.20223.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,用公式法分解因式的有()A.2个B.3个C.4个D.5个4.已知a﹣b=b﹣c=2,a2+b2+c2=11,则ab+bc+ac=()A.﹣22B.﹣1C.7D.115.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63B.63和65C.65和67D.64和676.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)7.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣18.已知多项式4x2﹣(y﹣z)2的一个因式为2x﹣y+z,则另一个因式是()A.2x﹣y﹣z B.2x﹣y+z C.2x+y+z D.2x+y﹣z9.多项式4(x2+1)+(x+1)2(x﹣3)+(x﹣1)3等于下列哪个选项()A.2x(x﹣1)2B.2x(x+1)(x﹣1)C.x(x+1)(x﹣1)D.2(x﹣1)2(x﹣1)10.已知a,b,c是直角三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.>0B.=0C.<0D.不确定二.填空题(共10小题)11.分解因式:(p+1)(p﹣4)+3p=.12.计算:40372﹣8072×2019=.13.若a,b,c分别是△ABC的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC的形状是.14.若a=2017x+2018,b=2017x+2019,c=2017x+2020,则a2+b2+c2﹣ab﹣ac﹣bc =.15.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值.16.已知a2+a﹣1=0,则a3+2a2+2019=.17.因式分解:(2x+y)2﹣(x+2y)2=.18.若x+y﹣1=0,则x2+xy+y2﹣2=.19.若多项式x2+2(m﹣2)x+25能用完全平方公式因式分解,则m的值为.20.(1)若x2+y2=10,xy=3,那么代数式x﹣y的值为.(2)若x2+xy+x=14,y2+xy+y=28,那么代数式x+y的值为.三.解答题(共7小题)21.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.22.我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x﹣7=x2+[7+(﹣1)]x+7×(﹣1)=(x+7)[x+(﹣1)]=(x+7)(x﹣1).但小白在学习中发现,对于x2+6x﹣7还可以使用以下方法分解因式.x2+6x﹣7=x2+6x+9﹣7﹣9=(x+3)2﹣16=(x+3)2﹣42=(x+3+4)(x+3﹣4)=(x+7)(x﹣1).这种在二次三项式x2+6x﹣7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2﹣8x+7分解因式;(2)填空:x2﹣10xy+9y2=x2﹣10xy++9y2﹣=(x﹣5y)2﹣16y2=(x﹣5y)2﹣()2=[(x﹣5y)+][(x﹣5y)﹣]=(x﹣y)(x﹣);(3)请用两种不同方法分解因式x2+12mx﹣13m2.23.阅读材料:常用的分解因式方法有提公因式、公式法等,但有的多项式只有上述方法就无法分解,如x2﹣4y2+2x﹣4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:x2﹣4y2+2x﹣4y=(x2﹣4y2)+(2x﹣4y)=(x+2y)(x﹣2y)+2(x﹣2y)=(x﹣2y)(x+2y+2)这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:x2﹣6xy+9y2﹣3x+9y(2)△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,判断△ABC的形状.24.分解因式:2m(m﹣n)2﹣8m2(n﹣m)25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=;(2)因式分解:(x2﹣6x)(x2﹣6x+18)+81;(3)求证,若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.26.先分解因式,再求值:已知5x+y=2,5y﹣3x=3,求3(x+3y)2﹣12(2x﹣y)2的值.27.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=.参考答案1.解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,原式=0.故选:B.2.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.3.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.4.解:∵a﹣b=b﹣c=2,∴a﹣c=4,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b ﹣c)2+(c﹣a)2]=12,∴ab+bc+ac=a2+b2+c2﹣12=﹣1,故选:B.5.解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.6.解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.7.