第十二章 滑动轴承

合集下载

《机械设计基础》第十二章 滑动轴承解析

《机械设计基础》第十二章 滑动轴承解析

一、向心轴承
1、轴承的压强p 限制轴承压强p,以保证润滑油不被过大的压力所挤出,轴瓦不致产生 过度的磨损。即
轴承径向载荷,N
F p [ p] Bd
轴瓦材料的许用压强,MPa
轴瓦宽度,mm
轴颈直径,mm
2、轴承的pv值 pv值简略地表征轴承的发热因素,它与摩擦功率损耗成正比。Pv值越 高,轴承温升越高,容易引起边界油膜的破裂。
F
润滑油应由非承载区引入,所以在顶部 开进油孔。 在轴瓦内表面,以进油口为中心沿纵向、 斜向或横向开有油沟,以利于润滑油均匀分布 在整个轴颈上。
油沟的形式 B 一般油沟离轴瓦端面保持一定距离,以防止漏油。
当载荷垂直向下或略有偏斜时,轴承中分面常为水平方向。 当载荷方向有较大偏斜时,则轴承中分面斜着布置(通常倾斜45º )。
3)验算压强p p
根据上述计算,可知选用铸锡锌铅青铜(ZQSn6-3-3)作为轴瓦材 料是足够的,其[p]=8N/mm2,[pv]=10N· m/(mm2· s)。
§12-5 动压润滑的形成原理
B板静止不动,A板以速度v向左运动,板间充满润滑油。
当板上无载荷时两平行板之间液体的速度呈三角形分布,板A、B之间 带进的油量等于带出的油量,因此两板间油量保持不变,即板A不会下沉。 若板A上承受载荷F时,油向两侧挤出,于是板A逐渐下沉,直到与B 板接触。 两平行板之间是不可能形成压力油膜的
pvm≤[ pv]
平均直径,(d1+d2)/2
例12-1 试按非液体摩擦状态设计电动绞车中卷筒两端的滑动轴承。钢绳 拉力W为20kN,卷筒转速为25r/min,结构尺寸如图所示,其中 轴颈直径d=60mm。 解: 1)求滑动轴承上的径向载荷 当 钢绳绕在卷筒的边缘时,一侧滑动轴 承上受力最大,为

第十二章 滑动轴承

第十二章 滑动轴承

C. 增大相对间隙中 C 。
(34) 在干摩擦状态下,动摩擦与极限静摩擦力的关系是 A 相等 B 动摩擦力大于极限静摩擦力 B 。
C 动摩擦力小于极限静摩擦力
(35) 液体的粘度标志着
A 液体与固体之间摩擦阻力的大小
B 液体与液体之间摩擦阻力的大小
(36) 根据牛顿粘性液体的摩擦定律, 在如图12-3所示两板之间分别用两种液体, 若它们 在任意点处的剪应力相等,并且 d v / d y 相等,这两种流体的粘度 A 相等 B 不相等 A 。
A. 起动力矩小 C. 供油系统复杂
(8) 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措 施中,有效的是 C 。 B. 减小供油量 D. 换用粘度较高的油 B 。 B. 双层及多层金属轴瓦 D. 非金属轴瓦 D 制成的。 C 铜合金 D. 多孔质金属
A. 增大轴承宽径比 C. 增大相对间隙 (9) 巴氏合金用于制造 A. 单层金属轴瓦 C. 含油轴承轴瓦 (10) 含油轴承是采用 A. 塑料 (11) 下述材料中, A. 20CrMnTi C
6
(47) 液体摩擦动压向心滑动轴承中,承载量系数 C p 是 A 偏心率 x 与相对间隙 B 相对间隙 与宽径比 l / d C 宽径比 l / d 与偏心率 D 润滑油粘度 、轴颈公称直径 d 与偏心率
C
的函数。
(48) 液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙 ,则承载能力 A ,而发热 A. 增大 A 。 B. 减小 C. 不变
(16) 动压液体摩擦径向滑动轴承设计中,为了减小温升,应在保证承载能力的前提下 适当 A 。 B. 减小 ,减小 B d D. 减小 ,增大 B d 。
A. 增大相对间隙 ,增大宽径比 B d C. 增大 ,减小 B d

