第十二章 滑动轴承

合集下载

第十二章 滑动轴承习题解答

第十二章  滑动轴承习题解答

第十二章 滑动轴承习题及参考解答一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。

A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题5—2图所示的下列几种情况下,可能形成流体动力润滑的有 。

3 巴氏合金是用来制造 。

A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。

A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。

A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 。

A. 过度磨损B. 过热产生胶合C. 产生塑性变形D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。

A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。

A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷9 温度升高时,润滑油的粘度 。

A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。

A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。

A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。

A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。

机械设计课件——第十二章 滑动轴承

机械设计课件——第十二章  滑动轴承

L-轴承长度mm; n-轴颈转速r/min ;
[p],[pV] -许用应力Mpa , Mpa·m/S
3.验算速度V→ 跨距大的轴→装配误差或轴挠曲变形 →速度大,局部摩擦功大
v dn v
1000 60
12.4.2 非液体摩擦推力滑动轴承的计算
1.轴承压强验算: 2.验算pvm值:
也就是压力沿圆周方向的 变化率。
12.6.3径向滑动轴承承载系数和最小油膜厚度计算
影响最小油膜厚度的因素很多,可以用一个表示这些因素综 合影响的无量纲数——承载量系数来反映
L——轴承长度,mm L / d ——轴承长径比
C / r——相对间隙
e OO ' ——偏心距,mm
e / C——相对偏心距(偏心率)
h——沿圆周方向任一位置的间隙(油膜厚度),mm h=C+ecosφ
h0 ——对应最大压力处的油膜厚度,mm
h0=C+ecosφ0
hmin ——最小油膜厚度,mm hmin=C-e=C(1- )
流体是连续的,各截面的流量必须相等
∵ Q0 Q

1 2
vh0

1 2
vh
1
12
dp dx
h3
液体动压润滑的基本方程 (一维雷诺方程):
dp 6 V h h0
dx
h3
此式称为一维流体动压基本方程,也叫一维雷诺 方程
表示流体压力的变化率与流体的粘度、速度和间 隙之间的关系。
12.6 液体动压径向滑动轴承的计算
双金属轴瓦:节省贵重金属 单金属轴瓦:结构简单,成本低
双金属轴瓦的瓦背和轴承衬的联接形式见表12.2
瓦背 轴承衬 材料 材料

第十二章 滑动轴承

第十二章 滑动轴承

C. 增大相对间隙中 C 。
(34) 在干摩擦状态下,动摩擦与极限静摩擦力的关系是 A 相等 B 动摩擦力大于极限静摩擦力 B 。
C 动摩擦力小于极限静摩擦力
(35) 液体的粘度标志着
A 液体与固体之间摩擦阻力的大小
B 液体与液体之间摩擦阻力的大小
(36) 根据牛顿粘性液体的摩擦定律, 在如图12-3所示两板之间分别用两种液体, 若它们 在任意点处的剪应力相等,并且 d v / d y 相等,这两种流体的粘度 A 相等 B 不相等 A 。
A. 起动力矩小 C. 供油系统复杂
(8) 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措 施中,有效的是 C 。 B. 减小供油量 D. 换用粘度较高的油 B 。 B. 双层及多层金属轴瓦 D. 非金属轴瓦 D 制成的。 C 铜合金 D. 多孔质金属
A. 增大轴承宽径比 C. 增大相对间隙 (9) 巴氏合金用于制造 A. 单层金属轴瓦 C. 含油轴承轴瓦 (10) 含油轴承是采用 A. 塑料 (11) 下述材料中, A. 20CrMnTi C
6
(47) 液体摩擦动压向心滑动轴承中,承载量系数 C p 是 A 偏心率 x 与相对间隙 B 相对间隙 与宽径比 l / d C 宽径比 l / d 与偏心率 D 润滑油粘度 、轴颈公称直径 d 与偏心率
C
的函数。
(48) 液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙 ,则承载能力 A ,而发热 A. 增大 A 。 B. 减小 C. 不变
(16) 动压液体摩擦径向滑动轴承设计中,为了减小温升,应在保证承载能力的前提下 适当 A 。 B. 减小 ,减小 B d D. 减小 ,增大 B d 。
A. 增大相对间隙 ,增大宽径比 B d C. 增大 ,减小 B d

