Matlab在光学信息处理仿真实验中的应用_谢嘉宁
《MATLAB在光学教学及实验中的应用研究》范文

《MATLAB在光学教学及实验中的应用研究》篇一一、引言光学作为物理学的重要分支,是研究光与物质相互作用的基本规律和现象的学科。
随着科技的进步,光学领域的应用日益广泛,对于光学的教学和实验也提出了更高的要求。
MATLAB作为一种强大的数学计算软件,具有强大的数据处理、图像分析和算法模拟等功能,广泛应用于光学教学及实验中。
本文旨在探讨MATLAB在光学教学及实验中的应用研究。
二、MATLAB在光学教学中的应用1. 光学理论知识教学在光学理论教学中,MATLAB可以用于辅助教师进行课堂教学,帮助学生更好地理解和掌握光学理论知识。
例如,利用MATLAB的绘图功能,可以直观地展示光的传播路径、干涉、衍射等现象,使学生更加深入地理解光学基本原理。
2. 虚拟光学实验虚拟光学实验是利用计算机技术模拟实际的光学实验过程,帮助学生了解实验原理、操作方法和注意事项。
通过MATLAB 编写虚拟实验程序,学生可以在计算机上完成光学实验,无需实际操作复杂的实验设备,提高了教学效率和安全性。
三、MATLAB在光学实验中的应用1. 数据处理与分析在光学实验中,需要收集大量的数据进行分析和处理。
MATLAB具有强大的数据处理和分析功能,可以快速、准确地处理实验数据,并生成直观的图表和结果。
这有助于学生更好地理解实验结果和规律,提高实验的准确性和可靠性。
2. 算法模拟与优化在光学实验中,经常需要使用各种算法来处理和分析数据。
MATLAB提供了丰富的算法库和编程工具,可以方便地实现各种算法的模拟和优化。
这有助于学生更好地掌握算法原理和实现方法,提高实验的科研水平。
四、MATLAB在光学教学及实验中的优势1. 直观性:MATLAB的绘图功能可以直观地展示光学现象和实验结果,有助于学生更好地理解和掌握光学知识。
2. 高效性:MATLAB具有强大的数据处理和分析功能,可以快速、准确地处理实验数据,提高教学和实验效率。
3. 灵活性:MATLAB提供了丰富的算法库和编程工具,可以方便地实现各种算法的模拟和优化,有助于学生更好地掌握算法原理和实现方法。
夫琅禾费衍射的计算机仿真

衍射图样的归一化强度为
I ( Pθ) I ( P0)
=
sin2α α2
(1)
式中α=πasin θ/ λ, I ( P0) 为衍射图样中心点 P0 的
强度. 若取 Pθ 点到中心点 P0 的距离为 x′, 则 sin θ
= x′/ ( x′2 + f 2) 1/ 2 , 由此可以得到接收屏上任意位
置 Pθ 到中心点 P0 的距离 x′与该点的相对光强度 之间的关系.
图 3 灰度比例尺变换处理前后衍射图样的对比
4 仿真方法 2 ———傅里叶变换法
设衍射屏的振幅透射系数为 t ( x , y) , 根据菲
涅耳 - 基尔霍夫衍射积分 , 若观察平面到衍射屏的
距离 z 满足如下近似条件[4 ] :
k(
x2
+ y2) 2z
max
ν
1
或
z
µ
k 2
( x2
+
y2) max
衍射的这个特点. 其中图 7 ( a) 的参数为 :λ =500 nm , a = 3μm , b =3 μm , f =32 mm ;图 7 (b) 是 b =5 μm 时的仿真实验结果 ; 图 7 (c) 是 a =5 μm , b =5 μm 时的仿真实验结果.