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.8.解:原式=(2x+y﹣z)(2x﹣y+z),∴另一个因式是2x+y﹣z.故选:D.9.解:原式=4x2+4+(x2+2x+1)(x﹣3)+x3﹣3x2+3x﹣1=4x2+4+x3﹣x2﹣5x﹣3+x3﹣3x2+3x﹣1=2x3﹣2x=2x(x2﹣1)=2x(x+1)(x﹣1).故选:B.10.解:将代数式因式分解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a﹣b﹣c)(a﹣b+c),根据三角形两边之和大于第三边知:a﹣b﹣c<0,而a﹣b+c>0,则:a2﹣2ab+b2﹣c2=(a﹣b﹣c)(a﹣b+c)<0,故选:C.11.解:(p+1)(p﹣4)+3p=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2).12.解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:113.解:∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c分别是△ABC的三条边,∴△ABC是等边三角形,故答案为等边三角形.14.解:a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=(a﹣b)2+(a﹣c)2+(b﹣c)2=3,故答案为3.15.解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.16.解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=202017.解:原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).18.解:∵x+y﹣1=0,∴x+y=1,∴x2+xy+y2﹣2===﹣,故答案为:﹣.19.解:∵多项式x2+2(m﹣2)x+25能用完全平方公式因式分解,∴2(m﹣2)=±10,解得:m=7或﹣3,故答案为:7或﹣320.解:(1)∵x2+y2=10,xy=3,∴(x﹣y)2=x2﹣2xy+y2=10﹣6=4,则x﹣y=±2;(2)∵x2+xy+x=14,y2+xy+y=28,∴x2+xy+x+y2+xy+y=42,即(x+y)2+(x+y)﹣42=0,分解因式得:(x+y﹣6)(x+y+7)=0,则x+y=6或﹣7.故答案为:(1)±2;(2)6或﹣721.解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).22.解:(1)x2﹣8x+7=x2﹣8x+16+7﹣16=(x﹣4)2﹣9=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7);(2)x2﹣10xy+9y2=x2﹣10xy+25y2+9y2﹣25y2=(x﹣5y)2﹣16y2=(x﹣5y)2﹣(4y)2=[(x﹣5y)+4y][(x﹣5y)﹣4y]=(x﹣y)(x﹣9y);故答案为:25y2,25y2,4y,4y,4y,9y;(3)方法1:原式=x2+[13m+(﹣m)]x+13m•(﹣m)=(x+13m)(x﹣m);方法二:原式=x2+12mx+36m2﹣13m2﹣36m2=(x+6m)2﹣49m2=(x+6m+7m)(x+6m﹣7m)=(x+13m)(x﹣m).23.解:(1)x2﹣6xy+9y2﹣3x+9y=(x2﹣6xy+9y2)﹣(3x﹣9y)=(x﹣3y)2﹣3(x﹣3y)=(x﹣3y)(x﹣3y﹣3);(2)∵a2﹣b2﹣ac+bc=0,∴(a2﹣b2)﹣(ac﹣bc)=0,∴(a+b)(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)[(a+b)﹣c]=0,∵a,b,c是△ABC的三边,∴(a+b)﹣c>0,∴a﹣b=0,得a=b,∴△ABC是等腰三角形.24.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).25.解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=x2﹣6x,则原式变为A(A+18)+81=A2+18A+81=(A+9)2,故(x2﹣6x)(x2﹣6x+18)+81=(A+9)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.26.解:原式=3[(x+3y)2﹣4(2x﹣y)2]=3[(x+3y)+2(2x﹣y)][(x+3y)﹣2(2x﹣y)]=3(x+3y+4x﹣2y)(x+3y﹣4x+2y)=3(5x+y)(﹣3x+5y),当5x+y=2,5y﹣3x=3时,原式=3×2×3=18.27.解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).。
专题4.5 因式分解-完全平方公式(知识讲解)-2020-2021学年八年级数学下册基础知识专项讲练

