3 自动 调节器 的 调节规律

合集下载

调节器的调节规律

调节器的调节规律
第四章 调节器的调节规律
• •
• • • • • •

调节器 P P= f(e) e>0,P>0,正作用调节器; e>0,P<0,反作用调节器。 比例P 三种基本调节规律 积分I 组成5种实用调节规律: 微分D 双位调节规律、比例调节规律P、比例积分 调节规律PI、比例微分调节规律PD、比例积分 微分调节规律PID。
• • • •
式中:e是被控量的变化量(偏差值); x max 是被控量允许变化的最大范围; P是调节器输出的变化量; Pmax是调节器输出的工作范围。
R
P max x max
• R是量程系数,对于指定的调节器,R为 常数;对于单元组合仪表,因采用统一 的标准信号,R=1,则PB=1/KP×100%。 • 显然比例带PB与比例系数成反比。
二、实例分析:
• 三、特点: • 被控参数不可能稳定在某一数值, 只能在给定值上、下作小范围的等 幅振于允许被调参数以一定幅 度上、下波动,且被控对象的时间 常 数较大,滞后时间较小的场合。
§4—2 比例调节规律
• 一、概念:调节器的输出P与偏 差输入e 成正
比。P=KP×e, KP为调节器的比例系数。 • e P • t t
e
§4—1双位调节规律
• 一、概念: • 调节器的输出只有两个状态,它不能 使被控参数稳定在某个值上。 • 当被控参数下降到下限值时,调节器 的输出接通电机电源使电机转动或使 电 磁阀通电阀门全开。 • 当被控参数上升到上限值时,调节器 的输出使电机断电停转或使电磁阀断电 阀门全关。 • 当被控参数在上、下限之间变化时, 调节器的输出状态不变。
4、比例带对系统过渡过程的影响:
• 四、特点:
• (1)调节及时,且调节器的调节量随 偏差增大以及比例系数增大而增大。 • (2)一般调节完毕,会有静差出现。

调节器及调节作用规律

调节器及调节作用规律


K p测
K F测 l2 F反 l3
F为波纹管的截面积,两者一般相等
l为力臂,一般固定不变
K为负数—负作用(作用方式)
§1-3-2 比例作用规律
DLMU
K F测 l2 F反 l3
如何调整比例带(比例系数)?
改变反馈力臂的长度,来调整比例系数(K比例带PB), 实物上通过比例带旋钮可以左右移动反馈波纹管的位置来实 现。
微分阀Rd开度越大,微分消失得越快,即微分时间Td 越 短,微分作用越弱;反之亦然。
当微分消失后,调节器的输出大小与偏差成比例,比例 作用的强弱由负反馈波纹管的位置进行调整。
§1-3-3 比例微分作用规律
DLMU
小结
1、微分作用具有超前调节的功能,输出减小的过程即为微分 消失过程;
2、微分作用不能单独用作调节器,一般与比例或者比例积分 一起构成PD或者PID调节器;
Company name
调节器及调节作用规律
轮机自动化教研室
DLMU
引言
r(t)
+-
e(t) 调节器
p(t)
b(t)
执行 q(t) 机构
测量 单元
f(t)
控制 y(t) 对象
DLMU
引言
– 系统为偏差驱动 – 调节器的输入是被控量的偏差值 – 调节器的输出是控制量 – 可看作一个对象或环节 – 调节器的作用规律:
§1-3-2 比例作用规律
DLMU
2、比例带δ(或 PB):是指调节器的相对输入量与相对输出 量之比的百分数.
PB( ) e / X imax 100% X Omax e 100 R 100%
p / X O max