图 8 是采用方法 2 得到的单缝 、双缝 、多缝以及 矩形孔 、三角形孔 、多边形孔 、圆孔和双孔等的计算 机仿真夫琅禾费衍射图样. 可以看出 ,所得仿真实验 结果与实际实验结果基本一致. 只是由于输入图像 为位图格式 ,像素造成输入圆孔的边缘有锯齿状 ,以
2 夫琅禾费衍射实验装置
由基础光学可知 ,任意衍射屏的夫琅禾费衍射 可借助两个透镜来实现. 如图 1 所示 ,位于透镜 L1 物方焦平面上的点源 S 所发出的单色球面光波经
基于MATLAB光学信息处理结果的模拟

主要符号表λ入射光的波长 0r 狭缝到接收屏的距离 a缝宽(矩形孔的长度) b矩形孔的宽度 d缝间距 r圆孔半径 θ衍射角 f透镜的焦距 x屏上横向坐标 y屏上纵向坐标 0I0P 点的光强I P 点的光强1 绪论1.1MATLAB语言用于计算机模拟的优势有过计算机语言编程经验的人可能都会有这样的体会,当我们进行程序设计时,特别是当程序涉及到矩阵运算或绘图时,程序的编程过程是比较繁琐的,尤其是当我们需要编出一个通用程度较高的程序时就更为麻烦。
它不仅要求我们深刻了解所要求解的问题以找到一个可靠性较好的算法,还必须研究各种可能的边界条件,特别是要考虑各种范围的数据大小等。
另外,还要熟练掌握所使用的计算机语言。
即便如此,所编写出的程序仍有可能会由于这样或那样的原因出错,或得不到满意的结果。
因此,对于非计算机专业的科研和教学人员,更渴望有一种能让他们省时省力就能编写出解决专业问题的软件,从而避免资源浪费,提高工作效率。
MATLAB就是顺应这一需求产生的,而且从它诞生之日起,就受到用户的欢迎,并且很快在各个领域得到推广。
MATLAB语言是Mathworks公司推出的一套高性能的数值计算可视化软件,它集数值分析、矩阵运算和图形显示于一体,被称为演算纸式的语言,是当今国际上最具活力的软件开发工具包。
它提供了强大的科学运算、灵活的程序设计流程、高质量的图形生成及模拟、便捷的与其它程序和语言接口的功能。
高质量的图形生成及模拟包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB 命令,以及开发GUI应用程序的各种工具。
MATLAB提供了一个人机交互的系统环境,与利用C语言或FORTRAN语言作数值计算的程序设计相比,可以节省大量的编程时间。
通过MATLAB高质量的图形生成及模拟功能对抽象物理现象的细致模拟,使这些过程变得非常直观明了,从而把一些抽象的理论简明化,而且这种方法的实现要比其它的一些仿真软件简单、易行。
《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。
然而,实际的光学实验通常涉及到复杂的光路设计和精密的仪器设备,实验成本高、周期长。
因此,通过基于Matlab的光学实验仿真来模拟光学实验,不仅能够为研究提供更方便的实验条件,而且还可以帮助科研人员更深入地理解和掌握光学原理。
本文将介绍基于Matlab的光学实验仿真的实现方法和应用实例。
二、Matlab在光学实验仿真中的应用Matlab作为一种强大的数学计算软件,在光学实验仿真中具有广泛的应用。
其强大的矩阵运算能力、图像处理能力和数值模拟能力为光学仿真提供了坚实的数学基础。
1. 矩阵运算与光线传播Matlab的矩阵运算功能可用于模拟光线传播过程。
例如,光线在空间中的传播可以通过矩阵的变换实现,包括偏振、折射、反射等过程。
通过构建相应的矩阵模型,可以实现对光线传播过程的精确模拟。
2. 图像处理与光场分布Matlab的图像处理功能可用于模拟光场分布和光束传播。
例如,通过傅里叶变换和波前重建等方法,可以模拟出光束在空间中的传播过程和光场分布情况,从而为光学设计提供参考。
3. 数值模拟与实验设计Matlab的数值模拟功能可用于设计光学实验方案和优化实验参数。
通过构建光学系统的数学模型,可以模拟出实验过程中的各种现象和结果,从而为实验设计提供依据。
此外,Matlab还可以用于分析实验数据和优化实验参数,提高实验的准确性和效率。
