第3章 地图投影的基本理论

合集下载

地图投影第三章方位投影

地图投影第三章方位投影
角度、面积等变形线为以投影中心为圆线的同心圆。 球面上的微圆投影为椭圆,且误差椭圆的
长半径和纬线方向一致,短半径与经线方 向一致,且等于微圆半径r,又因自投影中 心,纬线扩大程度越来越大,所以变形 椭圆的长半径也越来越长,椭圆越来越扁。 常用来做两极的投影。
横轴方位投影 ——等距
经纬线形状
中央经线为直线,其它经线是对 称于中央经线的曲线。中央纬线 为直线,其它纬线是对称于中央 纬线的曲线。在中央经线上纬线 间隔相等。在中央纬线上经线间 隔相等。
从区域所在的地理位置来说,两极地区和南、北半球图采 用正轴方位投影;赤道附近地区和东、西半球图采用横轴 方位投影;其他地区和水、陆半球图采用斜轴方位投影。
横轴、斜轴方位投影变形分布规律
投影面在p点与地球面相切,过新极点p可做许多大圆, 命名为垂直圈,再作垂直于垂直圈的各圈,命名为等高圈。 这样垂直圈相当于地理坐标系的经线圈,等高圈相当于纬 线圈,等高圈和垂直圈投影后的形式和变形分布规律和正 轴方位投影时,情况完全一致。
3 21ቤተ መጻሕፍቲ ባይዱ
七. 球心投影(日晷投影)
4 3
21
八. 方位投影的分析和应用
方位投影的差别是取决于纬圈或等高圈投影半径p
的形式,而ρ的具体形式是取决于变形性质或透
视条件。
4
根据方位头因的长度比、面积比和角度最大变形的
公式来看,在正轴投影中,它们是纬度3 φ的函数, 在斜轴和横轴投影中,它们是天顶距Z的函数1
方位投影变形性质的图形判别
方位投影经纬线形式具有共同的特征,判别时先看构成形 式(经纬线网),判别是正轴、横轴、斜轴方位投影。
正轴投影,纬线为以投影中心为圆心的同心圆,经线为放 射状直线,夹角相等。横轴投影,赤道与中央经线为垂直 的直线,其他经纬线为曲线。斜轴投影,除中央经线为直 线外,其余的经纬线均为曲线。

03第三章地图投影

03第三章地图投影
②水准原点:(海拨≠零点)其高程是以青岛验潮站平 均海平面为零点,经过精密水准测量进行连测而得。
③其高程值:是埋设于青岛观象山密封井下的永久性的 标志点与验潮站平均海平面之间的高差。
1956年国务院批准建立的黄海高程系的 水准原点距平均海平面的高差为: 72.289m(利用50—56年观测记录)。
四等三角网的边长约4公里,可以保证在1:1万比例尺测图 时,每幅图内有1—2个控制点,每点大约控制20平方公里的 范围。
测量平面控制点的位置,通常采用三角测量的方法。这 种方法的实质是在地面上建立一系列相连接的三角形( 组成三角锁和三角网,),量取一段精确的距离作为起 算边,在这个边的两端点,采用天文观测方法确定其点 位(经度、纬度和方位角),用精密测角仪器测定各三 角形的角值,根据起算边的边长和点位,就可推算出其 他各点的坐标。这样推算的坐标,称为大地坐标。
此外,在一些局部地区也可以用精密导线测量方法,测 量导线边的边长和夹角,推算各点的大地坐标。
(2)高程控制网:
测量高程控制点的主要方法是水准测量,有时也 用三角高程测量。
水准测量是借助水平视线来测定两点间的高差。 连续的水准测量即可组成作为全国高程控制的水 准网。
根据测量精度的不同,水准测量分为四等,作为 全国测图及工程建设的基本高程控制。
精度要求不高时,可将椭球体处理为正球体,地理坐标 均采用地球表面的球面坐标,经纬度均用地心坐标。
天文经纬度只能在天球上定义,天文经(纬)度与大地 经(纬)度相同时,其轨迹在大地经(纬)线附近呈非 平面曲线摆动。但由于θ角(铅垂线与法线的夹角)很 小,这种摆动的幅度也很小。
地心 地心纬度
大地纬度 天文纬度
2.地球体的物理表面(准规则曲面-假想面)