第12章滑动轴承分解

第12章滑动轴承分解
x
A
y dy
v
o
du
h y
B
----- 牛顿粘性定律
η----流体的动力粘度,简称粘度 -----流体沿垂直于运动方向的速度梯度, 式中的—负号,表示 u 随 y 的增大而减小。
-----流体单位面积上的剪切阻力,即切应力。
§12-4
滑动轴承中的润滑剂
在摩擦学中,把凡是服从这个粘性定律的流体 都叫做“牛顿液体”。
B----- 轴瓦宽度, [p]----轴瓦材料的许用压力,见表12-2。
2.验算轴承的 pv 值 轴承的发热量与其单位面积上的摩擦功耗 fpv 成正
比。 pv 值愈大,摩擦产生的热量越大,轴承的温度越
高,也就越容易引起边界油膜的破裂。 目的:限制 pv值就是限制轴承的温升,防止胶合, 保护边界膜。 πd n F ≤[pv] pv = · Bd 60× 1000 (12---2)
v
在这种状态下,摩擦完全发生在液体内部的分子 之间,所以摩擦系数极小, f ≈ 0.001 ~ 0.01,因而可 以完全避免磨损
这是最理想的润滑状态。
4. 混合摩擦
混合摩擦是指摩擦表面间处于边界 摩擦和液体摩擦的混合状态。
混合摩擦能有效降低摩擦阻力,其摩擦 系数比边界摩擦时要小得多。
v
工程实际中,多数滑动摩擦副都是处于边界摩擦与 混合摩擦的状态中。 边界摩擦和混合摩擦在工程实际中很难区分,常统 称为不完全液体摩擦。
滑 动 轴 承
按受载方向分
径向轴承 止推轴承 液体润滑滑动轴承 不完全液体润滑滑动轴承
按润滑状态分
按液体润滑承载机理分 液体动力润滑轴承(液体动压轴承)
液体静压润滑轴承(液体静压轴承)
§12-2

第12章 (滑动轴承)

第12章 (滑动轴承)
浸蚀、电浸蚀和微动磨损等损伤。
二、轴瓦材料 轴瓦材料的要求: 耐磨性、减磨性、 抗粘着性、 适应性、 磨合性、嵌荐性、 抗疲劳性、 强度、 导热性、 防腐性、附油性、工艺性、经济性。
轴承合金 铸造锡锑轴承合金——高速重载 轴 铸造铅锑轴承合金——中速中载 衬 铸造锡磷青铜————中速重载
铜合金 铸造锡铅锌青铜———中速中载 铸造铝铁青铜————低速重载
(正滑动轴承座,JB/T2560-1991) 轴套 润滑装置
特点: 简单、刚性好
无法调整因磨损而产生的间隙(可用电镀修理) 装拆不方便
应用:低速、轻载、间歇工作的场合
2.对开式(剖分式)径向滑动轴承 结构:轴承体—轴承座、轴承盖、螺纹联 接、台阶形榫口 轴瓦(剖分) 润滑装置 特点:装拆方便 可调垫片,调隙 结构复杂
一、设计计算准则: 力求在磨擦面间保持形成边界油膜。 压力限制p≤[p] 发热限制pυ≤[pυ] 散热限制υ≤[υ]
二、径向滑动轴承的条件性设计计算
1.确定轴承结构,选择轴瓦材料 2.选定宽径比B/d=0.3∽1.5
塑性大、轴刚度大、载荷小,取大值
3.验算工作能力 1)压强校核
p=Fr/Bd≤[p] 2)速度校核
为了贴附牢固,轴瓦基体内表面粗糙度值要 小,且制出沟槽。
厚轴瓦在使用时可以修刮。
(2)薄壁轴瓦 δ/D=0.025∽0.06mm 双金属轧制,质量稳定,刚度小,轴承体
要精加工,轴瓦内表面不修刮。
2.固定: ——轴套:过盈配合加螺钉 ——厚壁轴瓦:销钉或紧定螺钉,轴承盖、 座压紧
——薄壁轴瓦:凸耳
3.油孔和油槽 油孔——供油,开于非承载区 油槽——配油
当无侧漏时,润滑油在单位时间内流经任意 截面上单位宽度面积的流量为

