贵阳市高三元月调考数学试卷(理科)(I)卷

合集下载

贵阳市普通高中2020届高三年级第一学期监测考试理科数学试题及答案word

贵阳市普通高中2020届高三年级第一学期监测考试理科数学试题及答案word

贵阳市普通高中2020届高三年级第一学期监测考试试卷理科数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∩(∁U N )D .(∁U M )∪(∁U N ) 2.满足i 3·z =1-3i 的复数z 的共轭复数是( )A .3-iB .-3-iC .3+iD .-3+i3.若双曲线x 2-y 2m=1的一个焦点为(-3,0),则m =( )A .2 2B .8C .9D .64 4.《张丘建算经》卷上第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈。

”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第一天织5尺布,现在一月(按30天计)共织390尺布,则从第2天开始每天比前一天多织( )A.12尺布B.518尺布C.1631尺布D.1629尺布 5.函数f (x )=⎝⎛⎭⎫12x ,x ∈(0,+∞)的值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( )A.12B.13C.14D .1 6.已知函数f (x )=cos2x +3sin2x ,则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )B.⎣⎡⎦⎤k π,k π+π2(k ∈Z ) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z ) 7.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2≥y ,x ≤2,y -1≥0,若z =x +ay (a >0)的最大值为10,则a =( )A .1B .2C .3D .48.在△ABC 中,| AB u u u r +AC u u u r =| AB u u u r -AC u u ur |,AB =2,AC =1,E ,F 为BC 的三等分点, 则AE u u u r ·AF u u u r=( )A.109B.259C.269D.899.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足b 2+c 2-a 2=bc ,a =32,则b +c 的取值范围是( )A.⎝⎛⎭⎫12,3B.⎝⎛⎦⎤32,3C.⎝⎛⎭⎫32,32 D.⎝⎛⎦⎤12,32 10.函数y =2|x|sin2x 的图像可能是( )11.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM u u u u r |=1,且PM u u u u r ·AM u u u u r=0,则|PM u u u u r|的最小值为( )A. 2 B .2 C. 3 D .312.已知函数f (x )=2e x +1e x +1+1与g (x )=mx +m +1(m 为常数),若函数F (x )=f (x )-g (x )恰有三个零点x 1,x 2,x 3,则f (x 1)+f (x 2)+f (x 3)=( )A .eB .e -1 C .1 D .3 二、填空题:本题共4小题,每小题5分,共20分。

贵州省贵阳市第一中学2020届高三数学上学期第一次适应性考试试题理(扫描版)(最新整理)

贵州省贵阳市第一中学2020届高三数学上学期第一次适应性考试试题理(扫描版)(最新整理)

贵州省贵阳市第一中学2020届高三数学上学期第一次适应性考试试题理(扫描版)贵阳第一中学2020届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABDACBDCCAA【解析】1.,故选B . 2.因为,所以,的共轭复数为,故选A.3.假真,故选B .4.是奇函数,在区间上为减函数,故选D . 5.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为,记第二次出现的点数为,基本事件总数有种,事件“”包含的基本事件有,共2个,所以事件“”的概率为,故选A .6.双曲线的实轴长为8,得,又,所以双曲线的渐近线方程为,故选C .7.由三视图知该几何体是四棱锥,如图1,则最小三角形面积为,故选B .8.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得,再向左平移个单位,所得函数,故选D .9.以为邻边作菱形,投影为,故选C .10.的展开式中的系数为25,即,,设,令,得{2345}M=,,,(1i )|3i |z+=+|13i |22(1i )1i1i (1i )(1i )z +-====-+-+z1i +pqsi n ()y x =-(01),m n 6636⨯=3m n =(31),(62),3m n =213618P ==4a =1b =14y x=±AB C D E -2A B E S =△πsin 6y x ⎛⎫=+ ⎪⎝⎭1πs in 26y x ⎛⎫=+ ⎪⎝⎭π61πs in 24y x ⎛⎫=+ ⎪⎝⎭a b ,A B C D 33c o s 120︒=-5(2)(1)a x x ++2x21552C C 25a +=1a =5234560123456(2)(1)x x a a x a x a x a x a x a x ++=++++++1x =512332a aa a =+++图,故选C .11.设,由,则,当时,,解得;当时,恒成立,综上知,当时,不等式对成立,故选A .12.根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,,即,即方程在区间上有解,设函数,其导数,又,在有唯一的极值点,分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值,又由,,比较得,故函数有最大值,故函数在区间上的值域为,若方程在区间上有解,必有,则有,即的取值范围是,故选A .二、填空题(本大题共4小题,每小题5分,共20分) 题号 13 141516答案,13.由线性约束条件画出可行域(如图2所示),由过点时,z 最小,最小值为5。