三、基于Matlab的光学实验仿真实现方法基于Matlab的光学实验仿真实现方法主要包括以下几个步骤:1. 建立光学系统的数学模型根据实际的光学系统,建立相应的数学模型。
这包括光路设计、光学元件的参数、光束的传播等。
2. 编写仿真程序根据建立的数学模型,编写Matlab仿真程序。
这包括矩阵运算、图像处理和数值模拟等步骤。
在编写程序时,需要注意程序的精度和效率,确保仿真的准确性。
3. 运行仿真程序并分析结果运行仿真程序后,可以得到光束传播的模拟结果和光场分布等信息。
matlab在光学教学及实验中的应用研究

matlab在光学教学及实验中的应用研究一、引言二、光学教学中的matlab应用1. 光学基础知识教学2. 光学实验设计与模拟三、光学实验中的matlab应用1. 光路设计与分析2. 光谱分析与处理四、matlab在光学教学及实验中的优点和不足1. 优点2. 不足五、结论一、引言随着计算机技术的不断发展,matlab作为一种强大的数值计算软件,被广泛应用于各个领域。
在光学教育和研究中,matlab也逐渐成为了一个重要的工具。
本文将探讨matlab在光学教育和实验中的应用,并分析其优缺点。
二、光学教学中的matlab应用1. 光学基础知识教学在光学基础知识教育中,matlab可以帮助学生更好地理解和掌握折射率、反射率等概念。
通过编写程序,可以模拟出不同介质间的光线传播过程,并可视化展示。
例如,可以编写程序模拟出当入射角度改变时,光线在不同介质中的传播路径和折射角度的变化。
这样可以帮助学生更好地理解折射定律,并加深对光线传播过程的认识。
2. 光学实验设计与模拟在光学实验设计中,matlab可以用于模拟和优化实验方案。
例如,在进行干涉仪实验时,可以通过编写程序来模拟出不同参数下干涉图的变化,并根据模拟结果来优化实验方案。
此外,matlab还可以用于计算和分析实验数据,帮助学生更好地理解实验结果。
三、光学实验中的matlab应用1. 光路设计与分析在光路设计中,matlab可以用于计算和分析光线传输过程中的参数。
例如,在进行透镜成像实验时,可以通过编写程序来计算出不同透镜参数下成像位置和放大倍数等参数,并根据计算结果来优化透镜参数。
此外,matlab还可以用于模拟出不同光路结构下成像效果的差异,并帮助学生更好地理解光路结构对成像效果的影响。
2. 光谱分析与处理在进行光谱分析时,matlab可以用于数据处理、曲线拟合和分析等。
例如,在进行光谱分析实验时,可以通过编写程序来对实验数据进行处理和分析,并绘制出相应的光谱图像。
《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。
然而,由于实验条件的限制和复杂性,实验过程往往需要耗费大量的时间和资源。
因此,基于Matlab的光学实验仿真成为了一种有效的替代方法。
通过仿真,我们可以在计算机上模拟真实的光学实验过程,获得与实际实验相似的结果,从而节省实验成本和时间。
本文将介绍基于Matlab的光学实验仿真的基本原理、方法、应用和优缺点。
二、Matlab在光学实验仿真中的应用Matlab是一种强大的数学计算软件,具有丰富的函数库和强大的计算能力,可以用于光学实验的仿真。
在光学实验仿真中,Matlab可以模拟各种光学元件、光学系统和光学现象,如透镜、反射镜、干涉仪、光谱仪等。
此外,Matlab还可以通过编程实现复杂的算法和模型,如光线追踪、光场计算、光波传播等。
三、基于Matlab的光学实验仿真方法基于Matlab的光学实验仿真方法主要包括以下几个步骤:1. 建立仿真模型:根据实验要求,建立相应的光学系统模型和算法模型。
2. 设置仿真参数:根据实际需求,设置仿真参数,如光源类型、光束尺寸、光路走向等。
3. 编写仿真程序:使用Matlab编写仿真程序,实现光路计算、光场分析和结果输出等功能。
4. 运行仿真程序:运行仿真程序,获取仿真结果。
5. 分析结果:对仿真结果进行分析和讨论,得出结论。