(地图学课件)第2讲链接(第三章我国地形图采用的地图投影)

(地图学课件)第2讲链接(第三章我国地形图采用的地图投影)

此投影在纬度60°以内,采用经差6 °、
Nn=1
纬差4 °为一图幅。经纬线间隔1 °。经线
均为直线,中央经线左右各2 °的经线,
保持长度不变,中央经线的长度较实际长
度略小。纬线为圆弧,边纬线垂直于中央
经线,并保持实长,其余纬线长度较实长
为小。由于每一幅地图的范围不大,所以变形也小。 Ns=1
第五节 我国地形图采用的地图投影
第五节 我国地形图采用的地图投影
我国地形图的投影,除1:100万比例尺地形图采用国际投影和等角圆锥 投影外,其余都采用高斯—克吕格投影
一、国际投影(又称改良多圆锥投影) 5、对多圆锥投影原理的解释 多圆锥投影,中央经线投影为直线且保持长度不变,其余经线投影为对
称于中央经线的曲线;赤道投影为直线,其余纬线投影为同轴圆弧, 圆心位于中央经线上,各纬线投影后保持长度不变且与中央经线正 交。
我国地形图的投影,除1:100万比例尺地形图采用国际投影和等角圆锥 投影外,其余都采用高斯—克吕格投影
一、国际投影(又称改良多圆锥投影) 3、拼接时产生的后果 由于各幅地图均系单独投影,虽然同一列与同一行图幅可以密切拼接,
但上下左右四幅拼接在一起,则发生裂隙。如果九幅或更多幅地图 拼接在一起,则变形更大,但仍可有效的进行研究地区的阅读。 4、七十年代以前,我国1/100万地图一直采用国际投影,现在改用等角 圆锥投影。
第五节 我国地形图采用的地图投影
我国地形图的投影,除1:100万比例尺地形图采用国际投影和等角圆锥
投影外,其余都采用高斯—克吕格投影
一、国际投影(又称改良多圆锥投影)
这种投影既不等角也不等积,中央经线是一条没有变形的线,离中央经
线越远,变形越大。
1、此种投影方式应用于1:100万比例尺的地形图

地图投影的基本原理(1)

地图投影的基本原理(1)
的方法称为地图投影。
地图投影的实质: 建立地球面上点的坐标与地图平面上点的坐标之
间一一对应的函数关系。
地图投影基本概念
2、地图投影基本方法
1)几何透视法 将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特
征点用垂直投影的方法投影到图纸上。 小区域范围可视地表为平面,采用垂直投影方式,可认为投影没有
sin( ') a b sin( ')
ab
显然当(a +a ′)= 90°时,右端取最大值,则最大方向变形:
sin( ') a b
ab
以ω表示角度最大变形: 令
2( ')
sin a b
2 ab
地图投影基本理论
五、地图投影条件
地图投影一般存在长度变形、面积变形和角度变形,一种投影可以同时 存在以上三种变形,但在某种条件下,可以使某一种变形不发生,如投影后 角度不变形,或投影后面积不变形,或使某一特定方向投影后不产生长度变 形。
E、F、G、H称为一阶基本量, 或称高斯系数。
地图投影基本理论
对角线A′C′与x轴之夹角Ψ的 表达式:
sin dy ds
cos dx
tg
dsddmαyxds dsdxysndd
y x
d dLeabharlann x D'x'
dy
C'
(x+dx,y+dy)
dx
ds'
dsm'
Ψ
B'
dsn'
A' (x,y)
O
y
地图投影基本理论
tan tan ' tan b tan (1 b) tan