专题4.5 因式分解-完全平方公式(知识讲解)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,.形如,的式子叫做完全平方式. 特别说明:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——完全平方公式1、(2020·上海市静安区实验中学七年级课时练习)因式分解:214x x ++()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b【答案】212x ⎛⎫+ ⎪⎝⎭ 【分析】直接利用完全平方公式进行分解即可. 解:214x x ++=2211222x x ⎛⎫+⨯⨯+ ⎪⎝⎭=212x ⎛⎫+ ⎪⎝⎭. 【点拨】本题考查了利用完全平方公式分解因式,熟记完全平方公式的结构特征是解题的关键. 举一反三:【变式】(2020·上海市静安区实验中学七年级课时练习)因式分解:22293x xy y -+【答案】23x y ⎛⎫- ⎪⎝⎭【分析】利用完全平方公式进行分解因式即可得答案.解:22293x xy y -+=221233x xy y ⎛⎫-⨯+ ⎪⎝⎭ =23x y ⎛⎫- ⎪⎝⎭.【点拨】本题考查了利用完全平方公式分解因式,熟练掌握完全平方公式的结构特征是解题的关2、(2020·上海市梅陇中学七年级期中)因式分解222(6)18(6)81a a a a ++++【答案】4(3)a +【分析】首先将(a 2+6a )看作一个整体,利用完全平方公式进行分解因式,进而再利用完全平方公式得出结果即可.解: 222(6)18(6)81a a a a ++++22(69)a a =++4(3)a =+【点拨】此题主要考查了公式法分解因式,熟练掌握完全平方公式的结构特点和应用是解题关键. 键. 举一反三:【变式】2020·上海市静安区实验中学)因式分解:()()242025x y x y +-++ 【答案】()2225x y +-【分析】利用完全平方公式进行分解因式即可得答案. 解:()()242025x y x y +-++=()()2222255x y x y +-⨯+⨯+⎡⎤⎣⎦=()225x y +-⎡⎤⎣⎦ =()2225x y +-.【点拨】本题考查了利用完全平方公式分解因式,熟练掌握完全平方公式的结构特征是解题的关键.3、(2020·山西八年级月考)对多项式()()2242464a a a a -+-++进行因式分解时,小亮先设24a a b -=,代入原式后得: 原式()()264b b =+++2816b b =++()24b =+()2244a a =-+.(1)小亮在因式分解时巧妙运用了以下哪种数学思想: ; A .整体换元思想 B .数形结合思想C .分类讨论思想(2)请指出上述因式分解存在的问题并直接写出正确结果; (3)请参考以上方法对多项式()()22444421a aaa ++++进行因式分解.【答案】(1)A ;(2)分解不彻底;正确结果()42a -;(3)()421a +. 【分析】(1)设24a a b -=是整体换元的思想; (2)a 2-2a+4还可以分解,所以是不彻底; (3)按照例题的分解方法进行分解即可. 解:(1)把24a a -用b 表示,是整体换元; 故选:A()2存在的问题:分解不彻底;理由:()()()222424422a a a a ⎡⎤-+=-=-⎣⎦故答案为:()42a -()3设244a a b +=,原式()21b b =++221b b =++()21b =+()22441a a =++()421a =+【点拨】本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等. 举一反三:【变式1】(2020·上海市梅陇中学七年级期中)因式分解:4224816x x y y -+【答案】22(2)(2)x y x y -+【分析】三项式想到完全平方公式,观察各项发现,首末两项为完全平方式,而中间项恰好是两数积的二倍,变成两数差的完全平方,括号内两项符合平方差公式,利用平方差公式因式分解,再利用积的乘方的逆运用即可. 解:4224816x x y y -+,=()2224x y -,=()()222x y x y -+⎡⎤⎣⎦, =()()2222x y x y -+.【点拨】本题考查因式分解的内容,掌握因式分解的方法,能灵活运用因式分解的方法进行因式分解,掌握因式分解的顺序,会根据多项式的特点选择恰当的方法因式分解.【变式2】(2020·武汉七一华源中学八年级月考)因式分解()2228ac bc abc -+=______.【答案】()22ac bc + 【分析】先利用完全平方公式把原式写成2222244a c abc b c ++,再根据完全平方公式得出结果. 解:原式222222448a c abc b c abc =-++2222244a c abc b c =++()22ac bc =+.故答案是:()22ac bc +.【点拨】本题考查因式分解,解题的关键是掌握利用乘法公式进行因式分解的方法. 类型二、完全平方公式分解因式的应用4、(2020·河南八年级期中)a ,b ,c 是ABC 的三边,且有2241029a b a b +=+- (1)若c 为整数,求c 的值(2)若ABC 是等腰三角形,直接写出这个三角形的周长 【答案】(1)4c =或5c =或6c =;(2)12.【分析】(1)由2241029a b a b +=+-,可得:()()22250a b -+-=,利用非负数的性质求解,a b ,再利用三角形三边的关系得到c 的取值范围,从而可得答案;(2)分两种情况讨论,当2a =为腰时,当5b =为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案. 解:(1)2241029a b a b +=+-,224410250a a b b ∴-++-+=,()()22250a b ∴-+-=, 2050a b -=⎧∴⎨-=⎩, 25a b =⎧∴⎨=⎩,3∴<c <7,c 为整数,4c ∴=或5c =或6c =.(2)当2a =为腰时,三角形的三边分别为:2,2,5,由22+<5,此时三角形不存在,故舍去, 当5b =为腰时,三角形的三边分别为:5,5,2, 由52+>5,三角形存在,55212.ABCC∴=++=【点拨】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键. 