四、应用实例以透镜成像为例,介绍基于Matlab的光学实验仿真的应用。
首先,建立透镜成像的仿真模型,包括光源、透镜和屏幕等元件。
然后,设置仿真参数,如光源类型、透镜焦距、屏幕位置等。
接着,使用Matlab编写仿真程序,实现光线追踪和光场计算等功能。
最后,运行仿真程序并分析结果。
通过仿真结果,我们可以观察到透镜对光线的聚焦作用和成像效果,从而验证透镜成像的原理和规律。
五、优缺点分析基于Matlab的光学实验仿真具有以下优点:1. 节省时间和成本:通过仿真可以快速获得实验结果,避免实际实验中的复杂性和不确定性。
基于Matlab的图像联合变换相关识别的实现

式 ( ) ( ) , , )和 T( , )分 别 为参考 图像 rx, )和 待识别 目标 图像 f )的傅 里 1 , 2 中 尺( A ( ( ,
收 稿 日期 : 0 6 0 — 1 2 0 — 3 3
作 者 简 介 : 嘉 宁 ( 9 1)女 , 东 潮 州 人 , 山科 学 技 术 学 院 副 教 授 , 山 大 学 在读 博 士研 究 生 。 谢 17一, 广 佛 中
V o .2 O. 1 4N 4
D e .2 0 c 0 6
文 章 编 号 :0 8 0 7 ( 0 6 0 — 0 0 0 1 0- 1 12 0 ) 40 2— 3
基 于 Malb的图 联 合 变 换 相 关 识别 的 实现 t a 像
谢 嘉 宁 , 义 清 , 潞 英 黄 张
维普资讯
第 4期
谢 嘉 宁等 : 于 Malb的图像联 合 变换相 关识 别的 实现 基 t a
2 1
叶变换 谱 复振 幅分 布 , =x a / f和 =y a /f分 别为 透镜 L 后 焦 平面 上 的空 间频 率 , 傅里 叶变 换 m 厂为 透镜 L 的焦 距 , m 为相 干照 明光 波 的波长 。 复振 幅分 布经 平方 律转换 器转 换成 联合 变换 功率谱 分布 该
中 图分 类 号 : N6 4 T 2 文献标识码 : A
图像相 关识别 的 目的 是从一 些 图像 ( 文字 、 如 指纹 、 生物 样 品等 ) 中鉴别 是否 具有某 一 特定 图像 。这
种 技术 现 已广泛应 用 于 医学 图像 处理 、 全子 系统 、 纹及 容貌 识别 、 安 指 光学 特征识 别及 跟踪 等 。 学 图像 光
( 山科 学技 术 学 院 光 电子 与物 理 学 系 , 东 佛 山 5 8 0 ) 佛 广 2 0 0
《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学中重要的实验之一,通过实验可以探究光的基本性质、光的传播规律以及光与物质的相互作用等。
然而,在实际的实验过程中,由于各种因素的影响,如设备精度、环境条件等,实验结果可能存在一定的误差。
为了更好地研究光学现象,提高实验的准确性和可靠性,基于Matlab的光学实验仿真被广泛应用于科研和教学中。
本文将介绍基于Matlab的光学实验仿真的相关内容。
二、Matlab在光学实验仿真中的应用Matlab是一款强大的数学软件,具有丰富的函数库和强大的计算能力,可以用于光学实验的建模、分析和仿真。
在光学实验中,Matlab可以模拟光的传播、光的干涉、衍射等现象,从而帮助研究人员更好地理解光学现象。
此外,Matlab还可以对实验数据进行处理和分析,提高实验的准确性和可靠性。
三、基于Matlab的光学实验仿真流程基于Matlab的光学实验仿真流程主要包括以下几个步骤:1. 建立光学模型:根据实验需求,建立光学模型,包括光源、光路、光学元件等。
2. 设置仿真参数:根据实验要求,设置仿真参数,如光的波长、光路长度、光学元件的参数等。
3. 运行仿真程序:运行仿真程序,模拟光的传播和光学现象。
4. 处理和分析数据:对仿真结果进行处理和分析,提取有用的信息,如光强分布、光斑形状等。
5. 绘制图表:根据需要,绘制相应的图表,如光强分布图、光路图等。
四、具体实验案例:双缝干涉实验仿真双缝干涉实验是光学中经典的实验之一,通过该实验可以探究光的波动性质。