§1-3--调节器及调节作用规律解析

§1-3--调节器及调节作用规律解析

Sd为微分系数
实际微分作用的输出特性
§ 1-3-3 比例微分作用规律
DLMU
微分作用特点: 1、微分作用的输出与偏差的绝对值没有关系 2、根据偏差变化速度,超前控制,抵制偏差:
a) 偏差出现开始,控制作用较强 b) 当偏差值变化缓慢时,微分控制作用微弱 c) 偏差为常数时,微分控制器没有输出 3、微分控制无法消除偏差,只能作为一种辅助控制作用。 4、常用于控制对象惯性大,时延较明显的对象。
主要内容
DLMU
§1-3-1 位式调节器 §1-3-2比例调节器 §1-3-3比例微分调节器 §1-3-4比例积分调节器 §1-3-5比例积分微分调节器
§1-3-1双位作用规律
DLMU
r(t)
e(t) +-
双位
p(t)
b(t)
执行 q(t) 机构
测量 单元
f(t)
控制 y(t) 对象
§1-3-1双位作用规律
DLMU
被控量在设定的上限和下限之间变化,调节器的输出只有两 个状态(0或1)。
§1-3-1双位作用规律
DLMU
被控量在设定的上限和下限之间变化,调节器的输出只有两 个状态(0或1)。
例1 浮子式锅炉水位的双位控制系统
被控量输出曲线
p(t)
被控量
开 执行机构

动作范围
水位与电动机通断之间的关系图
1
1
p(t) Ke(t) S0 e(t)dt K[e(t) Ti e(t)dt]
K—比例系数,S0 积分系数,Ti 积分时间
比例作用能使调节器的输出及时响应偏差的变化,起着主 导作用,而积分作用是辅助的,用来消除静态偏差
§ 1-3-4 比例积分作用规律

第三节调节器的调节规律及其实现方法

第三节调节器的调节规律及其实现方法

e0 te 0ut01e δ第三节 调节器的调节规律及其实现方法自动控制系统的调节质量取决于它的动态特性,即取决于组成控制系统的控制对象和调节设备的动态特性。

控制对象的动态特性一般是难以人为改变的。

所以,对于对象结构一定的控制系统,调节过程质量的好坏主要取决于控制系统的结构形式和调节器的动态特性。

调节器的动态特性也称为调节器的动作规律,是调节器的输入信号(一般为被调量的偏差信号)与输出信号(一般代表了执行机构的位置)之间的动态关系。

为了得到一个满意的调节过程,必须根据控制对象的动态特性确定控制系统的结构形式,选择调节器的动作规律,使自动控制系统有一个较好的动态特性。

一、调节器的调节规律1、比例调节规律(P )所谓比例调节规律,是指调节器输出的控制作用u (t )与其偏差输入信号e (t )之间成比例关系,即)()(t e K t u p =(1-11)式中 K p ——比例增益。

比例调节器的传递函数:p p K s E s U s G ==)()()( (1-12)工程中,常用比例带δ来描述其控制作用的强弱,即:pK 1=δ (1-13)其物理意义是在调节机构的位移改变100%时,被调量应有的改变量,如δ=20%时,则表明调节器输出变化100%时,需要其输入信号变化20%。

比例调节器的阶跃响应曲线如图1-18所示。

比例调节器输出控制作用u (t )将与偏差e (t ) 成比例地变化,而且几乎是同时产生的。

控制作用的变化目的是调节进入对象的流入量,消除不平衡流量,使被调量回到原来的值上。

从这一点看,比例调节规律的特点之一就是调节及时、迅速。

还可看出,在∞→t时调节过程结束,但偏差信号e (t )仍存在;换言之,调节过程结束时被调量的偏差仍未完全消除。

因为采用比例调节规律的调节器,其输出的控制作用大小与偏差大小成比例关系,一定大小的控制作用是抵消扰动的影响,使系统重新稳定下来的保证。

在系统受到扰动后,被调量偏离了其给定值,而出现偏差,调节器的调节使系统再次进入稳定状态,但偏差或大或小还要存在,否则偏差为零,控制作用也随之消失,干扰信号的存在eue 0tt图1-19 积分调节器的阶跃响应曲线就不可能使系统稳定下来。