举一反三:【变式】(2020·河南八年级期中)如果a ,b ,c 是三角形ABC 的三边,并且满足等式222a b c ab bc ca ++=++,试确定三角形ABC 的形状【答案】等边三角形【分析】由222a b c ab bc ca ++=++,可得:2222222220,a b c ab bc ac ++---=从而可得:()()()2220,a b b c a c -+-+-=利用非负数的性质可得:,a b c ==从而可得答案. 解:222a b c ab bc ca ++=++,2222222220,a b c ab bc ac ∴++---=()()()2222222220,a ab b b bc c a ac c ∴-++-++-+= ()()()2220,a b b c a c ∴-+-+-= 000a b b c a c -=⎧⎪∴-=⎨⎪-=⎩,a b c ∴==∴ 三角形ABC 是等边三角形.【点拨】本题考查的是非负数的性质的应用,完全平方公式的应用,等边三角形的判定,掌握以上知识是解题的关键. 类型三 、完全平方公式求最值5、(2019·广东广州市白云区六中珠江学校八年级期中)我们可以用以下方法求代数式265x x ++的最小值.222226523335(3)4x x x x x ++=+⋅⋅+-+=+-∵2(3)0x +≥ ∵()2443x -≥-+,∵当3x =-时,265x x ++有最小值-4. 请根据上述方法,解答下列问题 (1)求代数式241x x -+的最小值;(2)求证:无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3)已知x 为实数,求代数式()2424162021x x x x ++++的最小值.【答案】(1)241x x -+有最小值3-;(2)证明见解析;(3)()2424162021x x x x ++++有最小值2020. 【分析】(1)通过配方可得:241x x -+()223x =--,再利用非负数的性质,结合不等式的性质可得答案;(2)把原式通过配方化为:()()()2221331y x x y -+-+-+,再利用非负数的性质可得:()()()22213311,y x x y -+-+-+≥从而可得结论;(3)利用配方法把原式化为:()2424162021x x x x ++++()22212020x x =+++()412020,x =++ 再利用非负数的性质可得代数式的最小值.解:(1)241x x -+()2443x x =-+- ()223x =--()220,x -≥()2233,x ∴--≥-∴ 当2x =时,241x x -+有最小值3-.(2)2221066211x y xy x y +---+22222169691y y x x x xy y =-++-++-++()()()2221331y x x y =-+-+-+()()()22210,30,30,y x x y -≥-≥-≥()()()22213311,y x x y ∴-+-+-+≥ ∴ 22210662111x y xy x y +---+≥,∴ 无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3)()2424162021x x x x ++++()()222214142020x x x x =+++++ ()22212020x x =+++()412020x =++()410,x +≥()4120202020,x ∴++≥∴ 当1x =-时,()2424162021x x x x ++++有最小值2020.【点拨】本题考查的是配方法的应用,非负数的性质,利用配方法求代数式的最值,因式分解的应用,掌握利用完全平方式的特点进行配方是解题的关键.。
完全平方公式专项练习题

完全平方公式专项练习专项练习:1(3a -5)2 2.(-2m -3n )2 3. (a 2-1)2-(a 2+1)2 4.(-2a +5b )2 5.(-21ab 2-32c )26.(x -2y )(x 2-4y 2)(x +2y )7.(2a +3)2+(3a -2)2 8.(a -2b +3c )(a +2b -3c );9.(s -2t )(-s -2t )-(s -2t )2; 10.(t -3)2(t +3)2(t 2+9)2.11. 992-98×100; 12. 49×51-2499;13.(x -2y )(x +2y )-(x +2y )214.(a +b +c )(a +b -c )15.(2a +1)2-(1-2a )216.(3x -y )2-(2x +y )2+5x (y -x ) 17. 先化简,再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.18.已知x -y =9,x ·y =5,求x 2+y 2的值.19.(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2).已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.20.(1).已知2a -b =5,ab =23,求4a 2+b 2-1的值. (2).已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab的值.(3).已知2()16,4,a b ab +==求223a b +与2()a b -的值。
21.(1)已知()5,a b a b -==求2()a b +与223()a b +的值。
(2).已知6,4a b a b +=-=求ab 与22a b +的值。
(3).已知224,4a b a b +=+=求22a b 的值。