第12章 (滑动轴承)

第12章 (滑动轴承)
浸蚀、电浸蚀和微动磨损等损伤。
二、轴瓦材料 轴瓦材料的要求: 耐磨性、减磨性、 抗粘着性、 适应性、 磨合性、嵌荐性、 抗疲劳性、 强度、 导热性、 防腐性、附油性、工艺性、经济性。
轴承合金 铸造锡锑轴承合金——高速重载 轴 铸造铅锑轴承合金——中速中载 衬 铸造锡磷青铜————中速重载
铜合金 铸造锡铅锌青铜———中速中载 铸造铝铁青铜————低速重载
(正滑动轴承座,JB/T2560-1991) 轴套 润滑装置
特点: 简单、刚性好
无法调整因磨损而产生的间隙(可用电镀修理) 装拆不方便
应用:低速、轻载、间歇工作的场合
2.对开式(剖分式)径向滑动轴承 结构:轴承体—轴承座、轴承盖、螺纹联 接、台阶形榫口 轴瓦(剖分) 润滑装置 特点:装拆方便 可调垫片,调隙 结构复杂
一、设计计算准则: 力求在磨擦面间保持形成边界油膜。 压力限制p≤[p] 发热限制pυ≤[pυ] 散热限制υ≤[υ]
二、径向滑动轴承的条件性设计计算
1.确定轴承结构,选择轴瓦材料 2.选定宽径比B/d=0.3∽1.5
塑性大、轴刚度大、载荷小,取大值
3.验算工作能力 1)压强校核
p=Fr/Bd≤[p] 2)速度校核
为了贴附牢固,轴瓦基体内表面粗糙度值要 小,且制出沟槽。
厚轴瓦在使用时可以修刮。
(2)薄壁轴瓦 δ/D=0.025∽0.06mm 双金属轧制,质量稳定,刚度小,轴承体
要精加工,轴瓦内表面不修刮。
2.固定: ——轴套:过盈配合加螺钉 ——厚壁轴瓦:销钉或紧定螺钉,轴承盖、 座压紧
——薄壁轴瓦:凸耳
3.油孔和油槽 油孔——供油,开于非承载区 油槽——配油
当无侧漏时,润滑油在单位时间内流经任意 截面上单位宽度面积的流量为

第十二章滑动轴承

第十二章滑动轴承

二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀

机械设计(第八版)课后答案 濮良贵 纪名刚第12章滑动轴承

机械设计(第八版)课后答案 濮良贵 纪名刚第12章滑动轴承

112.1.2 摩擦与润滑种类与特点. (1)干摩擦--表面间无任何润滑剂(或保护膜)的纯金属接触时的摩擦.*(2)①边界摩擦(⑤边界润滑) ②作图 ---③两表面上的极薄的吸附油膜之间的摩擦** (3)①流体摩擦(④流体润滑) ③作图 ②--摩擦发生在润滑内部***(4)混合磨擦----处于 (1)、(2)、(3) 、三者的混合状态. 常见:(3)、(4)*接触峰点之间发生粘接、挤压、剪切、塑性流动 摩擦磨损最严重,f =0.15~0.5**④能降低摩擦阻力,减轻磨损,但膜厚小于粗糙度,强度不高,磨损不可避免。

***摩擦阻力最小,磨损最轻(几乎不发生摩损)212.1.3 磨损(滑动轴承主要失效形式)--摩擦表面的物质不断损失的现象(1)磨损类型:磨粒磨损、疲劳剥落(点蚀)、粘着磨损(胶合)、腐蚀磨损(2)磨损过程(3)不同因素对磨损的影响.1)材料、2)载荷、3)润滑、4)工作温度312.2 径向滑动轴承的结构及组成 (1)轴承座整体式(图11-1) 结构简单剖分式(图11-2) 间隙可调、装拆方便 调心式(图17-3) 顺应轴挠度 (2)轴套与轴瓦(实物)作用: 便于更换节约贵重金属结构: 整体式----轴套实物剖分式---轴瓦(3) 瓦上开油孔、油沟.输送、分布、存储润滑液最简结构:(4) 轴承衬----在钢质轴瓦上贴附一层减摩材料.节约贵重金属结构上需要*衬一定有瓦,瓦不一定有衬.412.4 润滑剂.P279(1)流体润滑剂—油、水润滑油(机油)主要指标:粘度、油性(边界膜性能)(2)润滑脂(黄油)主要指标:锥入度(稠度)、滴点(最高使用温度)(3)固体、气体润滑剂(特殊或专门用途)612.5径向滑动轴承(混合润滑)的条件性计算(1)计算项目(准则)① p= F/dB≤[p] 防止过度磨损② pv≤[pv] 限制轴承温升③ v≤[v] 控制磨损速度(2)设计步骤①选择结构类型②确定宽径比B/d, 一般B/d=0.5~1.5,多数取B/d=1.③按计算准则计算,查表11-2选取材料.④选定配合及表面粗糙度⑤选择润滑剂、润滑方式712.6 液体动压润滑的基本原理。