5-3 调节器及其调节规律

5-3  调节器及其调节规律

二、实例分析:
1.浮子式双位控制系统
• 三、特点: • 被控参数不可能稳定在某一数 值,只能在给定值上、下作小范围 的等幅振荡。
• 四、适用范围:

只适用于允许被调参数以一定 幅度上、下波动,且被控对象的时 间常 数较大,滞后时间较小的场合。
2.双位式压力调节器
图5-25 YT-1226型压力调节器结构原理
4、比例带对系统过渡过程的影响:
• 四、特点:
• (1)调节及时,且调节器的调节量随 偏差增大以及比例系数增大而增大。 • (2)一般调节完毕,会有静差出现。
• 五、适用范围: •
适用于干扰较小,对象滞后较小, 时间常数较大的调节对象,此时选PB 小些,使静态偏差不致太大,同时又 能保证控制过程有足够的稳定性。
p5b p出a p5 a 100% PB p出 b PB tan 100% 0 90
PB 10% ~ 500%

• • • • • • • • • •


一、比例、积分、微分三种基本调节规律: [比例] [积分] [微分] 比例调节器, 积分调节器, 说起微分器, 象个放大器。 累积有本事。 胆小有脾气。 若有偏差来, 只要偏差在, 偏差变化快, 放大送出去。 累积不停止。 输出跳上去。 放大是多少, 积累快与慢, 下降快与慢, 旋钮看仔细。 旋钮看仔细。 旋钮看仔细。 比例度调大, 积分时间长, 微分时间长, 放大倍数低。 积累速度低。 下降慢慢的。
3.3 比例微分作用规律
控制器的微分作用是指其输出与输入的微分,即偏

dt 变化速度成比例。 这样,微分作用可以在偏差变化较快时起到超前控制的作 用。但当偏差不再变化时,微分输出将消失,因此微分作 用常与比例作用一起形成比例微分(PD)控制器。 xo (t ) K p xi (t ) TD dxi (t ) dt

3、调节器的调节规律及其对控制过程的影响

3、调节器的调节规律及其对控制过程的影响

1 K K C t lim S t T1T2 S 2 T1 T2 S 1 K P K S 1 K P K S 0
上式表明,在系统受到扰动后,调节过程结束,被调量仍存
在稳态偏差K/(1+Kp· K),只是比无调节作用时减小。偏差大小与
+ -
调节器
执行器
变送器
图3-1
控制系统组成原理框图
实际中,在系统分析时又往往将执行器(包括调节阀)、对
象及变送器称为“广义对象”,这样就形成如图3-2所示的控制系 统组成方框图。
扰动 r +
d
调节器
广义对象
c
图3-2 控制系统等效原理框图
在上图中,基本的闭环控制系统由调节器和“广义对象” (下称对象)两部分组成;除调节阀对对象的扰动作用外,其他
比例带成正比。
第三节 积分调节规律及其对调节过程的影响
一、积分调节规律
积分调节规律:调节器输出控制作用u(t)与其偏差输入信号
e(t)随时间的积累值成正比,即:
u (t ) 1 Ti
e(t )dt
传函为:WI
S T
1
i
S
积分调节器的阶跃响应如图3-7所示:
e(t)
E
u(t)
E t Ti t
点,从而克服了单纯比例作用时不能消除偏差的缺点和单纯积分
作用时控制不及时的缺点。
四、单容对象配比例积分调节器的控制过程
R(s)
+
-
1 k p (1 ) Ti s
+
+
D(s)
K 1 T S
C(s)
图3-10
PI控制系统传递方框图