下面将介绍基于Matlab的双缝干涉实验仿真。
1. 建立光学模型:在Matlab中建立双缝干涉实验的模型,包括光源、双缝、屏幕等。
2. 设置仿真参数:设置光的波长、双缝的宽度和间距、屏幕的距离等参数。
3. 运行仿真程序:运行仿真程序,模拟光的传播和双缝干涉现象。
4. 处理和分析数据:对仿真结果进行处理和分析,提取干涉条纹的光强分布和形状等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2004202213 基金项目:佛山科学技术学院校级科研课题经费资助 作者简介:谢嘉宁(1971-),女,广东潮州人,佛山科学技术学院物理系讲师,光学工程硕士,主要从事光学实验教学与光信息处理的研究.Matlab 在光学信息处理仿真实验中的应用谢嘉宁1,陈伟成1,赵建林2,陈国杰1,张潞英1(1.佛山科学技术学院物理系,广东佛山528000;2.西北工业大学应用物理系,陕西西安710072) 摘 要:提出了一种利用计算机并通过Matlab 软件仿真光学信息处理实验的方法,其特点是可以随意改变物理参量,克服了光学实验上难以实现的操作.文中分别给出了光栅衍射、空间滤波、图像边缘增强、相关识别等实验的部分仿真结果.关键词:Matlab ;计算机仿真;CAI中图分类号:O4239 文献标识码:A 文章编号:100524642(2004)06200232031 引 言光学信息处理是以光子传递信息,以光学或光电子器件进行操作运算,利用光的透射、干涉和衍射等光学现象来实现对输入信息的各种变换或处理.因此,它也是一门基于实验的科学.随着计算机的广泛使用,计算机仿真实验得到了大量研究,各类CAI 软件应运而生,给光学信息处理的研究和教学带来极大方便.但笔者在调研中发现,大部分的仿真程序由VB ,C 和Fortran 等高级语言编写[1~3].使用这些语言编程,需要编者具有良好的计算机编程能力并花费较多的时间.因此,本文探讨利用Matlab 软件实现对光学信息处理实验的计算机仿真方法.Matlab 作为科学计算软件,主要适用于矩阵运算和信息处理领域的分析设计,它使用方便、输入简捷,运算高效、内容丰富,并且有大量的函数库可供使用[4].与Basic ,C 和Fortran 相比,用Matlab 编写程序,其问题的提出和解决只需以数学方式表达和描述,不需要大量繁琐的编程过程,因此特别适合工程计算和教学软件的编写.本仿真实验系统实现了多种衍射屏的夫琅和费衍射、空间滤波、图像边缘增强、相关识别等实验的仿真.2 仿真系统的总体设计本系统采用Matlab5.3编写,在Pentium 以上个人计算机上、Matlab 环境下运行.为了方便用户使用,本系统的实验项目模块设置如图1所示.主界面的程序为OIP000.m ,界面如图2所示.四大系统子模块是该窗体的子窗体模块,分别为OIP1.m ,OIP2.m ,OIP3.m 和OIP4.m ,通过单击主界面上相应的按钮即可启动相应的子窗体,在每一级子窗体界面上有相关的参量选择和操作.图1 系统模块功能图图2 仿真实验系统主界面第24卷 第6期2004年6月 物 理 实 验 PHYSICS EXPERIM EN TA TION Vol.24 No.6 J un.,20043 四大系统子模块的功能和程序的实现四大系统子模块的功能介绍如下:1)光栅衍射实验是第一子模块中的实验内容(如图3所示).通过界面右边的参量输入板,可以随意改变入射波长λ、焦距f 、缝数N 、缝宽a 、光栅常量d 和入射角θ.选定各参量后按下确定键,即可在左边的图像框显示出光强分布图和光栅衍射图样[5].图3 光栅衍射实验模块2)空间滤波实验模块的内容为:阿贝2波特网格实验和空间滤波实验[6].网格实验是光信息处理实验中最重要的实验内容之一.输入图像是用Windows 下的画图工具制作的网格(128×128大小,存为BMP 格式),经过傅里叶变换,在频谱面上显示出振幅频谱图.选择一个滤波器,放置在频谱面上,再进行一次傅里叶逆变换,则在输出平面得到输出像.仿真结果见图4.