(4).已知6,4a b ab +==,求22223a b a b ab ++的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4.6 因式分解-完全平方公式(专项练习)一、单选题1.(2020·浙江杭州市·七年级其他模拟)下列各因式分解正确的是( ) A .22(2)(2)(2)=x x x -+--+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .24=2(2)(2)x x x x -+-2.(2019·海口市金盘实验学校八年级期中)已知x 2+kx +9可以用完全平方公式进行因式分解,则k 的值为( )A .3B .±3C .6D .±63.(2021·沙坪坝区·重庆一中八年级期末)下列各式分解因式正确的是( ) A .241(41)(41)x x x -=+- B .211(1)a a a a a-+=-+ C .121684342a b a b -+=-+() D .221(1)422x x x -+=- 4.(2021·北京朝阳区·八年级期末)下列因式分解变形正确的是( )A .22242(2)a a a a -=-B .2221(1)a a a -+=-C .24(2)(2)a a a -+=+-D .256(2)(3)a a a a --=-- 5.(2020·上海宝山区·七年级期末)下列多项式中,完全平方式是( ) A .22a ab b ++B .239a a -+C .214a a -+D .21124a a ++ 6.(2020·福建泉州市·泉州七中八年级期中)已知2x m mn =-,()y n m n =-,则x y -的值是( )A .实数B .正实数C .负实数D .非负实数 7.(2020·上海市梅陇中学七年级期中)下列各式可以用完全平方公式因式分解的是( )A .2224x xy y -+B .222a ab b --C .2144m m -+ D .296x x -+8.(2020·乌兰察布市·内蒙古凉城县宏远中学八年级期中)下列各式能用完全平方公式分解因式的有( )①2244x xy y --;①214a a ---;①2244n m mn +-;①2224a ab b -+;①289x x -+ A .1个 B .2个 C .3个 D .4个9.(2021·河南漯河市·八年级期末)已知a ,b ,c 是①ABC 的三边长,且满足222()a c b a c b +=+-,则此三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .无法确定 10.(2020·沙坪坝区·重庆南开中学八年级月考)关于x y 、的多项式2245815x xy y y -+++的最小值为( )A .1-B .0C .1D .211.(2020·全国七年级单元测试)下列各多项式中,能运用公式法分解因式的有() ①2m 4-+①22x y --①22x y 1-①()()22m a m a --+①222x 8y -①22x 2xy y ---①229a b 3ab 1-+A .4个B .5个C .6个D .7个12.(2020·湖南怀化市·七年级期末)下列各式中,能用完全平方公式分解因式的是( ) A .2441x x -+ B .2631x x ++ C .2242x xy y ++ D .29181x x ++ 13.(2020·辽宁沈阳市·八年级期末)分解因式:4﹣12(a ﹣b )+9(a ﹣b )2=( ) A .(2+3a ﹣3b )2 B .(2﹣3a ﹣3b )2 C .(2+3a+3b )2 D .(2﹣3a+3b )2 14.(2020·全国八年级课时练习)若多项式x 2﹣3(m ﹣2)x+36能用完全平方公式分解因式,则m 的值为( )A .6或﹣2B .﹣2C .6D .﹣6或2 15.(2020·安徽合肥市·七年级期末)若a 、b 为实数,且2222440a ab b a -+++=,则22a b ab +=( )A .8B .-8C .-16D .16二、填空题16.(2021·山东淄博市·八年级期末)分解因式:269x x -+=______.17.(2020·y 2﹣4y +4=0,则x =_____,y =_____.18.(2021·全国八年级)设a b 2-=-,求22a b ab 2+-的值________. 19.(2020·东北师范大学附属中学朝阳学校八年级月考)下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程解:设24x x y -=,原式(2)(6)4y y =+++ (第一步)2816y y =++ (第二步)2(4)y =+ (第三步)()2244x x =-+ (第四步) (1)该同学第二步到第三步运用了因式分解的________(填选项).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y 用所设中的x 的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后,________;(填“是”或“否”)如果否,直接写出最后的结果___________.20.(2020·浙江杭州市·七年级其他模拟)已知2a b -=,3b c +=,222a b c ab bc ca ++-++=______.21.(2020·上海市蒙山中学七年级期中)分解因式:()()244x y x y ++++=_____________.22.(2020·定兴县第四中学七年级期末)体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为2 n ;乙班:全班同学“引体向上”总次数为 50625n -.