自动控制基本知识

自动控制基本知识

四、典型环节的动态特性
1.比例环节
1、定义:输出能够按一定比例,无迟延、无惯性的复现输入 信号。
2、微分方程: y(t) K p x(t)
Kp—环节的传递系数或比例系数。
3、传递函数为:W
(s)
Y (s) X (s)
KP
4、阶跃响应曲线:
2、积分环节
1、定义:输出与输入的积分成比例关系。 输出的变化速度与输入成比例关系。
Y s W1 s X1 s X 2 s
X2 s W2 sY s
W总 s
Y s X1 s
W1 s 1W1 sW2
s
第三节 调节器的调节规律
一、概念: 调节器的输出信号与输入信号之间的关系。 PID调节的优点:
(1)原理简单,使用方便。 (2)适应性强。广泛应用于化工、热工、冶金、冶炼、造纸等。 (3)鲁棒性强。即控制品质对被控对象特性的变化不太敏感。
(三)术语 测量变送器: 调节器: 执行器: 执行机构 调节机构 被控对象:指被控制的生产设备或生产过程。 被调量:表征生产过程是否正常而需要控制的物理量。 给定值:根据生产工艺要求,被控量应该达到的数值。 调节量:由控制作用来改变,以控制被控量的变化, 使被控量恢复为给定值的物理量。 扰动:引起被控量偏离其给定值的各种原因。 基本扰动:调节量 干扰:
b1
dx(t) dt
b0 x(t)
(n≥m)
2、传递函数 -微分运算转为代数运算,分析综合方便
定义:线性定常系统在零初始条件下,系统(或环节)输出信号的拉普拉 斯变换与输入信号的拉普拉斯变换之比。
W
(s)
Ly(t) Lx(t)
Y (s) X (s)
设线性定常系统(或环节)的微分方程如上式,在初始条件为零的情况 下,对上式进行拉普拉斯变换,得:

自动调节器典型调节规律及调节过程分析

自动调节器典型调节规律及调节过程分析

第八章 调节器调节规律及其对过程影响第一节 自动调节器典型调节规律及调节过程分析调节器的基本调节规律是模拟运行人员的基本操作,是运行人员调节动作精华的总结。

选择合适的调节器动作规律是热工自动人员的职责范畴,但运行人员如果能理解各种动作的调节过程,就能够使用好相应的自动调节系统。

自动调节的目的是要及时准确地进行调节,前面我们已经讲到基本环节由比例、积分、惯性、微分、迟延组成。

因为惯性、迟延环节不符合及时准确的要求,所以我们可考虑的就只有比例、积分、微分这三种特性了(积分、微分调节规律一般不能单独使用)。

自动调节器的典型动作规律按照环节特性可分为比例(P )、比例积分(PI )、比例微分(PD )、比例积分微分(PID )。

一、典型调节规律1. 比例(P )调节规律比例调节作用简称为P 作用,是所有调节器必不可少的一种典型调节作用。

P 作用实质上就是典型环节中的比例作用。

不过这个环节一般用电子元件构成的电路来实现,其输入输出都是电信号。

比例环节的传递函数P K W =,P K 称为比例环节的比例放大系数;而在比例(P )调节作用中,传递函数习惯上表示成δ1=P W , (8-1) 式中 PK 1=δ——调节器的比例带(比例度),δ越大,比例作用越弱。

下面以如图8-1所示的采用浮子式比例调节器的水位调节系统为例,说明比例调节器的调节规律。

该系统的被调对象是有自平衡能力的单容水箱;浮子起到检测器的作用,用于感受水位的变化;比例调节器就是杠杆本身,杠杆以O 点为支点可以顺时针或逆时针转动。

给定值的大小与给定值连杆的长短有关;选择流入侧阀门作为调节阀,由调节器来控制它的开度变化。

当某种扰动使水位升高时(说明此时流入量1q >流出量2q ),浮子随之升高,通过杠杆作用使阀门芯下移,关小调节阀,流入量1q 减小直至等于流出量2q 。

反之,当某种扰动使水位降低时(说明此时流入量1q <流出量2q ,浮子随之降低,通过杠杆作用使阀门芯上移,开大调节阀,流入量1q 加大直至等于流出量2q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档