切线的定义和判定定理

合集下载

2.3、 圆的切线的性质及判定定理

2.3、 圆的切线的性质及判定定理

即B一定点在圆外.由点B的任意性可知,圆与直线 只有一个公共点,因此l 是圆的切线.由此可得:
切线的判定定理:
经过半径的外端并且垂直于这 条半径的直线是圆的切线.
O
l
AB
例1 如图,AB是⊙O的直径, ⊙O过BC的中点D, DE⊥AC.求证:DE是⊙O是切线.
证明:连接OD.
∵BD=CD,OA=OB, ∴OD是△ABC的中位线,
D C
A
O
B
P322
思考:切线的性质定理逆命题“经过半径的外端并且 垂直于这条半径的直线是圆的切线.”是否成立?
已知:点A是⊙O与直线l 的公共点,且 l ⊥OA .
求证:圆与直线只有一个公共点 证明:在l 上任取异于点A的点B,则△OAB是Rt△
而OB是Rt△ OAB的斜边,因此,都有OB>OA,
C P321
∴OD//AC.
又∵∠DEC=90º ∴∠ODE=90º 又∵D在圆周上,
∴DE是⊙O是切线..E D NhomakorabeaB
A
O
三、 圆的切线的 性质及判定定理
O
r
l A MB
l
.O
1 切线的性质定理:圆的切线垂直于经过切点的半径.
l
AM
反证法
假设不垂直, 作OM⊥l
因“垂线段最 故OA>OM,
O
即短圆”心, 到直线距离小于半径.
这与线圆相切矛盾.
因为经过一点只有一条直线与已知直线垂直,所 以经过圆心垂直于切线的直线一定过切点;反之,过切 点且垂直于切线的直线也一定过圆心.由此得到:
推论1: 经过圆心且垂直于切线的直线必经过切点.
推论2: 经过切点且垂直于切线的直线必经过圆心.

(完整)圆切线证明的方法

(完整)圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

切线长定理—知识讲解(基础)

切线长定理—知识讲解(基础)

切线长定理—知识讲解(基础)责编:康红梅【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).【典型例题】 类型一、切线长定理1.如图,PA 、PB 、DE 分别切⊙O 于A 、B 、C ,⊙O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.【答案与解析】连结OA ,则OA ⊥AP . 在Rt △POA 中,PA =22OA OP -=22610-=8(cm ).由切线长定理,得EA =EC ,CD =BD ,PA =PB ,∴ △PDE 的周长为PE +DE +PD =PE +EC +DC +PD ,=PE +EA +PD +DB=PA +PB =16(cm ).【总结升华】本题考查切线长定理、切线的性质、勾股定理.注意:在有关圆的切线长的计算中,往往利用切线长定理进行线段的转换.【高清ID号:356967 关联的位置名称(播放点名称):方法总结及例题1-2】2.(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,∠DAE=∠ABE,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.【思路点拨】(1)根据圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.【答案与解析】证明:(1)∵∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD∥BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.【总结升华】本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.举一反三:【变式】(2015•青海)如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)若AC=3,求MC的长.【答案】(1)证明:连接OA,∵AM是⊙O的切线,∴∠OAM=90°,∵∠B=60°,∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;(2)作AG⊥CM于G,∵∠OCA=30°,AC=3,∴AG=,由勾股定理的,CG=,则MC=2CG=3.类型二、三角形的内切圆3.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC 的面积S.【答案与解析】设内切圆与三角形的三边AB 、AC 、BC 分别交于D 、E 、F ,连接OE 、 OF 、OD 、AO 、BO 、CO.∴△ABC=△AO B +△AO C +△BO C=12r(a+b+c). 【总结升华】考虑把△ABC 的面积分割成3个以圆的半径为高的三角形面积的和,从而求出△ABC 的面积.举一反三:【高清ID 号:356967 关联的位置名称(播放点名称):切线长定理及例3】【变式】已知如图,△ABC 中,∠C=90°,BC=4,AC=3,求△ABC 的内切圆⊙O 的半径r.【答案】连结OA 、OB 、OC ,∵△ABC 中,∠C=90°,BC=4,AC=3,∴AB=5.则S △AOB +S △COB +S △AOC =S △ABC ,即11115+4+3=34=12222r r r r ⨯⨯⨯⨯⨯,类型三、与相切有关的计算与证明4.(2016•自贡)如图,⊙O 是△ABC 的外接圆,AC 为直径,弦BD=BA ,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BAD ;(2)求证:BE 是⊙O 的切线.【思路点拨】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO ,求出OB ∥DE ,推出EB ⊥OB ,根据切线的判定得出即可;【答案与解析】证明:(1)∵BD=BA ,∴∠BDA=∠BAD ,∵∠1=∠BDA ,∴∠1=∠BAD ;(2)连接BO ,∵∠ABC=90°,又∵∠BAD +∠BCD=180°,∴∠BCO +∠BCD=180°,∵OB=OC ,∴∠BCO=∠CBO ,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.【总结升华】本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.。