第12章滑动轴承PPT课件

第12章滑动轴承PPT课件

邓 召
错动。

轴承盖上部开有螺纹孔,用以安装油杯。
轴瓦也是剖分式的,通常由下轴瓦承受载荷。
为了节省贵重金属或其它需要,常在轴瓦内 表面上浇注一层轴承衬。
在轴瓦内壁非承载区开设油槽,润滑油通过 油孔和油槽流进轴承间隙。
轴承剖分面最好与载荷方向近似垂直,多数 * 轴承的剖分面是第12水章滑平动轴承的(也有做成6倾斜的)。
用的结构形式有空心式,单环式和多环式, 下
其结构及尺寸见下图。通常不用实心式轴径,
邓 召
因其端面上的压力分布极不均匀,靠近中心 义
处的压力很高,对润滑极为不利。
空心式轴径接触面上压力分布较均匀,润滑条 件较实心式有所改善。
单环式是利用轴颈的环形端面止推,而且可以 利用纵向油槽输入润滑油,结构简单,润滑方 便,广泛用于低速,轻载的场合。
学习目标
滑动轴承的特点和应用场合;对滑动轴承的典型结 构、轴瓦材料及其选用原则有一较全面的认识;掌 握不完全液体润滑滑动轴承和液体动力润滑径向滑 动轴承的设计原理及设计方法 。
*
第12章滑动轴承
1
§12-1 概述

根据轴承中摩擦性质的不同,可把轴承分为滑动轴承和滚动轴
械 设
承两大类。

滚动轴承由于摩擦系数低,起动阻力小,且已标准化,对设计、下
另外,只能从轴颈端部装拆,对于重型机器的 轴或具有中间轴颈的轴,装拆很不方便,甚至 无法实现
所以这种轴承多用在低速、轻载或间歇性工作的 机器中。
*
第12章滑动轴承
5
(二)对开式径向滑动轴承
机 械

对开式滑动轴承由轴承座、轴承盖、剖分式 计
轴瓦和双头螺柱等组成。

第十二章_滑动轴承

第十二章_滑动轴承
1.按照轴承承受载荷的方向分 (1)向心滑动轴承:只能承受径向载荷,轴承上的反作用力
与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力
与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
(4)固体润滑剂: 固体润滑剂主要有石墨、二硫化钼、动物蜡u、聚四氟乙烯、 聚氯氟乙烯、尼龙和某些软金属(如铅、锡、铟等)。固体润 滑剂常用于自润滑轴承。
3、润滑剂的性能指标 (1)润滑油的性能指标:粘度、内油性、闪点、凝点、酸值、 残碳量等。
四、润滑方式及润滑装置 滑动轴承润滑的供油方式分为间歇式相连续式。 1、手工润滑 间歇式是利用油壶或油枪通过轴承座上的油孔由人工定时
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点:
1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。
(2)剖分式结构轴承
剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
3、油环润滑 如图14—19所示,将一油环套在轴颈上,油环下部浸在
油中,当轴颈旋转时,靠摩擦力带动油环旋转,从而把油 带入轴承进行润滑。
4、压力循环润滑
这是利用油泵将润滑油经输油管送入轴承的高效润滑方式, 供油充分、散热性好,压力及供油量均可调节。但结构复杂、 费用高。因而多用于高速、重载轴承的润滑。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。