00.地图学原理与方法

00.地图学原理与方法
第十六章 多媒体电子地图与互联网地图
第一节 多媒体电子地图 第二节 电子地图的设计和制作 第三节 互联网地图的特点和制作
第六篇 地图分析与应用
第十七章 地图分析
第一节 地图分析概述 第二节 传统地图分析的基本方法 第三节 数字地图分析的基本方法
第十八章 地图应用( 阅读章节)
第一节 地图在科学研究方面的应用 第二节 地图在国民经济建设中的应用 第三节 地图在军事上的应用
第五篇 现代地图制图的技术方法
第十四章 数字地图与地图数据库
第一节 数字地图 第二节 矢量数字地图 第三节 栅格数字地图 第四节 地图数据库
第十五章 数字地图制图技术与方法
第一节 数字地图制图技术的形成和发展 第二节 数字地图制图系统 第三节 数字地图数据处理与编辑 第四节 地图数据的符号化 第五节 纸质地图数字化生产与出版
第一篇 概论
第一章 地图
第一节 地图的基本特性和定义 第二节 地图的基本内容 第三节 地图的分类 第四节 地图的分幅与编号 第五节 地图的功能
第二章 地图学
第一节 地图学的现代特征和定义 第二节 地图学的学科体系和各主要学科的研究内容 第三节 现代地图学的基本内容 第四节 地图学与其他学科的关系 第五节 地图学发展的历史与趋势
第三篇 地图内容要素表示方法
第六章 地图信息源及其处理
第一节 地图信息源 第二节 地图资料(数据)处理 第三节 地图上地理内容要素的空间分布特征 第四节 地图上地理要素变量的量表方法
第七章 地图符号设计
第一节 地图符号的基本概念与特性 第二节 地图符号的视觉变量 第三节 地图符号的分类 第四节 地图符号的功能 第五节 地图符号设计的基本方法
第八章 地图整体效果设计

地图学复习笔记

地图学复习笔记

第一章地图的基本知识§1.5地图基本内容(选择题或填空)地图的内容可分为三个部分:数学基础、地理要素、整饰要素。

①数学基础:控制点(平面和高程)、坐标网(经纬网和方里网)、比例尺和地图定②地理要素:普通地图(地理要素:自然和人文要素)和专题地图(地理基础和主题要素)。

③整饰要素:包括外图廓、图名、接图表、图例、坡度尺、三北方向、图解等内容。

详细请看书P10——P11§1.6地图的分幅与编号三、我国地形图的分幅编号(★)表1-2及例题见附1§1.7地图的成图过程(名词解释、简答题,加详细描述)一、制作地图的基本途径制作地图的两条途径:实测地图(野外实测和航测法成图)和编绘地图。

①外实测地图:利用测量仪器对地球表面的局部区域地物、地貌的空间位置和几何形状进行测定,按一定的比例尺缩小绘制成地形图;②航测法成图:利用航空影像来测制地图。

2、编绘地图:根据各种各样的制图材料——实测地形图、统计资料、航(卫)片、政府公告、地理考察资料、草图等编制成为用户需要的各种类型的地图。

三、计算机地图制图(补看内容)概念:以计算机及由计算机控制的输入、输出设备为主要工具,通过数据库技术和数字处理方法实现的地图制图称为计算机地图制图。

计算机制作地图的过程分为四个阶段:①地图设计;②数据出入;③数据处理;④图形输出。

(可看P18图1-10)第二章地图学§2.1地图的定义和基本内容1、地图学的定义:地图学研究地理信息的表达、处理和传输的理论和方法,以地理信息可视化为核心,探讨地图的理论实质、制作技术和使用方法的综合性科学。

2、我国的学者廖克根据现代地图学发展的特点和趋势,提出现代地图学的三大分支为:理论地图学、地图制图学、应用地图学。

第三章地图投影的基本原理§3.1地图投影的基本概念(名词解释)地图投影:就是按照一定数学法则,将地球椭球面上的经纬网转换到平面上,使地面点位的地理坐标与地图上相对应的点位的平面直角坐标或平面极坐标间,建立一一对应的函数关系。

地图投影复习资料

地图投影复习资料

地图投影复习资料地图投影:是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。

投影变换:是将一种地图投影点的坐标变换为另一种地图投影点的坐标的过程。

极值长度比:通常指沿变形椭圆的长半径a与短半径b的长度比之总称。

曲率半径:曲率的倒数,即某点的弯曲程度。

垂直圈:垂直圈又称地平经圈,指天球上经过天顶的任何大圆。

主法截面:通过A点的法线AL可作出无穷多个法截面,为说明椭球体在某点上的曲率起见,通常研究两个相互垂直的法截面的曲率,这种相互垂直的法截面为主法截面。

长度变形:长度变形又称“长度误差”、“长度变异”、“长度相对变形”,是衡量地图投影变形大小的一种数量指标。

等角航线:是地球表面上与经线相交成相同角度的曲线。

变形椭圆:地球面上一微分圆投影到平面上一般成为微分椭圆,微分椭圆的任意两相互垂直的直径,投影后为微分椭圆的两共轭直径,且该微分椭圆可以表现投影变形的性质和大小。

面积变形:地球面上无限小面积投影到平面上的大小与它原有面积大小的相对变形。

1、地图投影的目的与意义地图投影是将立体地球上的种种标线及位置,转换到平面方格坐标的一种方式,在投影出来的地图上,无论是长度和面机,都必须与实际长度面积等比例,位子也必须正确,这是地图投影最基本的原则。