切线的性质

切线的性质

2、已知:如图:AB是⊙O的弦, AC 切 ⊙ 于 点 A , 且 ∠ BAC=54° , 求∠OBA的度数。
例1、求证:经过直径的两端点的圆的切
线互相平行。
已知:如图,AB是圆
A
C
O的直径,直线
AC,BD分别是过点A,B
O
的圆O的切线。
求证 : AC BD
证明:如图,
D
B
∵AC、BD是⊙O的切线 AB 是⊙O的直径
求证:AC平分∠DAB
D
C
A
B
O
变式训练(1) 已知AB是⊙O的直径, AC平分∠DAB,DC与⊙O切于的 点C,求证:AD⊥CD
D C
A
பைடு நூலகம்
B
O
• 变式训练(2)如图,AB是⊙O的 直径,,CD与⊙O切于点C,AD ⊥CD于D,BC、AD的延长线交 于点E,且AE=BE,求∠A的度 数。
E
D
c
A
B
切线的性质定理
1.圆的切线垂直于经过切点的半径
2.经过圆心且垂直于切线的直线必经过切点 3.经过切点且垂直于切线的直线必经过圆心
1、按图填空:(口答) (1). 如果AB切⊙O于A, 那么 OA⊥ AB.
(2). 如果半径OA⊥AB, 那么AB是 ⊙O的切线
B A
O
(3).如果AB是⊙O的切线,OA⊥AB,那么A是 切点
求∠ABD的度数.
C
B
解:∵ AB为直径
∴∠ABC=90°
BC为切线
∠ADB=90°
∵ △ABC为直角三角形 AD=DC
∴△ABD为等腰直角三角形
∴AD=DB ∠ADC=90°
∴∠ABD=45°

圆的切线性质与判定

圆的切线性质与判定
小试牛刀
例2:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F, (1)求证:DF是⊙O的切线;
证明:连结OD, ∵OB=OD,∴∠ODB=∠B 又∵AB=AC,∴∠C=∠B ∴∠ODB=∠C ∴OD∥AC 又∵DF⊥AC ∴∠DFC=90° ∴∠ODF=∠DFC=90° ∴DF⊥OD ∴DF为⊙O的切线
注意:确定唯一公共点,可证明直线和圆相切
例1:直线l和⊙O的公共点的个数为m,且m满足方程 m2+2m- 3=0, 试判断直线l和⊙ O的位置关系,并 说明理由.
例3.如图,直线y=- x+4与y轴交于点A,与x轴交于 点B,以点C( ,0)为圆心,OC的长为半径作⊙C, 证明:AB是⊙C的切线。 M 分析:由于不知AB和⊙C是否有公共点,故考虑过C作CM⊥AB于M,再证CM为⊙C的半径即可
小结一
确定唯一公共点,证切线
无交点,作垂直,证半径
有交点,连半径,证垂直
证明切线的一般方法简单表述为:
小试牛刀
例3:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F,
(2)连结OP ∵AC与⊙O相切于点P,∴OP⊥AC 由(1)可知OD∥AC,且DF⊥AC, 故四边形ODFP为正方形 ∴PF=OD=OB=3 设AC=x,则在Rt△APO中有 AP2+OP2=OA2 即(x-4)2+32=(x-3)2 解得x=8 ∴AC=8
是圆的切线
是圆的切线
是圆的切线
3、圆的切线性质定理:圆的切线垂直于经过切点的半径。 辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。

切线的判定和性质

切线的判定和性质

切线的判定和性质
切线的性质与判定
1.主要性质
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心;
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

其中(1)是由切线的定义得到的,(2)是由直线和圆的位置关系定理得到的,(6)是由相似三角形推得的,也就是切割线定理。

2.判定
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

圆的切线垂直于这个圆过切点的半径。

切线的判定和性质

切线的判定和性质

(打印3份)圆----切线的性质和判定(11月12)A、知识点、方法归纳总结知能点1:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的识别方法有三种:(1)和圆只有一个公共点的直线是圆的切线。

(2)和圆心的距离等于圆的半径的直线是圆的切线。

(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线辅助线的作法:证明一条直线是圆的切线的常用方法:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径,记为“连半径,证垂直。