第十二章 滑动轴承

第十二章  滑动轴承

机械设计 二、类型
第十二章 滑动轴承
径向滑动轴承, 径向滑动轴承,承受径向载荷 按承载分 止推滑动轴承, 止推滑动轴承,承受轴向载荷 动轴承 动压轴承 按摩擦状态分 液体润滑轴承 静压轴承 不完全液体润滑轴承
机械设计 三、几种摩擦状态
第十二章 滑动轴承
相对运动的表面就有磨损,要改善磨损,用润滑油。 相对运动的表面就有磨损,要改善磨损,用润滑油。 按表面的润滑情况将摩擦分为: 按表面的润滑情况将摩擦分为: 干摩擦: 摩擦面间不加润滑剂, 干摩擦: 摩擦面间不加润滑剂,一 般金属f>0.15。轴承中不 般金属f 0.15。 允许存在这种状态。 允许存在这种状态。 边界摩擦: 边界摩擦: 摩擦表面间有一层油膜, 摩擦表面间有一层油膜, f=0.05~0.3。 f=0.05~0.3。是轴承的 最低要求。 最低要求。
润滑脂是润滑油与金属皂的混合物,呈半固体形态。 润滑脂是润滑油与金属皂的混合物,呈半固体形态。 其稠度大,不易流失,无冷却效果,物化稳定性差, 其稠度大,不易流失,无冷却效果,物化稳定性差,摩 阻大,有缓冲、吸振作用、承载能力大, 阻大,有缓冲、吸振作用、承载能力大,故只适合低速 v )2m / s、难以经常供油的场合。 < 重载 难以经常供油的场合。 重载、 (
第十二章 滑动轴承
机械设计
第十二章 滑动轴承
第二节 径向滑动轴承的的主要结构
一、整体式径向滑动轴承
整体式 结构简单 安装困难 间隙不可调
整 体 式 轴 瓦
机械设计
第十二章 滑动轴承
二、剖分式径向滑动轴承
剖分式:结构较繁,间隙可调, 剖分式:结构较繁,间隙可调,广泛采用
结构上可作成水平剖分、倾斜剖分( 结构上可作成水平剖分、倾斜剖分(受力方向与抛 分面基本垂直,偏差±15° 分面基本垂直,偏差±15°内)、可调心的以适合不同的 用途。 用途。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d D
整体轴套
轴瓦(衬 背) 轴承衬
卷制轴套
剖分式轴瓦有厚壁和薄壁轴瓦之分。 厚壁轴瓦是将轴承合金浇注在青铜或钢制瓦背上。
薄壁轴瓦用双金属板连续轧制而成。
为提高轴承合金与轴瓦背的结合强度,防止脱落,常在轴瓦背 表面制出螺纹、凹槽及榫头结构。
厚壁轴瓦
薄壁轴瓦
为防止轴瓦在轴承座中转动,轴瓦端部设置凸缘作轴向定位, 也可用紧定螺钉或销钉将其固定在轴承座上。
式中 Rz1、Rz2——分别为轴颈和轴承孔表面粗糙度十点高度,见表2-12-3; S——安全系数,常取S≥2。
三、滑动轴承的热平衡计算
热平衡条件是:单位时间内轴承所产生的摩擦热量等于同时 间内流动的油所带走的热量及轴承座散发的热量之和。 对于非压力供油的向心轴承
fFv c p qV (t2 t1 ) Bd s (t2 t1 )
F
O O1
(1) 停车
n0
金属直接 接触
F
O
O1
F
O O1
(2-1) 启动 (2-2)随着 n
摩擦力使 轴颈右移
油膜压力将轴 颈托起 其合力将轴颈 左推
F
O O1
(3)n 为工作转速
油膜压力将轴 颈完全托起 其合力与外载 平衡
静止 →爬升 →将轴起抬
转速继续升高
→质心左移 →稳定运转达到工作转速 e ----偏心距
u v(h y) y( y h) p
h
2 x
润滑油在单位时间内,沿x方向流过任意截面单位宽度的流量qx为
qx
h
udy
vh
h3
p
0
2 12 x
设油压最大处的间隙为h0,在这一截面上
qx
1 2
v
h0
根据连续流动流量不变,整理后则得
p x
6v
h
h0 h3
(2-12-9)
——一维雷诺动力润滑方程式,计算流体动力润滑基本方程
(7)压力最大处的油膜厚度h0 (8)承载量系数Cp
h0 (1 cos0 )
假设轴承无限宽,可认为润滑油沿轴向没有流动。利用式 (2-12-9),改用极坐标,取x=r ,得dx=rd
dp 6 (cos cos0 ) d 2 (1 cos )3
将上式积分,得任意角处的油膜压力p
p
6 2
(cos cos0 ) d 1 (1 cos )3
沿外载荷方向单位宽度的油膜压力为