(注:两班人数均超过30人) 请比较一下两班学生“引体向上”总次数,__________班的次数多,多__________次. 23.(2020·山东济南市·八年级期中)利用1个a×a 的正方形,1个b×b 的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.24.(2020·上海市静安区实验中学七年级课时练习)212x x ++________ =(x +____)2; 25.(2020·四川巴中市·七年级期末)已知为等腰三角形ABC ,其中两边,a b 满足,244|3|0a a b -++-=,则ABC ∆的周长为_______________________26.(2020·浙江杭州市·七年级其他模拟)已知x ﹣2,则代数式(x +1)2﹣6(x +1)+9的值为_____.27.(2018·全国八年级课时练习)因式分解:214y y ++=______ 28.(2020·全国七年级课时练习)因式分解:225101a a -+=______________29.(2020·海安市海陵中学八年级月考)已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.三、解答题30.(2021·全国八年级)阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式. 例如:22221111112411()()2422x x x x ++=++-+ 21125()24x =+- 115115()()2222x x =+++- (8)(3)x x =++根据以上材料,解答下列问题:(1)用多项式的配方法将2627x x --化成2()x m n ++的形式分解因式.(2)求证:x ,y 取任何实数时,多项式224615x y x y +--+的值总为正数.31.(2021·广东肇庆市·八年级期末)a 、b 、c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长32.(2020·山东烟台市·八年级期中)(阅读材料)下面是某同学对多项式(x 2−4x+2)(x 2−4x+6)+4进行因式分解的过程.设x 2−4x=y原式=(y+2)(y+6)+4(第一步)=y 2+8y+16(第二步)=(y+4)2(第三步)=(x 2−4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底? ___(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(a 2−2a )(a 2−2a+2)+1进行因式分解.参考答案1.C【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:A 、222(2)()(242)x x x x -+-=-+-=,故不符合题意;B 、221x x +-不能分解,故不符合题意;C 、22441(21)x x x -+=-,故符合题意;D 、24(4)x x x x -=-,故不符合题意;故选C .【点拨】本题考查了分解因式,关键在于是否准确运用公式,还要注意分解因式一定要彻底,直到不能再分解为止.2.D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】解:①x 2+kx+9可以用完全平方公式进行因式分解,①k=±6,故选:D .【点拨】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键. 3.C【分析】根据因式分解的方法可直接进行排除选项.【详解】A 、()()2412121x x x -=+-,故错误; B 、由因式分解是把一个多项式分解成几个整式乘积的形式,故该选项错误;C 、()121684342a b a b -+=-+,故正确;D 、221124x x x ⎛⎫-=-+ ⎪⎝⎭,①2211422x x x ⎛⎫-+≠- ⎪⎝⎭,故错误; 故选C .【点拨】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.4.B【分析】根据提公因式分解因式可得出A 错误;根据完全平方公式可得B 正确;根据平方差公式可得C 错误;根据十字相乘法可判断D 错误.【详解】A 、2242(2)a a a a -=-,故此选项错误;B 、2221(1)a a a -+=-,故此选项正确;C 、24(2)(2)a a a -+=+-,故此选项错误;D 、256(6)(+1)a a a a --=-,故此选项错误.故选:B【点拨】本题主要考查了因式分解,要灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要提取公因式,再考虑运用公式法分解.5.C【分析】根据完全平方公式:()2222a ab b a b ±+=±,逐一判断即可.【详解】解:A 、22a ab b ++不符合完全平方式的特征,故不符合题意;B 、239a a -+不符合完全平方式的特征,故不符合题意;C 、214a a -+=212a ⎛⎫- ⎪⎝⎭,故本选项符合题意;D 、21124a a ++不符合完全平方式的特征,故不符合题意. 故选C .【点拨】此题考查的是完全平方式的判断,掌握完全平方公式的特征是解题关键.6.D【分析】将两个代数式相减,再利用完全平方公式进行因式分解判断即可.【详解】2x m mn =-,()y n m n =-,① ()()2222=2=x y m mn n m n m mn n m n ----=-+-≥0,故选:D .【点拨】本题考查因式分解,熟练掌握完全平方公式公式是关键.7.D【分析】由完全平方公式:()2222=a ab b a b ±+±的特点逐一判断各选项即可得到答案.