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。

【高三】贵州省贵阳市届高三2月适应性监测考试(一)数学理试题(WORD版

【高三】贵州省贵阳市届高三2月适应性监测考试(一)数学理试题(WORD版

【高三】贵州省贵阳市届高三2月适应性监测考试(一)数学理试题(WORD版试卷说明:贵阳市高三适应性监测考试(一)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的.1.的定义域,则A∩B=A.B. C. D.2. 复数(为虚数单位)在复平面上对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在等差数列中,则前7项的和S7等于A. B.C. D. 4. 阅读右图所示程序框图,运行相应的程序,输出S的值等于A. -3 B. -10 C. 0 D. -2 5. 右图是一个几何体的三视图,则该几何体的体积等于A.2B. C.D.4 6. 若等于A.? B. C.? D.7. 如图,在矩形ABCD中,AB= , BC=2,点E为BC的中点,点F在CD上,若?= ,则?的值是A. B. 2 C. 0 D. 18. 下列命题中假命题的是A.((,(∈R,使sin((+()=sin(+sin( B. ((∈R,函数都不是偶函数 C. (,使D. (>0, 函数有零点9. 已知,为的的图象是10. 在平面直角坐标系中,抛物线C:的焦点为F,M是抛物线C上的点,若(OFM的外接圆与抛物线C的准线相切,且该圆面积9(,则p=A. B. C. D.,则0≤≤2的概率是A. B. C. D. 12.双曲线的左、右焦点分别为F1,F2 ,过左焦点F1作圆的切线,切点为E,直线EF1交双曲线右支于点P. 若=(),则双曲线的离心率是 A. B. 2 C. D. 二、填空题:本大题共4小题,每小题5分,共20分.13.的展开式中常数项为96,则实数等于. 14.已知变量满足, 则的最大值为 15.已知四棱锥O?ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O?ABCD的体积为 .16. 已知定义在R上的函数是奇函数,且满足 , 若数列中,且前n项和Sn满足 ,则 ____ .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程和演算步骤.17. (本小题满分分)=(sin x , -1) , =(cos x ,-) ,函数=(+)?-2. (Ⅰ)求的最小正周期T;分别为(ABC内角A、B、C 的对边,其中A为锐角,=2 ,c=4, 且求(ABC的面积.(I)求,p的值;()从年龄在[,)“抢购商品”的人群中采用分层抽样法抽取人参,,[40,).组数分组的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45)0.4第五组[45,50)300.3第六组[50,55]150.3(Ⅱ)在线段AB上是否存在点E,使二面角的大小为?若存在,求出AE的长;若不存在,请说明理由.20.(本题满分分已知的长轴、短轴、焦距分别为A1A2、B1B2、F1F2,且是与等差中项(Ⅰ)求方程;(Ⅱ),过椭圆C1左顶点的直线与曲线C2相切,求直线被椭圆C1截得的线段长的最小值 .21. (本小题满分12分)已知函数.(Ⅰ)若函数在区间(,)(>0)上存在极值,求实数的取值范围;>恒成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【选修4-1:几何证明选讲】如图,AB是圆的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.(Ⅰ)求证:∠DEA=DFA;(Ⅱ) 求证:.23. (本小题满分10分)选修4―4:极坐标和参数方程以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系中取相同单位的长度.已知直线的方程为,曲线的参数方程为,点M是曲线C上的一动点.(Ⅰ)求线段OM的中点P的轨迹方程;(Ⅱ)求曲线C上的点到直线的距离的最小值.24.(Ⅰ)当=1时,求函数;(Ⅱ)若≥+1对任意的实数恒成立,求实数的取值范围.贵阳市201年高三适应性监测考试(一)科数学2月.12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2020年1月贵州省贵阳市普通高中2020届高三上学期1月期末考试数学(理)试卷参考答案