py
2 1
p cos[180 ( )]rd
有限宽度轴承不考虑端泄时的油膜承载力F。经整理后得
F 2
Bd
3
2
1
1
(cos (1
c
cos0 os ) 3
)
d
c
os
[180
(
)]d
Cp
F 2 Bd
F 2 2Bv
式中 F——外载荷(N);
B——轴承宽度(m);
v——轴颈圆周速度(m/s);
η——润滑油在轴承平均工作温度下的动力粘度(Pa·s)。
(三)最小油膜厚度hmin 为保证轴承处于液体摩擦状态,最小油膜厚度必须等于或
大于许用油膜厚度[h],即
hmin r (1 ) [h] S(Rz1 Rz2 )
(三)圆周速度v值验算
v dn [v]
60 1000
式中 n——轴颈的转速(r/min); [v]——轴颈圆周速度的许用值,m/s。
不完全液体润滑滑动轴承需要进行哪些计算?各有什么 含义?
验算p、 pv、v
(一)平均压力 p 验算
防止压力过大造成过度磨损。
(二)pv值验算
防止温升过高引起pv值过大。Pv值过大会引起 边界油膜破裂。
d)多环轴颈
(一)平均压力p验算
p 4
F
d
2
d
2 0
z
[ p]
式中 F——作用在轴承上的轴向载荷(N); z——推力环的数目;
d、d0——推力环的外径和内径(mm); [p] ——轴承材料的许用压强(MPa)。
(二)pv值验算
v nd d0
601000 2
pv
Fn
[ pv]
30000 (d d0 )z
轴承宽度与轴颈直径之比(B/d)称为宽径比。对B/d>1.5 的轴承,可采用自动调心轴承。轴瓦可倾斜,使轴颈和轴瓦保 持良好接触。
剖分式径向滑动轴承
自动调心轴承
二、轴瓦结构 (一) 轴瓦和轴承衬
径向滑动轴承轴瓦有整体式和剖分式两种结构。 整体式轴瓦可分为整体轴套和单层、双层或多层材料的卷制轴套
开缝
10 31 9
式中 n——轴颈转速(r/min)。
(三)动力粘度
设计时,先假设轴承平均温度(一般取tm=50~75ºC),初选粘 度进行设计计算,最后通过热平衡计算验算轴承入口温度t1是否在 35~40ºC之间,否则应重新选择粘度进行计算。
对一般轴承,可按下式初估动力粘度,算出相应的运动粘 度,结合轴颈圆周速度v,选定润滑油的牌号,并选定平均温度 tm,确定润滑油在tm时的动力粘度值 ,进行承载能力和热平衡
石墨具有一定的减摩性和耐磨性,但铸铁性脆,磨合性差,适用 于低速、轻载的场合。 (5)多孔质金属材料
多孔性组织,含油轴承,用于载荷平稳无冲击载荷及中、 低速 场合。
(二)非金属材料
常用的非金属轴承材料是各种塑料(聚合物材料),如酚 醛塑料、尼龙、聚四氟乙烯等。塑料轴承有良好的减摩性、耐 磨性、嵌入性、抗冲击性、抗胶合性及耐腐蚀性,并具有一定 的自润滑性能,也可用油或水润滑,但导热性差。在特殊情况 下,也可用碳-石墨、橡胶及木材等作为轴承材料。
二、常用滑动轴承材料 (一)金属材料
(1)轴承合金(巴氏合金或白合金): 嵌入性、顺应和磨合性好,不易胶合。但轴承合金的强度很
低,只能做轴承衬。适用于重载、中高速场合。
青铜: 锡青铜、铅青铜、铝青铜 (2) 铜合金
黄铜
较高的强度、较好的减摩性和耐磨性。应用广泛
锡青铜减摩性和耐磨性最好,用于中速、重载场合;铅青铜抗 粘附能力强,用于高速、重载场合;铝青铜的强度与硬度较高,抗 粘附能力差,用于低速、重载场合。 (3)铝基轴承合金 耐腐蚀性好和疲劳强度较高,减摩性也较好,适用于高速、重载 的场合 (4) 铸铁
第二节 径向滑动轴承的结构
一、径向滑动轴承的类型 (一)整体式径向滑动轴承
由轴承座、减摩材料制成的整体轴套等组成。
优点:结构简单、成本低廉 缺点:①磨损后间隙不能调整
②装拆不方便
多用于低速、轻载或间歇 性工作的机器中
整体式径向滑动轴承
(二)剖分式径向滑动轴承
由轴承座、轴承盖、剖分轴瓦、双头螺柱等组成。 剖分面最好与载荷方向近于垂直。轴瓦是轴承直接和轴颈 相接触的零件,常在轴瓦内表面上贴附一层轴承衬 。
取微单元体进行分析, 根据x方向力系平衡,得
pdydz ( p p dx)dydz dxdz ( dy)dxdz 0
x
y