【详解】解:由()222224=22,x xy y x x y y -+-+不符合公式特点,故A 错误; 222a ab b --也不符合公式特点,故B 错误;()2221114=22,422m m m m ⎛⎫-+-+ ⎪⎝⎭不符合公式特点,故C 错误; ()222296=3233,x x x x x -⨯+=--+符合公式特点,故D 正确;故选D .【点拨】本题考查的是利用完全平方公式分解因式,掌握完全平方公式是解题的关键.8.B【分析】完全平方式有两个,是a2+2ab+b2和a2-2ab+b2,根据以上式子判断即可.【详解】解:①4x2-4xy-y2不是完全平方式,①①错误;①221=(1)42a aa----+是完全平方式,①①正确;①2244nm mn+-是完全平方式,①①正确;①2224a ab b-+不是完全平方式,①①错误;①x2-8x+9不是完全平方式,①①错误;故选:B.【点拨】本题考查了完全平方公式的应用,注意:完全平方式有两个,是a2+2ab+b2和a2-2ab+b2.9.A【分析】先移项,将等式右边化为0,再结合完全平方公式及平方数的非负性解题即可.【详解】222()a cb ac b+=+-2222+220+a cb b ab bc∴+--=22()()0+a b b c∴--=a b c==∴ABC∴是等边三角形,故选:A.【点拨】本题考查因式分解的应用、等边三角形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.A【分析】利用完全平方公式对代数式变形,再运用非负性求解即可.【详解】解:原式=2245815x xy y y -+++ 222=44+816-1x xy y y y -+++()()22=2+4-1x y y -+①()220x y -≥,()2+40y ≥,①原式≥-1,①原式的最小值为-1,故选A .【点拨】本题考查完全平方公式的变形,以及平方的非负性,灵活运用公式是关键.11.B【分析】利用完全平方公式及平方差公式的特征判断即可.【详解】解:(1)可用平方差公式分解为()()22m m -+;(2)不能用平方差公式分解;(3)可用平方差公式分解为()()11xy xy +-;(4)可用平方差公式分解为﹣4am ;(5)可用平方差公式分解为()()222x y x y +-;(6)可用完全平方公式分解为()2x y -+ ;(7)不能用完全平方公式分解;能运用公式法分解因式的有5个,故选B .【点拨】此题考查了因式分解−运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键. 12.A【分析】完全平方公式是指:()222b 2ab a a b ±=±+,根据公式即可得出答案.【详解】解:()2244x 121x x -+=-.故选A .【点拨】本题主要考查的完全平方公式,属于基础题型.理解公式是解决这个问题的关键. 13.D【分析】原式利用完全平方公式分解即可.【详解】解:原式()223a b =--⎡⎤⎣⎦ ()2233a b =-+.故选:D .【点拨】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.14.A【分析】根据完全平方公式即可求解.【详解】①多项式x 2﹣3(m ﹣2)+36能用完全平方公式分解因式,①﹣3(m ﹣2)=±12.①m =6或﹣2,故选:A .【点拨】此题主要考查因式分解,解题的关键是熟知完全平方公式的特点.15.C【分析】先由2222440a ab b a -+++=化为两个完全平方数和的形式,根据非负数相加等于0,所以各个非负数都为0进行解答.【详解】解;2222440a ab b a -+++=,即2222440a ab b a a -++++=,22()(2)0a b a ∴-++=,故0a b -=,20a +=,解得:2a =-,2b =-.故22()16a b ab ab a b +=+=-.故选:C .【点拨】本题考查了完全平方公式及非负数的性质,属于基础题,关键是掌握几个非负数相加等于0,各个非负数都为0.16.()23x -【分析】利用完全平方公式分解即可【详解】 ()22693x x x -+=-故答案为:()23x -.【点拨】本题考查因式分解问题,掌握因式分解的方法,会根据具体的内容选用公式法进行因式分解是解题关键.17.2 2【分析】根据算术平方根和偶次乘方的非负性得出x 、y 的值即可.【详解】2440y y -+=,2(2)0y -=,①x ﹣y =0,y ﹣2=0,解得x =2,y =2,故答案为:2,2.【点拨】本题考查非负数的性质和完全平方式.了解两个非负数相加等于0,则这两个非负数即为0是解答本题的关键.18.2【分析】根据公式法对原式进行因式分解,再整体代入即可计算.【详解】 原式2222()22a b ab a b +--==. ① 2a b -=-,① 原式2(2)22-==. 故答案为:2.【点拨】本题考查公式法进行因式分解,灵活运用分解方法是解题关键.19.C 否 ()42x -【分析】(1)根据两数和的完全平方公式即可得;(2)根据两数差的完全平方公式即可得.【详解】(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式,故选:C ;(2)否,最后结果求解如下:原式()2244x x =-+,()222x ⎡⎤=-⎣⎦, ()42x =-,故答案为:否,()42x -.【点拨】本题考查了利用换元法和完全平方公式进行因式分解,熟记完全平方公式是解题关键. 20.19【分析】先对原式配成完全平方的形式,再结合条件代入计算即可.