2、地图投影与其他学科的关系地图投影同许多学科和应用技术有着密切的联系1. 与数学:从地图投影的发展来看,它是伴随着数学的发展而前进的;2. 与测量学:天文-大地测量为测制地图提供地球参考椭球体的大小形状及有关参数,并建立大地原点;大地测量学在大地原点的基础上所建立的各级三角点,则需要应用地图投影计算出它们的平面直角坐标;3. 与地图编制:地图编制与地图投影同属于地图学的重要组成部分;4. 与航海、航天、宇宙飞行:等角投影无角度变形适用于航海和航天图;宇宙飞行可以服务于地图投影,并可促使地图投影向新的方向发展。

3、每种投影的性质,要满足的条件及原因1. 等角投影:要满足的条件是ω=0,m=n,a=b和β=β’;在投影上任意两方向线的夹角与地球面相应的家教相同;2. 等面积投影:要满足的条件是vp=P-1=0或P=1;投影面上的有限面积与地球上相应的面积相等;3. 等距离投影:要满足的条件是正轴经线长度比m=1,斜轴或横轴垂直圈长度比μ1=1。

高二第三章地理知识点总结

高二第三章地理知识点总结

高二第三章地理知识点总结地理是一门研究人类与自然环境相互作用的学科,它探究着地球的自然现象、人类活动和相关的环境问题。

在高二的第三章中,我们学习了许多关于地理的重要知识点。

以下是对这些知识点进行总结:一、地球的运动和地理经纬度1. 地球的自转地球自转是指地球绕自身轴线旋转的运动,每天自西向东旋转一周。

地球自转产生了昼夜变化和地球形状的赤道膨胀。

2. 地球的公转地球的公转是指地球绕太阳运动的轨道。

地球公转决定了季节变化和地球与太阳的距离变化。

3. 地理经纬度地理经纬度是测量和标示地球上任意一点位置的方式。

经度是指连接地球两极的线上,从英国伦敦为基准线,向东西两个方向以180°为单位划分,东经用E表示,西经用W表示。

纬度是指与地球赤道线垂直的线上,以赤道为基准线,向北南两个方向以90°为单位划分。

二、地球的内部结构和板块构造1. 地壳、地幔和地核地球内部分为地壳、地幔和地核三个不同部分。

地壳是地球最外层的岩石壳层,地幔是地壳之下的厚厚岩石层,地核是地幔之下的由铁和镍构成的核心部分。

2. 板块构造理论板块构造理论是地球科学中的重要理论之一,它认为地球的岩石表层被分割成多个大块或小块,这些块被称为地球板块。

板块构造理论解释了地球上地震、火山和地壳运动的产生机制。

三、地球的天气和气候1. 大气圈和气候带大气圈是地球上围绕地球表面的气体层,其中包括了水汽和氧气等气体。

气候带是指大气圈中纬度对应的不同气候区域。

2. 气象要素和气候要素气象要素是指描述天气现象的基本要素,如温度、湿度、气压、风速等。

气候要素是指描述长期气象统计平均值的要素,如年平均气温、年平均降水量等。

四、地球的水资源和水循环1. 地球上的水资源地球上的水资源包括地表水、地下水和冰雪水等形式。

水资源对人类的生产生活至关重要。

2. 水循环过程水循环是地球上水分在不同形式间循环流动的过程。

水循环包括了蒸发、降水、融化、蒸散等环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是:
x′ = ar cos β
y′ = br sin β
r ′2 = r 2 (a 2 cos 2 β + b 2 sin 2 β ) 代入上式: ′2 r 2 μ = 2 = a 2 cos 2 β + b 2 sin 2 β 最后得: r
2013年11月22日9时27分 第三章 地图投影的基本理论 第11页/共56页
对于: μ (1)当
2
= a cos β + b sin β
2 2 2 2
β = 0 ,则 μ = a ,代表极大长度比。 β = 90o,则 μ = b ,代表极小长度比。 (2)当
o
从而证明了:极大、极小长度比的方向是互相垂直的二方向。
β = β 0 ,则 μ = m m 2 = a 2 cos 2 β 0 + b 2 sin 2 β 0 o o (2)则纬线的方向角为 β 0 + 90 ,即 β = β 0 + 90 ,则 μ = n
dF ' πab P= = 2 = a ⋅b dF π1
P = a·b = m · n P = m · n · sinθ
= 0 不变 > 0 变大 < 0 变小
Vp = p − 1
(θ = 90) (θ ≠ 90)
面积比是变量,随位置的不同而变化。
2013年11月22日9时27分 第三章 地图投影的基本理论 第17页/共56页
(1)
第三章 地图投影的基本理论
o 根据: β + β ' = 90
2 ω o 两式相加得: β = 45 + 4
两式相减得: β ′ = 45 −
o
β −β '=
ω
ω
4
把 β 和 β′ 分别代入(2)和(3)式得:
a tan(45 + ) = ± 4 b
o
ω
(4)
b tan(45 − ) = ± 4 a
1 所以 S ΔO′M ′D′ = mnxy sin θ 2 1 mnxy sin θ S ΔO′M ′D′ 2 = = mn sin θ P= 1 1 S ΔOMD xy 2
2013年11月22日9时27分
第三章 地图投影的基本理论
第13页/共56页