”知能点2:切线的性质定理:圆的切线垂直于过切点的半径。

辅助线的作法:有圆的切线时,常常连接圆心和切点得切线垂直半径。

记为“见切线,连半径,得垂直。

”中考考点点击:切线的判定和性质在中考中是重点内容,试题题型灵活多样,填空、选择、作图、解答题较多。

B、证明圆的切线方法及例题一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4.∴BD=DE,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线,∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900.⌒ ⌒即OA ⊥PA.∴PA 与⊙O 相切.说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 变式练习: 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M 求证:DM 与⊙O 相切.例3 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB ,∴△OBC 是等边三角形. ∴∠CBO=600. OB=BC. ∵OB=BD , ∴BC=BD.∴∠CDO=300∴∠OCD=180°-300-600=900. ∴OC ⊥CD.∴DC 是⊙O 的切线.变式练习:如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例4 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线变式练习: 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.C 、作业部分1、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30° B .45° C .60° D .67.5°2、O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .3、如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC=3BC ,CD 与⊙O 相切,切点为D.若CD=3,则线段BC 的长度等于__________.4、如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.(1)求证:直线CD为⊙O的切线;(2)当AB=2BE,且CE=3时,求AD的长.5如图,在Rt△ABC中,∠C=90°,O、D分别为AB、BC上的点.经过A、D两点的⊙O分别交AB、AC于点E、F,且D为弧EF的中点.求证:BC与⊙O相切;6、如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,求CD :DE 的值7、如图,AB 是半圆O 的直径,点C 是⊙O 上一点(不与A ,B 重合),连接AC ,BC ,过点O 作OD ∥AC 交BC 于点D ,在OD 的延长线上取一点E ,连接EB ,使∠OEB=∠ABC . ⑴求证:BE 是⊙O 的切线;⑵若OA=10,BC=16,求BE 的长.EB8、如图,⊙ O经过点B、D、E,BD是⊙ O的直径,∠C=90°,BE 平分∠ABC. (1)试说明直线AC是⊙ O的切线;(2)当AE=4,AD=2时,求⊙ O的半径及BC的长.9、如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB 与点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F ,连接OC、(1)求证:CE是⊙O的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线的定义和判定定理
切线的定义和判定定理是数学中关于圆的切线的重要知识点。

以下是关于这个主题的详细解释。

一、切线的定义
切线与圆的定义是几何学中的基本概念,对于每一个圆来说,其切线是指与圆只有一个公共点的直线。

这个公共点被称为切点,切线与圆的切点是唯一的。

在二维平面上,如果一条直线与圆有且仅有一个交点,则这条直线被称为圆的切线。

切线的性质:
切线与圆只有一个交点,即切点。

切线与经过切点的半径垂直。

切线的斜率等于经过切点的半径的斜率。

二、切线的判定定理
判定定理一:定义判定法,如果直线上的每一个点都位于圆外,则直线为切线。

这是最直接的判定方法,也是最常用的。

判定定理二:半径垂直法,如果直线经过半径的外端并且垂直于该半径,则直线为切线。

这个判定方法通常用于证明过程中,尤其是在解题时,可以根据已知条件证明某直线满足这个判定定理。

判定定理三:角平分线法,如果直线平分圆的任意一条弦(非直径),并且垂直于该弦,则直线为切线。

这个判定方法在一些特殊情况下非常有用,可以通过证明某直线满足这个判定定理来证明某直线为切线。

在具体的应用中,可以根据题目的条件和要求选择合适的判定方法来确定切线的位置和性质。

同时,也要注意切线与半径、弦之间的关系,以及切线与其他几何元素之间的联系,以便更好地理解和掌握切线的性质和判定定理。

在实际应用中,了解和掌握切线的性质和判定定理是非常重要的。

在解析几何、平面几何、圆和圆锥曲线等学科中,都需要用到这些知识点来解决相关问题。

通过深入理解切线的定义和判定定理,我们可以更好地理解和应用几何学的其他概念和定理,从而更好地解决各种数学问题。

此外,切线的性质和判定定理也在其他领域有着广泛的应用。

例如,在物理学中,切线性质可以用于研究物体运动轨迹的变化;在工程学中,判定定理可以用于确定机械零件的尺寸和位置;在经济学中,可以用于研究供需关系和市场均衡等等。

因此,深入理解切线的定义和
判定定理不仅可以提高数学素养,也可以为其他学科的学习和研究提供有益的帮助。

总之,切线的定义和判定定理是几何学中的重要知识点,对于理解和掌握几何学的其他概念和定理有着重要的作用。

在实际应用中,需要根据具体情况选择合适的判定方法来确定切线的位置和性质,并注意切线与其他几何元素之间的联系,以便更好地解决各种数学问题。

同时,也要深入理解切线的定义和判定定理在其他领域的应用,以拓展自己的知识视野和应用能力。

相关文档
最新文档