【详解】222a b c ab bc ca ++-++()2221=2222222a b c ab bc ca ++-++ ()()()22222212=222a b a ac a c b bc b c ⎡⎤+++++++⎣-⎦ ()()()22212a b a c b c ⎡⎤=-++++⎣⎦ 2a b -=,3b c +=,5a c ∴+=,∴原式()2221235192=++=; 故答案为:19.【点拨】本题考查了用因式分解的方式将式子配成完全平方式,进而代入求值,能够将题中的式子进行变形成含有条件的形式是解决问题的关键.21.()22x y ++【分析】根据完全平方公式可直接进行求解.【详解】解:()()()22442x y x y x y ++++=++;故答案为()22x y ++.【点拨】本题主要考查利用乘法公式进行因式分解,熟练掌握公式法因式分解是解题的关键. 22.甲 2(25)n -(或250625n n -+)【分析】利用作差法比较2n 与50625n -的大小关系即可得到答案.【详解】解:由()()222506255062525,n n n n n --=-+=- n >30,()225n ∴->0,2n ∴>50625,n -所以甲班的次数多,多2(25)n -次. 故答案为:甲,2(25)n -.【点拨】本题考查的是作差比较代数式的大小,同时考查了完全平方式的非负性,利用完全平方公式分解因式,掌握以上知识是解题的关键.23.a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点拨:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.24.116 14【分析】对等式左边根据完全平方和公式进行配对填空,等式右边直接根据完全平方和公式填空.【详解】 解:等式左边根据完全平方和公式常数项应为2112216⎛⎫÷= ⎪⎝⎭,这样等式左边即为211216x x ++,即222111244x x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,所以等式右边空格应填14. 故答案为:116;14. 【点拨】本题考查完全平方和公式,熟练掌握完全平方和公式的结构特征是解题关键.25.7或8【分析】先运用平方差公式将等式的前三项因式分解得2(2)|3|0a b -+-=,再根据非负性求出a ,b 的值,再代入求值即可.【详解】解:244|3|0a a b -++-=,2(2)|3|0a b ∴-+-=,2a ∴=,3b =,∴当腰为3时,等腰三角形的周长为3328++=,当腰为2时,等腰三角形的周长为3227++=.故答案为:7或8.【点拨】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.26.2【分析】利用完全平方公式得到原式=(x ﹣2)2,然后利用整体代入的方法计算.【详解】解:(x +1)2﹣6(x +1)+9=[(x +1)﹣3]2=(x ﹣2)2,①x ﹣2①)2=2,故答案为2.【点拨】本题考查应用完全平方公式进行因式分解,进而利用整体代入法求代数式的值,灵活应用公式进行因式分解是关键.27.212y ⎛⎫+ ⎪⎝⎭ 【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:2222111124222y y y y y ⎛⎫⎛⎫++=+⨯+=+ ⎪ ⎪⎝⎭⎝⎭. 故答案为:212y ⎛⎫+ ⎪⎝⎭ .28.()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.29.0【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点拨】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.30.(1)(3)(9)x x +-;(2)见解析.【分析】(1)根据配方法配方,再运用平方差公式分解因式即可;(2)根据配方法把x 2+y 2-4x -6y+15变形成(x -2)2+(y -3)2+2,再根据平方的非负性,可得答案.【详解】(1)解:2627x x --269927x x =-+--2(3)36x =--(36)(36)x x =-+--(3)(9)x x =+-;(2)证明:224615x y x y +--+22(44)(69)2x x y y =-++-++22(2)(3)22x y =-+-+,故x ,y 取任何实数时,多项式224615x y x y +--+的值总为正数. 【点拨】本题考查了配方法的应用、因式分解以及平方差公式,利用完全平方公式:a 2±2ab+b 2=(a±b )2配方是解题关键.31.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a a b b -++-+=()()22250a b -+-= 2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点拨】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.32.(1)不彻底.原式 =(x−2)4;(2)原式=(a−1)4.【分析】(1)根据因式分解的步骤进行解答即可;(2)设a 2﹣2a =y ,再根据完全平方公式把原式进行分解即可.【详解】解:(1)①(x 2﹣4x +4)2=(x ﹣2)4,①该同学因式分解的结果不彻底.故答案为:不彻底,(x ﹣2)4.(2)设a 2﹣2a =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(a 2﹣2a +1)2=(a ﹣1)4.【点拨】本题考查的是因式分解,在解答此类题目时要注意完全平方公式的应用.。