第十二章滑动轴承

第十二章滑动轴承

二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀

机械设计(第八版)课后答案 濮良贵 纪名刚第12章滑动轴承

机械设计(第八版)课后答案 濮良贵 纪名刚第12章滑动轴承

112.1.2 摩擦与润滑种类与特点. (1)干摩擦--表面间无任何润滑剂(或保护膜)的纯金属接触时的摩擦.*(2)①边界摩擦(⑤边界润滑) ②作图 ---③两表面上的极薄的吸附油膜之间的摩擦** (3)①流体摩擦(④流体润滑) ③作图 ②--摩擦发生在润滑内部***(4)混合磨擦----处于 (1)、(2)、(3) 、三者的混合状态. 常见:(3)、(4)*接触峰点之间发生粘接、挤压、剪切、塑性流动 摩擦磨损最严重,f =0.15~0.5**④能降低摩擦阻力,减轻磨损,但膜厚小于粗糙度,强度不高,磨损不可避免。

***摩擦阻力最小,磨损最轻(几乎不发生摩损)212.1.3 磨损(滑动轴承主要失效形式)--摩擦表面的物质不断损失的现象(1)磨损类型:磨粒磨损、疲劳剥落(点蚀)、粘着磨损(胶合)、腐蚀磨损(2)磨损过程(3)不同因素对磨损的影响.1)材料、2)载荷、3)润滑、4)工作温度312.2 径向滑动轴承的结构及组成 (1)轴承座整体式(图11-1) 结构简单剖分式(图11-2) 间隙可调、装拆方便 调心式(图17-3) 顺应轴挠度 (2)轴套与轴瓦(实物)作用: 便于更换节约贵重金属结构: 整体式----轴套实物剖分式---轴瓦(3) 瓦上开油孔、油沟.输送、分布、存储润滑液最简结构:(4) 轴承衬----在钢质轴瓦上贴附一层减摩材料.节约贵重金属结构上需要*衬一定有瓦,瓦不一定有衬.412.4 润滑剂.P279(1)流体润滑剂—油、水润滑油(机油)主要指标:粘度、油性(边界膜性能)(2)润滑脂(黄油)主要指标:锥入度(稠度)、滴点(最高使用温度)(3)固体、气体润滑剂(特殊或专门用途)612.5径向滑动轴承(混合润滑)的条件性计算(1)计算项目(准则)① p= F/dB≤[p] 防止过度磨损② pv≤[pv] 限制轴承温升③ v≤[v] 控制磨损速度(2)设计步骤①选择结构类型②确定宽径比B/d, 一般B/d=0.5~1.5,多数取B/d=1.③按计算准则计算,查表11-2选取材料.④选定配合及表面粗糙度⑤选择润滑剂、润滑方式712.6 液体动压润滑的基本原理。