ΔOMD 和 ΔO′M ′D′ 中
1 S ΔOMD = xy 2 1 S ΔO′M ′D′ = x′y′ 2 y′ = by 又 x′ = ax
a −b sin( β − β ') = a+b ω 以ω 表示角度最大变形: β − β ' = 2 a −b sin = 2 a+b
若已知 m, n, θ ,则:
2013年11月22日9时27分
ω
ta n ( 4 5 +
o
ω
2
)=
b a
m 2 + n 2 − 2mn sin θ sin = 2 m 2 + n 2 + 2mn sin θ
o
2013年11月22日9时27分
ω
(5)
第22页/共56页
第三章 地图投影的基本理论
3.4 地图投影的分类
一、按投影的变形性质分类
等角投影: 投影面上某点的任意两方向线夹角与椭球面 等角投影 上相应两线段夹角相等,即角度变形为零ω=0(或 a=b, m=n)。 等积投影: 投影面与椭球面上相应区域的面积相等,即 等积投影 面积变形为零Vp=0(或 P=1,ab=1)。 任意投影: 投影图上,长度、面积和角度都有变形,它 任意投影 既不等角又不等积。其中,等距投影是在特定方向上没有长 度变形的任意投影(a=1或b=1)。
三、角度变形公式
角度变形: 投影面上任意两方向线所夹之角与球面上相 角度变形 应的两方向线夹角之差,称为角度变形,用|β-β′|表示。 以ω表示角度最大变形。 设M点的坐标为(x、y),M′点的坐标为(x′、y′), 则:
y tan β = x
y' tan β ' = x'
x' =a x
2013年11月22日9时27分 第三章 地图投影的基本理论
2013年11月22日9时27分 第三章 地图投影的基本理论 第5页/共56页
三、主比例尺和局部比例尺
地图比例尺:地图上一直线段长度与地面相应直线水平投 影长度之比。 可表达为(d 为图上距离,D 为实地距离)
d 1 = D M
根据地图投影变形情况,地图比例尺分为: 主比例尺 : 在投影面上没有变形的点或线上的比例尺。 局部比例尺: 在投影面上有变形处的比例尺。
此式是以椭圆中心为原点,以相交 成θ角的经、纬线(共轭直径)为坐标轴 的椭圆方程式。 由此可以证明:地球面上一微分圆 ,投影到平面上一般成为微分椭圆(特 殊情况下仍为圆)。
2013年11月22日9时27分 第三章 地图投影的基本理论 第9页/共56页
由于斜坐标系应用上不太方便,我们 引入主方向的概念:在地球面上某点的两 相互垂直的微分线段,投影到平面上仍保 持垂直且具有极大、极小长度比的二方向 ,称为主方向。 我们取主方向作为微分 椭圆的坐标轴,建立直角坐 标系。主方向的长度比即是 极值长度比,用变形椭圆的 长、短半径 a 和 b 表示。
2013年11月22日9时27分 第三章 地图投影的基本理论 第6页/共56页
地图比例尺的表示 1.数字式比例尺 2.文字式比例尺 3.图解式比例尺 直线比例尺 斜分比例尺 复式比例尺 4.特殊比例尺 变比例尺 无级别比例尺
2013年11月22日9时27分 第三章 地图投影的基本理论 第7页/共56页
第3页/共56页
地图投影的实质:是将 地球椭球面上的经纬线网按 照一定的数学法则转移到平 面上。 如何转换?
2013年11月22日9时27分
第三章 地图投影的基本理论
第4页/共56页
二、投影变形