空间滤波实验的仿真界面见图5,输入图像、傅里叶变换、滤波器选择、傅里叶逆变换、振幅频谱三维图都在菜单栏中选择.该实验程序的编写,主要运用了Matlab 中的fft ,ifft ,fftshift 等函数.图像的读入用了imread ()语句,显示图像用imshow ()语句.为了显示振幅频谱的三维图,使用了mesh (abs (F ))[7].图4 阿贝2波特网格实验图5 空间滤波实验 3)图像边缘增强模块包括2部分:常见的数字图像边缘增强方法和利用小波函数实现图像边缘增强.常见的数字图像边缘增强方法有sobel ,prewitt ,robert 等,结果如图6所示.它们的实现直接使用了Matlab 中信号处理工具箱自身带有的edge ()函数.小波函数产生边缘增强,是在空间滤波实验的基础上,将小波函数的傅氏表达式与输入图像的傅里叶变换函数相乘,再进行傅里叶逆变换得到.因此,在本仿真实验中,使用者可以根据实际需要,改变小波函数的类型和选择不同的伸缩因子,对待处理的图像进行边缘特征提取.图6 常见的数字图像边缘增强方法的结果42 物理实验 第24卷 仿真结果如图7所示.用这种方法编写图像边缘增强程序,只用了几条语句就完成了任务,简单明了,具有很强的物理思想,让使用者在进行仿真实验的同时,加深了对光学信息处理过程的理解.另外,使用者可以根据研究的需要,自己编写小波滤波器函数.图7 Haar 小波变换实现图像边缘增强仿真实验 4)光学信息处理的应用模块包含两大部分:图像的相加、减运算与图象相关识别,它们均属于光学图像处理的重要课题.本仿真系统以正弦光栅作为滤波器,对待处理图像的频谱进行滤波,经过傅里叶逆变换,即产生两图像的相加运算.将正弦光栅沿x 轴平移π/2,则在输出面上得到两图像的相减.图8是图像相加运算实验的仿真结果.联合变换相关运算的实现是通过将目标物与参考物放置在同一幅图上作为输入图像,经一次FF T 变换后,在频谱面上得到其复振幅分布F ,再对F 进行联合变换功率谱的计算,最后对结果作FFT图8 图像相加运算仿真实验的逆变换,输出结果即为目标物与参考物的相关峰.根据相关峰的强度以及弥散程度,可以对光学图像进行识别与筛选.相关识别仿真实验界面如图9所示.图9 相关识别仿真实验4 结束语用软件工具Matlab 开发光学信息处理实验仿真系统,提高了实验的效率,快速实现研究中的新构想.因此,推广应用类似于Matlab 这样功能强大的编程软件来进行仿真实验的开发,将给教学和科研带来便利.参考文献:[1] 刘兵.夫琅和费衍射的计算机模拟[J ].青岛大学学报,1999,14(4):63~65.[2] 沈为民,杜茂森,刘东旭.成像过程的计算机模拟[J ].大学物理,2000,19(8):44~46.[3] 安文玉,赵延波.光衍射的微机模拟[J ].黑龙江大学自然科学学报,1999,16(2):73~75.[4] 陈怀琛.MA TLAB 及其在理工课程中的应用指南[M ].西安:西安电子科技大学出版社,2000.[5] 谢嘉宁,赵建林.光栅衍射现象的计算机仿真分析[J ].佛山科学技术学院学报,2002,20(2):15~18.[6] 彭哲方.数字图像处理在阿贝成像原理和空间滤波实验中的应用[J ].物理实验,2001,21(7):26~28.[7] 谢嘉宁,赵建林.光学空间滤波过程的计算机仿真[J ].光子学报,2002,31(7):847~850.(下转第28页)52第6期 谢嘉宁,等:Matlab 在光学信息处理仿真实验中的应用复制C5中的公式到C6,C7,C8,…(公式的引用[2])即可.这时Excel就会自动在C6,C7,C8,…中只填入公式“=$A$63B6/$A$4/2,=$A $63B7/$A$4/2,=$A$63B8/$A$4/2,…”,并计算出相应的半径值.操作方法是:先选中C5单元格,把鼠标移到C5右下角的黑色小方块上,当出现一个黑色十字形光标时按下鼠标左键并向下拖动鼠标,当把要计算的区域全部覆盖后释放鼠标,这时所有的衍射环半径就计算好了,释放鼠标后立刻就显示计算结果.