p
x y
假设流体为牛顿流体,则 u
y
代入上式,得
p 2u
x y2
积分上式,得
u
1
2
(p ) y 2 x
C1 y
C2
根据边界条件决定积分常数C1和C2:当y=0时u=v;当y=h时u=0 。 则得油层速度的分布
单向油槽的开设
双轴向油槽的开设
周向油槽适用于载荷方向后变化范围超过180º的场合,通常 开在轴承宽度中部。
非液体润滑径向滑动轴承,油槽从非承载区延伸到承载区。
第三节 滑动轴承材料及润滑
轴瓦和轴承衬的材料统称为轴承材料。
一、对轴承材料性能的要求
(一)良好的减摩性、耐磨性和抗胶合性; (二)良好的顺应性、嵌入性和磨合性; (三)足够的强度和抗腐蚀性 (四)良好的导热性、工艺性和经济性等。
F
e
∑ Fy =F ∑ Fx = 0
∑ Fy =F ∑ Fx ≠ 0
(二)几何关系
(1)半径间隙 R r
(2)相对间隙
r
(3)偏心率
e
(4)偏位角和轴承包角
(5)最小油膜厚度hmin
hmin e r (1 )
(6)承载区内任意处的油膜厚度h
h R r ecos (1 cos)
f 0.55 p
热平衡必需的润滑油温度差比
t
t2
t 1
fFv
c p qV Bd s
( f )(F Bd) c p (qV vBd) s v
f p
cห้องสมุดไป่ตู้p (qV vBd) s v
为保证轴承的正常工作,一般要求轴承的工作平均温度不超过 75ºC。即
tm
t1
t 2
t1
tm
t 2
形成流体动压润滑压力油膜的必要条件是: (1)相对滑动面之间必须形成收敛的楔形间隙; (2)两摩擦表面要有一定的相对滑动速度,其运动方向必须使润 滑油从大口流进,小口流出; (3)润滑油要有一定的粘度且供油连续、充分。
二、液体动压润滑径向滑动轴承的计算
(一)动压润滑状态的建立
建立液体动压润滑的过程可分为三个阶段: (1)轴的起动阶段(a图); (2)不稳定润滑阶段(b图),这时轴颈沿轴承内壁上爬,发生 表面接触的摩擦; (3)液体动压润滑阶段(c图),这时由于转速足够高,带入到 摩擦面间的油量能充满油楔,并建立油膜使轴颈抬起。
若t1>30~45C,则表示轴承热平衡易于建立;若t1<30~45C , 轴承热平衡不易建立。
四、参数选择
(一)宽径比B/d
宽径比大,轴承承载能力强,但轴承散热能力降低;反之, 宽径比小,有利于提高运转稳定性,增大端泄以降低温升,但承 载能力将随之降低。
相关文档
最新文档