2020年1月贵州省贵阳市普通高中2020届高三上学期1月期末考试数学(理)试卷参考答案

贵阳市普通高中2020届高三年级第一学期期末监测考试高三数学(理科)参考答案与评分建议一、选择题:本大题共12小题,每小题5分,共60分。

二、填空题:本大题共4小题,每小题5分。

13.725−14.280− 15.1[1,]2− 16三、解答题:第17至21题每题12分,第22、23题为选考题,各10分。

解答应写出文字说明,证明过程或演算步骤。

17.(本题满分12分) 解:(1)当1n =时,111233, 3a a a =−=当2n ≥时,233n n S a =−............(1) 11233n n S a −−=− (2)(2)-(1)得:1233nn n a a a −=−∴13nn a a −= ∴数列{}n a 是13,3a q ==的等比数列3n n a =…………………………6分(2)33log log 3n nn b a n ===,则12211=2()(1)1n n n c b b n n n n +==−++ 1231111111112()1223341n n n T c c c c c n n −=+++⋯+=−+−+−⋯⋯+−+1122()22111n T n n =−=−<++…………………………12分18.(本题满分12分)解:(1)的取值情况有,,.基本事件总数为10. 设“25302530m n ⎧⎨⎩≤≤≤≤”为事件,则事件包含的基本事件为所以,故事件“25302530m n ⎧⎨⎩≤≤≤≤”的概率为………………………4分 (2)将甲、乙所作拟合直线分别计算的值得到下表:用作为拟合直线时,所得到的值与的实际值的差的平方和为222221(2223)(24.225)(28.630)(26.426)(19.816)18.2S =−+−+−+−+−=用作为拟合直线时,所得到的值与的实际值的差的平方和为222222(2223)(24.525)(29.530)(2726)(19.516)14.75S =−+−+−+−+−=由于,故用直线的拟合效果好…………………………8分 (3)由列表得:11x =,24y =;521615ii x==∑;511351i ii x y==∑,设回归方程为a bx y+=ˆ, 则122211351511243.1615511ni ii ni i x y nx yb x nx==−−⨯⨯===−⨯−∑∑,24 3.11110.1a y bx =−=−⨯=−, 故所求方程为ˆ 3.110.1yx =−…………………………12分,m n (23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16)(30,26)(30,16),(26,16)A A (25,30),(25,26),(30,26)3()10P A =310y 2.2y x =y y 2.53y x =−y y 12S S > 2.53y x =−解: (1)连接AC ,交BQ 于N ,连接MN ,因为底面ABCD 是菱形, ∴//AQ BC ,∴ANQ BCN ∆∆∽,12AQ AN BC NC ==, ∴3AC =,1AN =, (0,0,0)Q (1,0,0)A B 由(2,0,0)AC AD AB =+=−所以点(2,3,0)C −,设平面PQC 的一个法向量为00QP QC ⎧⋅=⎪⎨⋅=n n ,即0x ⎧+⎪⎨23,z =(3,23,0),|=设平面BMQ 的法向量为00QB MN ⋅=⋅=m m ,注意到PA ,00QB PA ⋅=⋅=m ,解得BMQ 的一个法向量,设二面角B MQ −θ⋅==m n m n解:(1)由题意知可设过点(1,0)−的直线方程为1x ty =−,由 ⎩⎨⎧=−=xy ty x 412消去x 整理得0442=+−ty y , 又因为直线与抛物线相切,所以016162=−=∆t ,解得1±=t .当1=t 时,直线方程为1+=x y ,可得点P 坐标为12(,), 又因为焦点(1,0)F ,所以点P 在x 轴上的射影为焦点F .……………………6分 (2)设直线l 的方程为2x my =+,由⎩⎨⎧=+=xy my x 422消去x 整理得0842=−−my y , 其中032162>+=∆m 恒成立. 设11(,)A x y ,22(,)B x y , 则m y y y y 4,82121=+−=所以2212121212()4,()44416y y x x x x m y y m ==+=++=+ 由于圆M 是以线段AB 为直径的圆过点P ,则0PA PB ⋅=, 所以04)(21)(21212121=++−+++−y y y y x x x x 所以03842=++m m 解得21−=m 或23−=m 当21−=m 时,直线l 的方程为24y x =−+,圆M 的方程为 445)1()25(22=++−y x ;当23−=m 时,直线l 的方程为3432+−=x y ,圆M 的方程4221)3()213(22=++−y x .……………………12分证明:(1)∵1()()2x xf x e e −=−, ∴1()()02x xf x e e −'=+>, ∴()f x 在(0,)+∞上是增函数,又∵001(0)()02f e e =⨯−=∴当(0,)x ∈+∞时,()(0)0f x f >=; 又∵0,0xx ee −>>,∴由均值不等式得11()()122x x f x e e −'=+⨯=≥……………………………6分 (2)设()()()(1)g x f x mxf x m x '=−−−11()()(1)22x x x xe e mx e e m x −−=−−+−−则1111()(()())(1)2222x x x x x xg x e e m e e mx e e m −−−'=+−++−−−111()()()(1)222x x x x x x e e m e e mx e e m −−−=+−+−−−− 11(1)()(1)()22x x x x m e e m mx e e −−=−⨯+−−−−11(1)(()1)()22x x x x m e e mx e e −−=−+−−−(1)(()1)()m f x mxf x '=−−−∵1m ≥且0x >,由(Ⅰ)知()10f x '−>,()0f x >, ∴()(1)(()1)()0g x m f x mxf x ''=−−−<, ∴()g x 在(0,)+∞上是单调减函数,又∵(0)0g = ∴()(0)0g x g <=,即()()(1)0f x mxf x m x '−−−<∴当1m ≥,0x >时,()()(1)f x mxf x m x '<+−.……………………………12分解:(1)将cos ,sin x y ρθρθ==,222xy ρ+=代入212cos 110ρρθ++=得2212110x y x +++=,即22(6)25x y ++=,所以圆C 的圆心坐标为(6,0)−;……………………………5分 (2)在极坐标系中,直线l 的极坐标方程为()R θαρ=∈. 设,A B 所对应的极径分别为12,ρρ.将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=.于是121212cos ,11ρραρρ+=−=.12||||AB ρρ=−==由||AB =23cos ,tan 83αα==±,所以l的斜率为3或3−. ……………………………10分 23.(本题满分12分)解:(1)由已知2, 4(),2442, 4x x f x x x x ⎧−<−⎪=−<−⎪⎪⎪⎪⎩≤≥,由()f x <解得x <<,即{|Mx x =<<;……………………………5分(2)由(1)知,当,a b M ∈时,a b <<<<,从而222222)||2|22444a b ab a b ab a b ab +−+=++−−−222222242(2)(2)0a a b b a b =−−+=−−<所以|)||2|a b ab +<+……………………………10分。