由于地球椭球面 是不可展的曲面,要 把它完整地表示到平 面上,必须有条件地 进行局部拉伸和局部 缩小,所以必然会产 生变形。投影变形表 现在以下三个方面: (1)长度变形 (2)面积变形 (3)角度变形
ds ' μ= ds
Vμ = μ − 1
= 0 不变 > 0 变大 < 0 变小
长度比是变量,随位置和方向的变化而变化。
2013年11月22日9时27分
第三章 地图投影的基本理论
第16页/共56页
二、面积比公式
面积比和面积变形:投影平面上微小面积(变形椭圆面 面积比 面积变形 积)dF′与球面上相应的微小面积(微小圆面积)dF之比。 P 表示面积比 Vp 表示面积变形
2013年11月22日9时27分
2013年11月22日9时27分
第三章 地图投影的基本理论
第24页/共56页
二、按投影方式分类
(一)几何投影: 将椭球面上的经纬线用几何的方法投影到 几何投影 辅助面上,然后再展开成平面。 1.按辅助投影面的类型划分 方位投影: 以平面作为投影面的投影。 圆柱投影: 以圆柱面作为投影面的投影。 圆锥投影: 以圆锥面作为投影面的投影。
地球椭球体表面是不可展曲面,要将曲面上的客观事物表 示在有限的平面图纸上,必须经过由曲面到平面的转换。 地图投影:在地球椭球面和平面之间建立点与点之间函数 关系的数学方法,称为地图投影。
x = f1(ϕ , λ ) y = f2(ϕ , λ )
2013年11月22日9时27分
第三章 地图投影的基本理论
y' =b y
第18页/共56页
y′ by b = tan β tan β ' = = x′ ax a
将上式两边各减和各加 tanβ即:
b b tan β − tan β ' = tan β − tan β = (1 − ) tan β a a b b tan β + tan β ' = tan β + tan β = (1 + ) tan β a a
2 = a −b tan = 2 cos ω 2 ab 2
把 β + β ' = 90o 代入(1)式:
ω
sin
ω
b⎛ a ⎞ tan β ' = ⎜ ± ⎜ b⎟ ⎟ a⎝ ⎠
b tan β ' = ± a
(3)
第21页/共56页
b tan β ' = tan β a
2013年11月22日9时27分





电 子 课 件
第 三 章 地图投影的基本理论
第 三 章 地图投影的基本理论
§3.1 §3.2 §3.3 §3.4 地图投影的基本概念 变形椭圆 投影变形的基本公式 地图投影的分类
2013年11月22日9时27分
第三章 地图投影的基本理论
第2页/共56页
§3.1 地图投影的基本概念
一、地图投影的实质
(1)如果经线的方向角为 β 0 ,即
n 2 = a 2 sin 2 β 0 + b 2 cos 2 β 0 m2 + n2 = a 2 + b2 两式相加得:
从而证明了阿波隆尼定理中的第一条。
2013年11月22日9时27分 第三章 地图投影的基本理论 第12页/共56页

ΔOMD 和 ΔO′M ′D′ 中 1 S ΔOMD = xy 2 1 S ΔO′M ′D′ = x′y′ sin(180o − θ ) 2 又 x′ = mx y′ = ny
如 1:10 000 如 百万分之一
§3.2 变形椭圆
变形椭圆(底索指线):地球面上一个微分圆(小到可 忽略地球曲面的影响,把它当作平面看待),投影到平面上 后,一般成为微分椭圆,特殊情况下为一个圆。通过对这个 微分椭圆的研究,可以分析地图投影的变形状况。
相关文档
最新文档