第十二章_滑动轴承

第十二章_滑动轴承
1.按照轴承承受载荷的方向分 (1)向心滑动轴承:只能承受径向载荷,轴承上的反作用力
与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力
与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
(4)固体润滑剂: 固体润滑剂主要有石墨、二硫化钼、动物蜡u、聚四氟乙烯、 聚氯氟乙烯、尼龙和某些软金属(如铅、锡、铟等)。固体润 滑剂常用于自润滑轴承。
3、润滑剂的性能指标 (1)润滑油的性能指标:粘度、内油性、闪点、凝点、酸值、 残碳量等。
四、润滑方式及润滑装置 滑动轴承润滑的供油方式分为间歇式相连续式。 1、手工润滑 间歇式是利用油壶或油枪通过轴承座上的油孔由人工定时
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点:
1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。
(2)剖分式结构轴承
剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
3、油环润滑 如图14—19所示,将一油环套在轴颈上,油环下部浸在
油中,当轴颈旋转时,靠摩擦力带动油环旋转,从而把油 带入轴承进行润滑。
4、压力循环润滑
这是利用油泵将润滑油经输油管送入轴承的高效润滑方式, 供油充分、散热性好,压力及供油量均可调节。但结构复杂、 费用高。因而多用于高速、重载轴承的润滑。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2 滑动轴承的结构和材料
一、轴套结构 1.轴套的整体结构 整体式滑动轴承通常采用圆 筒形轴瓦结构,称轴套,如 图(a)所示。 剖分式轴套习惯上称为轴瓦 如图(b)所示。 轴套和轴瓦可以用同一种材料制成,也可以用双层或三层金 属加工成的复合材料制成,以节约贵重的有色金属和改善材 料表面的摩擦性质。 轴套和轴瓦内层合金部分称为轴承衬,外层部分称为瓦背。
2.按轴承工作时润滑机理分 动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
4.按轴瓦的材料分 普通金属轴承、粉末冶金轴承、塑料轴承、橡胶轴承和宝石 轴承。 特点: 滑动轴承具有承载能力大、回转精度高、高速性能好等 优点,但其启动摩擦阻力大,维护比较复杂。 与滚动轴承不同,滑动轴承不是标准件,因而需自行设计 制造。
2、推力滑动轴承 推力滑动轴承用于承受轴向载荷的场合,常见的推力轴颈 形状如下图所示。 由于实心端面推力轴颈工作时轴心与边缘磨损不均匀,轴 心部分压强极高,所以极少采用。 空心端面推力轴颈和环状轴颈部分弥补了实心端面推力轴 颈的不足,得到普遍采用。 当载荷很大时,可采用多环轴颈,它还能承受双向轴向载荷。
本章教学内容
1、滑动ห้องสมุดไป่ตู้擦的分类、特点和润滑; 2、滑动轴承的类型、结构和轴承材料。
12.1 滑动轴承的类型和特点
轴承分为滚动轴承及滑动轴承两种。
滑动轴承是滑动摩擦,会使构件发热,能量损耗大,传动效率 低,还会造成磨损,缩短轴承的使用寿命。
一、滑动摩擦的类型
滑动摩擦可分为干摩擦、流体摩擦、边界摩擦和混合摩擦,参 见图12.2。 1)干摩擦:两摩擦表面直接接触,中间不存在任何润滑剂或能 够自润滑的状态,摩擦因素的大小取决于摩擦表面的材料性质 和粗糙度。
轴瓦是轴承直接和轴颈相接触的零件,常在轴瓦内表面上贴附 一层轴承衬。剖分面最好与载荷方向近于垂直,轴承盖和轴承 座的剖分面常作成阶梯形,以便定位和防止工作时错动。特点 是拆装方便,间隙可调,使用较普普遍。