贵州省贵阳第一中学2022届高三上学期适应性月考卷(一)理科数学试卷

贵州省贵阳第一中学2022届高三上学期适应性月考卷(一)理科数学试卷

秘密★启用前贵州省贵阳第一中学2022届高考适应性月考卷(一)理科数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回。

满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}24230,12A x x xB xx =−−≤=>+,则A B= A. [-1, 2) B. [-1, 3] C. (-2, 3] D. (-2, 2) 2.设复数z 满足(1)3z i i +=−, 则z 的共轭复数为A.1-2iB.1+2iC. -1-2iD. -1+2i 3.已知向量(1,2),(1,3)a b ==−,且()ma nb +⊥b , 则m n= A. 12−B. 12C.2D.-24.已知数列{}n a 的前n 项和为S n ,且231722n S n n =−,则n a 的最小值为 A.1 B.2 C.3 D.45.函数2()ln(231)f x x x =−+的单调递减区间为A. 3(,)4−∞B. 1(,)2−∞C. 3(,)4+∞ D. (1,)+∞6. 5(1)(2)x x +−的展开式中,x 5的系数为A.11B. -40C.30D. -9 7.某产品的零售价x (元)与销售量y (个)的统计表如下:据上表可得回归直线方程为8.1y x a ∧=−+,则商品零售价为10元时,预计销售量为 A.56个 B.58个 C.60个. D.62个8.2021年暑假,贵阳一中继续组织学生开展“ 百行体验”社会实践活动.现高三年级某班有6名学生需要去敬老院、社区医院、儿童福利院三个机构开展活动,要求每个机构去2名学生,且学生甲不去敬老院,则不同的安排共有A. 60种B. 360种C.15种D.100 种 9. 若直线mx -ny +3=0(m >0, n >0)截圆C: x 2+y 2 +6x -4y +5=0所得的弦长为42,则21m n+的最小值为 A.8433− B. 8433+ C. 843− D. 843+ 10. 国际数学教育大会( ICME)是世界数学教育规模最大、水平最高的学术性会议.第十四届大会于2021年7月11日~18日在上海市华东师范大学成功举办,其会标如图1, 包含着许多数学元素.主画面是非常优美的几何化的中心对称图形,由弦图、圆和螺线组成,主画面标明的ICME-14下方的”是用中国古代八进制的计数符号写出的八进制数3744,也可以读出其二进制码(0)11111100100,受疫情影响,第十四届大会在原定的举办时间上有所推迟,已知上述二进制和八进制数转换为十进制即是第十四届大会原定的举办时间,则第十四届数学教育大会原定于( ) 年举行. A.2018 B.2019 C.2020 D.202111.已知双曲线C: 22221(0,0)x y a b a b−=>>的左、右焦点分别为F 1, F 2,曲线C 上一点P 到x3a ,且∠PF 2F 1= 120°,则双曲线C 的离心率为A.13+1 B. 131 C.13+12 D. 131212.已知函数()f x 是定义在R 上的奇函数,且当x >0时,1()ln f x x x e=+,若关于x 的函数2()[()]()F x f x af x =+恰有5个零点,则实数a 的取值范围为A. 11[,0)(0,]e e− B. 11[,]e e − C. 11(,0)(0,)e e − D. 11(,)e e −二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan 1,tan 2αβ==,则tan(2)_______αβ−=14.若x , y 满足约束条件1122x y x y x y +≥⎧⎪−≤⎨⎪−≥−⎩,则3429z x y =+−的最小值为______15.某几何体的三视图如图2所示,则该三视图的外接球表面积为_____。