用类似的方法由Excel可以很容易地计算出h2+k2+l2的值,或某个加速电压下的波长理论值λ0,不同半径时衍射环的波长测量值λ以及平均值,相对误差(图4).4 结束语使用Excel可以非常方便、快速、准确地计算、处理物理实验数据,还可以很方便地画曲线图、拟合直线图、进行回归分析、分析变量变化趋势…….而且通过网络又可以非常方便地进行相互讨论、交流、批阅,因此利用数码相机、电子计算机及Excel电子表格处理软件处理电子衍射实验或其它物理实验数据可以提高实验数据的处理水平和实验教学质量.参考文献:[1] 吴思诚,王祖铨.近代物理实验(基本实验)[M].北京:北京大学出版社,1989.365.[2] 杜茂康.Excel与数据处理[M].北京:电子工业出版业,2003.14~16.[3] 倪敏,诸燕萍.Excel软件在物理实验中的应用[J].物理实验,2000,20(4):16~19.[4] 朱文钧.把数字图像技术引入近代物理实验[J].物理实验,2001,21(9):26~27.Data acquisition and processing in the experim ent of electron diffractionPAN Xue2jun1,WU Qian2(1.College of Electronic Engineering,Sichuan Normal University,Chengdu610068,China;2.Centre of Analysis and Measure,Sichuan Normal University,Chengdu610068,China)Abstract:The picture of electronic diffraction is taken by a digital camera,then it is surveyed and pro2 cessed by the Excel processing software and drawing tool on the computer.K ey w ords:electron diffraction;digital camera;Excel;paint tools(上接第25页)Application of Matlab in simulated opticalinform ation processing experimentsXIE Jia2ning1,CHEN Wei2cheng1,ZHAO Jian2lin2,CHEN Guo2jie1,ZHAN G Lu2ying1(1.Department of Physics,Foshan University,Foshan528000,China;2.Department of Applied Physics,Northwestern Polytechnical University,Xi’an710072,China)Abstract:The method based on Matlab to simulate the optical information processing experiments is presented,by using which the physical parameters can be modified arbitrarily and some operations that it is difficult to be realized in real instrument condition can be achieved.The simulated results of grating diffrac2 tion,spatial filtering,extraction of edge2features and correlations operations are given.K ey w ords:Matlab;computer simulation;CAI82 物理实验 第24卷。