(3)嵌入式结构 由于安装空间小,可直接将轴承嵌入到箱体上。常用于体积 较小的机器、仪器仪表、电气设备、家用电器上等。 (4)自动调心式结构 轴承外表面做成球面形状,与轴承盖及轴承座 的球状内表面相配合,轴心线偏斜时,轴瓦可 以自动调位,这样可避免轴颈与轴瓦的局部磨 损。轴承的宽度B>1.5d时(d为轴颈直径), 或轴的刚度较小,或两轴承座孔难以保证同心 时,一般采用调心轴承。
2、机械零件磨损的主要类型 (1)磨粒磨损:在摩擦表面存在硬质颗粒或摩擦表面上的硬 质突出物在摩擦过程中引起的摩擦表面材料的脱落现象。
(2)粘着磨损:在两摩擦表面上,发生一个表面的材料转移 到另一个表面上的现象。严重的粘着磨损称为胶合。
(3)表面接触疲劳磨损:两摩擦表面之间,在变应力的作用 下,表面的材料由于疲劳破坏而发生小块材料剥落的现象。 (4)腐蚀磨损:两摩擦表面之间,材料表面与周围环境介质 之间发生的化学或电化学反应的现象。
2)流体摩擦:两摩擦表面被流体介质完全隔开,微观下两个接 触表面的凸峰不直接接触,摩擦性质的大小取决于流体内部分 子间的粘性阻力的摩擦状态。
3)边界摩擦:两摩擦表面被吸附在表面上的流体边界膜隔开, 摩擦性质取决于边界膜和接触表面间流体介质的吸附能力。 4)混合摩擦:是干摩擦、流体摩擦和边界摩擦的混合状态,其 摩擦性质取决于边界摩擦状态。 二、 磨损 磨损:是一个物体和另一个物体的摩擦副元素发生接触或相对 运动时,物体接触表面处的材料不断损失的过程。 1.机械零件磨损的一般过程 磨损率:是指单位时间内或行程内材料的磨损量。一般分为三 个阶段: 1)磨合磨损:指在机械使用初期,机械零件的磨损过程。 2)稳定磨损:指在机械正常工作阶段的磨损,磨损率基本不变。 3)失效磨损:指磨损率急剧上升的阶段。在该阶段机械零件工 作条件迅速恶化,最终导致机械零件的失效。
二、滑动轴承的主要类型和特点
(一)滑动轴承的类型
1.按照轴承承受载荷的方向分 (1)向心滑动轴承:只能承受径向载荷,轴承上的反作用力 与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力 与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时承受径向 载荷和轴向载荷。
4.间隙可调式滑动轴承 间隙可调式滑动轴承具有锥形轴套,可利用轴套两端的螺母 使轴套沿轴向移动,从而调整轴承的间隙。 锥形轴套有内锥面和外锥面两种结构。 内锥面轴套不仅能承受径向力,而且能承受一定的轴向力。 外锥面轴套开有纵向切槽,轴套具有弹性,调整两端的螺母并 依靠轴套的弹性变形可调整轴承的径向间隙。 间隙可调式滑动轴承常用于一般机床的主轴的支承。
2、供油孔、油沟和油室 为了把润滑油导人轴承,轴瓦上一般开有油孔,为了使润滑 油流入整个摩擦面,许多轴瓦的内壁上开有纵向油沟。油孔 和油沟一般开在非承载区,否则会降低油膜压力,并不得与 端部接通,以免漏油,通常纵向油沟的长度为轴瓦宽度的80 %。 油室的作用是储存润滑油。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。 1、对轴承材料的要求 对轴瓦材料主要要考虑以下几方面性能: 1)强度、刚度要求、抗疲劳能力; 2)减摩性和耐磨性; 3)磨合性; 4)顺应性和嵌藏性; 5)耐腐蚀性; 6)润滑性能和热学性质(传热性及膨胀性); 7)工艺性; 8)抗胶合性; 9)经济性。 2、滑动轴承常用材料 轴承材料分三大类: 金属材料、粉末冶金材料和非金属材料
二、滑动轴承的结构
1、向心滑动轴承 向心滑动轴承一般由壳体、轴承(轴瓦)和润滑装置组成。 向心滑动轴承有整体式、剖分式、嵌入式、调心式、间隙可调 式及多油楔式等结构。
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点: 1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。 (2)剖分式结构轴承 剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
相关文档
最新文档