贵州省贵阳市四校2020届高三数学1月月考试题理(扫描版)

贵州省贵阳市四校2020届高三数学1月月考试题理(扫描版)

贵州省贵阳市四校2020届高三数学1月月考试题理(扫描版)贵阳市四校2020届高三年级联合考试(四)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.A 集合为点集,B 集合为数集,两集合没有公共元素,故选D . 2.复数i (i)(1i)(1)(1)i 1i (1i)(1i)2a a a a z +++-++===--+,复数z 为纯虚数,则110022a a +-≠=,,解得1a =,故选C .3.本题考查等差数列通项公式的应用. 根据题意,甲乙分的钱数相当于等差数列的第1项和第2项,戊己庚分的钱数相当于等差数列的第5,6,7项,丙丁分的钱数相当于等差数列的第3,4项,7人分得的钱数成等差数列.根据题意得125677775a aa a a +=⎧⎨++=⎩,,即111117745675a a d a d a d a d ++=⎧⎨+++++=⎩,,解得1403a d =⎧⎨=-⎩,,所以3141234331a a d a a d =+==+=,,即丙分得34文钱,丁分得31文钱,故选A.4.①正确;②在ABC △中,若sin2sin2A B =,则角A 与角B 相等或角A 与角B 互余,②错误;③命题:“若tan x =,则π3x =”是假命题,根据原命题与逆否命题的等价性知其逆否命题也是假命题,③正确,故选C . 5.由三视图知,该几何体是四棱锥,故13163V ==g g 或221=443332V V =g g g g 三棱柱 16=,故选C .6.由程序语句可知:该程序的功能是利用循环结构计算并输出π2πsin sin sin π33S =++4πsin 3+ 5πsin3+的值,由于π2π4π5πsin sinsin πsin sin 03333S =++++=,故选B . 7.311200882|33S x x ===⎰,故选C . 8.根据题意,函数1()2xf x ⎛⎫= ⎪⎝⎭在R 上为减函数,又0.312222log 5<=<,则a b c >>,故选B .9.∵11()ln||ln||()f x x x x x f x x x ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪-⎝⎭⎝⎭,∴()f x 是奇函数,关于(00),对称,排除A ,B ;当2x =时,5(2)ln 202f =>,故选D .10.2a b +=,即13a b ++=,所以1111111(1)213131b a a b a b a b a b +⎛⎫⎛⎫+=+++=++ ⎪ ⎪+++⎝⎭⎝⎭11422313b a a b ⎛++= +⎝g ≥,故选C . 11.由题意得2b y =与椭圆22221x y a b +=的交点的坐标分别为3±2b ⎛⎫ ⎪ ⎪⎝⎭,,因为(0)F c ,,且90BFC ∠=︒,所以0FB FC =u u u r u u u r g ,即23304b c c ⎛⎫⎛⎫-+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,即2232c a =,所以6e =,故选A . 12.∵函数(2)y f x =+的图象关于直线2x =-对称,∴函数()y f x =图象的对称轴为0x =,故()y f x =是偶函数,即()()f x f x -=.又函数(1)f x +是偶函数,∴(1)(1)f x f x +=-+,故(2)()()f x f x f x +=-=,∴函数()f x 是周期为2的偶函数.又当[01]x ∈,时,π()sin 2f x x =,画出()y f x =与||1e x y ⎛⎫= ⎪⎝⎭的图象如图1所示,由图象可知在每个周期内两函数的图象有两个交点,所以函数||()()e x g x f x -=-在区间[20162016]-,上的零点个数为201624032⨯=,故选A .二、填空题(本大题共4小题,每小题5分,共20分)题号 1314 1516答案 51055π6171322n n a -=-g 【解析】13.a r 在b r 方向上的投影为5||a b b =r rg r 251m =+m 为211-(舍去)或2-,图1∴(12)b =-r ,,∴|| 5.b =r14.4x 的系数为432666C C C 10.-+=15.如图2,三棱锥P ABC -即为长方体的实线部分,则长方体的体对角线PB 即为外接球直径,5PB ,即可求出体积34π55π3R V =. 16.因为点*1()()n n n P a a n +∈N ,在直线310x y -+=上,所以1310n n a a +-+=,所以111322n n a a +⎛⎫+=+ ⎪⎝⎭,因为13a =,所以11722a +=,故数列12n a ⎧⎫+⎨⎬⎩⎭是首项为72,公比为3的等比数列.所以117322n n a -+=g ,故数列{}n a 的通项公式为1713.22n n a -=-g 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(1)众数:9.8;中位数:9.55. …………………………………………………(4分)(2)在16人的样本数据中共有12人“极度不满”,故依题意可知,从该网站论坛中任 选1人,抽到“极度不满”的人的概率34P =, ……………………………………(6分)ξ的可能取值为0123,,,, 311(0)464P ξ⎛⎫=== ⎪⎝⎭,1213319(1)C 4464P ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,21233127(2)C 4464P ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3327(3)464P ξ⎛⎫=== ⎪⎝⎭, ………………………………………………………………(8分)所以ξ的分布列为ξ 0 1 2 3 P164 964 2764 2764…………………………………………………………………………………………(10图2分)192727()0123 2.2564646464E ξ=⨯+⨯+⨯+⨯=. 另解:由题可知334B ξ⎛⎫⎪⎝⎭~,,所以3()3 2.25.4E ξ=⨯= …………………………(12分)18.(本小题满分12分)解:(1)∵cos sin 0a b c A C +-=,由正弦定理得,sin sin sin cos sin 0A B C A A C +-=. ………………………(1分)∵π()B A C =-+,∴sin sin[π()]sin()sin cos cos sin B A C A C A C A C =-+=+=+,∴sin sin cos cos sin sin cos sin 0A A C A C C A A C ++-=,∴sin sin cos sin 0.A A C A C += ……………………………………………(3分)∵(0π)A ∈,,∴sin 0A ≠,∴1cos 0C C +=,cos 1C C -=,12cos 12C C ⎫-=⎪⎪⎝⎭,即π1sin 62C ⎛⎫-= ⎪⎝⎭. ………………………………………(5分)∵0πC <<,∴ππ5π666C -<-<, ∴ππ66C -=,∴π.3C = ………………………………………………………………(6分)(2)∵π3C c ==,∴由余弦定理2222cos c a b ab C =+-,得222π2cos 3a b ab =+-, 即2212.a b ab =+- ……………………………………………………………………(8分)∵2b a =,∴221242a a a a =+-⨯, ∴2312a =,即24a =.∵0a >,∴2a =, …………………………………………………………………(10分)∴24b a ==,ABC △的面积113sin 242 3.22S ab C ==⨯⨯= ………………………………(12分)19.(本小题满分12分)(1)证明:在题图甲中,因为22AB BC CD ==,且D 为AB 的中点. 由平面几何知识,得90ACB ∠=︒. 又因为E 为AC 的中点,所以//DE BC .在题图乙中,CE DE PE DE ⊥⊥,,且CE PE E =I , 所以DE ⊥平面CEP , 所以BC ⊥平面CEP , 又因为BC ⊂平面BCP ,所以平面BCP ⊥平面CEP . ……………………………………………………………(6分)(2)解:因为平面DEP ⊥平面BCED ,平面DEP I 平面BCED DE EP =⊂,平面DEP ,EP DE ⊥,所以EP ⊥平面BCED . 又因为CE ⊂平面BCED , 所以EP CE ⊥.以E 为坐标原点,分别以ED EC EP u u u r u u u r u u u r,,的方向为x 轴、y 轴、z 轴的正方向建立如图3所示的空间直角坐标系. 在题图甲中,设2BC a =,则4AB a =,.AC AE CE DE a ====,,则(00)P ,,(00)D a ,,,(00)C ,,(20)B a ,. …………………………………………………………………………(8分)所以(0)(200)(0).DP a BC a CP =-=-=-u u u r u u u r u u u r,,,,,, 设()x y z =,,n 为平面BCP 的法向量, 则00BC CP ⎧=⎪⎨=⎪⎩u u u rg u u u rg ,,n n即200ax -=⎧⎪⎨=⎪⎩,, 令1y =,则1z =,所以(011).=,,n …………………………………………………(10分)设DP 与平面BCP 所成的角为θ,则||sin cos ||||DP DP DP θ====u u u r u u u r g u u u r |<,>|n n n 所以直线DP 与平面BCP……………………………………(12分)20.(本小题满分12分)(1)解:设()P x y ,,则(12)(10)(1).PQ x y OF PF x y =---==--u u u r u u u r u u u r,,,,, 由||||PQ OF PF =u u u r u u u r u u u rg知,|1|x --24y x =,即动点P 的轨迹E 的方程为24y x =. …………………………………………………(5分)(2)证明:设过点(10)F ,的直线为11221()()x my A x y B x y =+,,,,,由214x my y x =+⎧⎨=⎩,,得2121244044y my y y m y y --=+==-,,, ………………………(7图3分)∵1212112212221111y y k k x my x my x x --+=+=+=+++,,, ∴12122112121222(2)(2)(2)(2)22(2)(2)y y y my y my k k my my my my ---++-++=+=++++ 1212212122(22)()82()4my y m y y m y y m y y +-+-=+++, ……………………………………………………(10分)将121244y y m y y +==-,代入,得212288244m k k m --+==-+, 故12k k +为定值2-. …………………………………………………………………(12分)21.(本小题满分12分) 解:(1)()(1)e kx f x kx +'=, 得(0)0f =,且(0)1f '=,所以曲线()y f x =在点(0(0))f ,处的切线方程为y x =. ……………………………(4分)(2)令()(1)e 0kx f x kx '=+>,所以10kx +>,当0k >时,1x k >-,此时()f x 在1k ⎛⎫-∞- ⎪⎝⎭,上单调递减,在1k ⎛⎫-+∞ ⎪⎝⎭,上单调递增;当0k <时,1x k <-,此时()f x 在1k ⎛⎫-∞- ⎪⎝⎭,上单调递增,在1k ⎛⎫-+∞ ⎪⎝⎭,上单调递减.…………………………………………………………………………………………(8分)(3)当1k =时,()f x 在(1)-∞-,上单调递减,在(1)-+∞,上单调递增, 所以对任意1x ∈R ,有11()(1)ef x f -=-≥,又已知存在2[12]x ∈,,使12()()f x g x ≥,所以221()[12]e g x x -∈≥,,, 即存在[12]x ∈,,使21()24e g x x bx =-+-≤,即14e 2b x x-++≥,即因为当14e 11[12]452e e x x x -+⎡⎤∈+∈++⎢⎥⎣⎦,,,, 所以1242e b +≥,即实数b 的取值范围是124eb +≥,所以实数b 的取值范围是124e ⎡⎫++∞⎪⎢⎣⎭,. …………………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】 解:(1)曲线2C 的直角坐标方程为2220x y y +-=, 曲线3C的直角坐标方程为220x y +-=,联立2222200x y y x y ⎧+-=⎪⎨+-=⎪⎩,,解得00x y =⎧⎨=⎩,或32x y ⎧⎪⎪⎨⎪=⎪⎩, 所以曲线2C 与3C 的交点的直角坐标为3(00).2⎫⎪⎪⎝⎭,和, …………………………(5分)(2)曲线1C 的极坐标方程为(0)θαρρ=∈≠R ,,其中0πα≤≤,因此A 的极坐标为(2sin )αα,,B的极坐标为)αα,,所以π|||2sin |4sin 3AB ααα⎛⎫=-=- ⎪⎝⎭,当5π6α=时,||AB 取到最大值,最大值为4. ………………………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(1)当1m =时,()|1||21|f x x x =-+-,∴12321()12321x x f x x x x x ⎧-<⎪⎪⎪=⎨⎪->⎪⎪⎩,,,≤≤,,,()2f x <,即求不同区间对应的解集, ∴()2f x <的解集为403x x ⎧⎫<<⎨⎬⎩⎭. ……………………………………………………(5分)(2)由题意,()3f x x <-对任意的[01]x ∈,恒成立. 即||3|21|x m x x -<---对任意的[01]x ∈,恒成立. 令1202()3|21|14312x x g x x x x x ⎧+<⎪⎪=---=⎨⎪-⎪⎩,≤,,≤≤,∴函数||y x m =-的图象应该恒在()g x 的下方,数形结合可得02m <<.…………………………………………………………………………………………(10分)。

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳市高三元月调考数学试卷(理科)(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题: (共12题;共24分)
1. (2分)已知集合A=,集合B={(x , y)|x2+(y-a)2≤1},若A∩B=B,则a 的取值范围是()
A . [2,+∞)
B . (-∞,-2]
C . [-2,2]
D . (-∞,-2]∪[2,+∞)
2. (2分)已知复数z满足(z+3i)(3+i)=7﹣i,则复数z在复平面内对应的点在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
3. (2分)(2017·湖南模拟) 执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()
A . s≤
B . s≤
C . s≤
D . s≤
4. (2分)设函数,若实数满足,则()
A .
B .
C .
D .
5. (2分) (2017高二下·赤峰期末) 将三颗骰子各掷一次,记事件“三个点数都不同”,“至少出先一个6点”,则条件概率,分别等于()
A . ,
B . ,
C . ,
D . ,
6. (2分)一空间几何体的三视图如图所示,其中正视图与俯视图均为边长为2的正方形,侧视图为腰长为2的等腰直角三角形,则该几何体的体积为()
A . 8
B . 4
C .
D .
7. (2分)(2018·株洲模拟) 展开式中的系数为()
A . 14
B . -14
C . 56
D . -56
8. (2分)(2017·贵阳模拟) 富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是()
A . 曹雪芹、莎士比亚、雨果
B . 雨果、莎士比亚、曹雪芹
C . 莎士比亚、雨果、曹雪芹
D . 曹雪芹、雨果、莎士比亚
9. (2分)若函数f(x)=x2+ex﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a 的取值范围是()
A . (﹣)
B . ()
C . ()
D . ()
10. (2分) (2015高三上·贵阳期末) 若点A(a,b)在第一象限且在x+2y=4上移动,则log2a+log2b()
A . 最大值为2
B . 最小值为1
C . 最大值为1
D . 没有最大值和最小值
11. (2分) (2018高三上·丰台期末) 过双曲线的一个焦点作一条与其渐近线垂直的直线,垂足为为坐标原点,若,则此双曲线的离心率为()
A .
B .
C . 2
D .
12. (2分) (2017高二上·驻马店期末) 在△ABC中,S为△ABC的面积,且,则tanB+tanC ﹣2tanBtanC=()
A . 1
B . ﹣1
C . 2
D . ﹣2
二、填空题: (共4题;共4分)
13. (1分)设抛物线y2=8x的焦点为F,过点F作直线l与抛物线分别交于A,B两点,若点M满足 =
( + ),过M作y轴的垂线与抛物线交于点P,若|PF|=4,则M点的横坐标为________.
14. (1分)已知a,b是常数,ab≠0,若函数f(x)=ax3+barcsinx+3的最大值为10,则f(x)的最小值为________
15. (1分)(2017·深圳模拟) 已知平面向量 =(1,2), =(2,﹣m),且,则 =________.
16. (1分) (2018高一下·齐齐哈尔期末) 已知三棱锥中,顶点在底面的射影为 .给出下列命题:
①若、、两两互相垂直,则为的垂心;
②若、、两两互相垂直,则有可能为钝角三角形;
③若,且与重合,则三棱锥的各个面都是直角三角形;
④若,且为边的中点,则 .
其中正确命题的序号是________.(把你认为正确的序号都填上)
三、解答题: (共7题;共55分)
17. (10分)已知数列满足,, .
(1)求数列的通项公式;
(2)设,求数列的前项和 .
18. (5分)(2017·黑龙江模拟) 如图,在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2 ,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)求直线PD与平面AQC所成角的正弦值.
19. (5分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得的数据整理后,画频率分布直方图.已知图中横轴从左向右的分组为[50,75)、[75,100)、[100,125)、[125,150],纵轴前3个对应值分别为0.004、0.01、0.02,因失误第4个对应值丢失.
(Ⅰ)已知第1小组频数为10,求参加这次测试的人数?
(Ⅱ)求第4小组在y轴上的对应值;
(Ⅲ)若次数在75次以上(含75次)为达标,试估计该年级跳绳测试达标率是多少?
(Ⅳ)试估计这些数据的中位数.
20. (10分) (2019高二下·仙桃期末) 已知椭圆的离心率为,一个焦点在直线上,直线与椭圆交于两点,其中直线的斜率为,直线的斜率为。

(1)求椭圆方程;
(2)若,试问⊿ 的面积是否为定值,若是求出这个定值,若不是请说明理由。

21. (10分)已知函数f(x)=ax3+bx2﹣3x+d在x=±1处取得极值.
(1)判断f(1)和f(﹣1)是函数y=f(x)的极大值还是极小值,并说明理由;
(2)若函数y=f(x)有三个零点,求d的取值范围.
22. (10分) (2016高三上·太原期中) 在平面直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1,C2的直角坐标方程;
(2)已知点P,Q分别是线C1,C2的动点,求|PQ|的最小值.
23. (5分) (2017高一上·湖州期末) 已知函数.
(Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.
参考答案一、选择题: (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题: (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题: (共7题;共55分) 17-1、
17-2、
19-1、20-1、
20-2、
21-1、21-2、
22-1、
22-2、。

相关文档
最新文档