精编课件人教版九年级数学上册22.1.1《二次函数》教学课件(共15张PPT)

合集下载

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

人教版九年级数学上册《二次函数》教学课件

人教版九年级数学上册《二次函数》教学课件

应用新知
巩固新知
课堂小结
?
布置作业
想一想
创设情境
探究新知
问题2 n个人参加某项活动,每两个人握一次手,这n
个人握手的总次数m与人数n有什么关系?
应用新知
巩固新知
课堂小结
布置作业
1
m= (
2

1
1
1)即m= ²- n
2
2
想一想
创设情境
问题3 某种产品现在的年产量为20t,计划今后两年增
探究新知
即y=20x²+40x+20
想一想
创设情境
探究新知
应用新知
巩固新知
课堂小结
布置作业
请视察下面三个式子,它们的变量对应关系可用怎
样的函数表示?这些函数有什么共同特点?请你结
合学习一次函数的经验,给它下个定义.
(1)y=6x²
1
1
(2) m= ²- n
2
2
(3)y=20x²+40x+20
想一想
创设情境
解得,
ቊ = 2或 = −1
≠ −1
∴m=2
∴m=2时,函数为二次函数
y=3x²
随堂练习
创设情境
探究新知
3.如图,在长200米,宽80米的矩形广场内修建等宽的十
字形道路,剩余部分为绿地,请写出绿地面积y(m²)与
路宽x(m)之间的函数关系

思路1:绿地面积=矩形广场面积-等宽的十字形道
创设情境
探究新知
应用新知
巩固新知
教科书第29页练习1、2
第41页习题22.1 第1、2题
课堂小结
布置作业

人教版九年级上册数学课件22.1.1二次函数(共19张PPT)

人教版九年级上册数学课件22.1.1二次函数(共19张PPT)

探究二:利用二次函数的表达式表示实际问题。 练习:
重点、难点知识★▲
某种品牌的服装进价为每件150元,当售价为每件210元时,每天可
卖出20件,现需降价处理,且经市场调查发现:每件服装每降价2元,每
天可多卖出1件。在确保盈利的前提下,若设每件服装降价x元,每天售出
服装的利润为y元,则y与x的函数关系式为( A )。
二次函数
(1)一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常 数,a≠0)。 (2)正比例函数的一般形式是:y=kx(k≠0,k为常数)。 (3)一次函数的一般形式是:y=kx+b(k≠0,k、b为常数)。
探究一:二次函数的概念及其解析式。
重点知识★
归纳: 1. 二次函数的概念:把形如y=ax2+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数,其中:ax2为二次项,a为二次项系数;bx 为一次项,b为一次项系数;c为常数项。 2.二次函数的解析式: 二次函数的一般式:y=ax2+bx+c (a,b,(2)y=ax2+c (a≠0,b=0,c≠0); (3)y=ax2+bx (a≠0,b≠0,c=0)。
综上所述,a=-1。
探究二:利用二次函数的表达式表示实际问题。
重点、难点知识★▲
活动1 通过实例,探究归纳。
例1:某果园有100棵橙子树,每一棵树平均结600个橙子。现准 备多种一些橙子树以提高产量(果园最多能种150棵橙子树),但是 如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。 根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。 (1)假设果园增种x棵橙子树,那么果园共有橙子树_(__1__0_0_+__x_)____ 棵,这时平均每棵树结橙子_(___6_0_0__-5__x_)____个。

九年级数学人教版(上册)22.1.1二次函数教学课件

九年级数学人教版(上册)22.1.1二次函数教学课件
人教版《义务教育教科书》
22.1.1二次函数
什么叫函数?
在某变化过程中的两个变量x、y,当变量x在某 个范围内取一个确定的值,另一个变量y总有唯一 的值与它对应。
这样的两个变量之间的关系我们把它叫做函数关 系。(刻画变化规律的数学工具)
对于上述两个变量, x叫自变量, 我们把y叫x 的函数。(运动变化与联系对应的思想)
提炼方法 明确路径
一次函数研究路径:
认识函数
图像与性质
与方程、不等式的联系
数学思想:归纳思想、建模思想、 解决实际问题 数形结合思想
请用适当的函数解析式表示下列问题情境中 的两个变量 y 与 x 之间的关系:
(1)正方体的表面积 为y 与棱长为x y =6x2
(2)n个球队参加比赛,每两队之间进行一场 比赛。比赛的场次数m与球队n之间有什么
解(1)由题意得
y x2 (x 0) 4
其中y是x的二次函数
(2 )由题意得 S 1 x(26 x) 1 x2 13x(0 x 26)
其中S是x的二次函数 2
2
例2: 关于x的函数 y (m 得 m2 m 2 m1 0
解得,m 2 当m 2时,函数为二次函数。
当a,b,c满足 什么 条件时
(1)它是二次函数 (2)它是一次函数
(1)a 0 (2)a 0,b 0
(3)它是正比例函数 (3)a 0,b 0,c 0
分类讨论思想
3、m取何值时,函数是 y= (m+1)xm2 2m 1
+(m-3)x+m 是二次函数? 4、若函数 y (m2 1)xm2m 为二次函数,
上述三个问题中的函数解析式具有哪些共同的 特征?
经化简后都具有y=ax²+bx+c 的形式. (a,b,c是常数, a≠0 )

人教版九年级数学上册:22.1.1 二次函数 课件(共36张PPT)

人教版九年级数学上册:22.1.1 二次函数  课件(共36张PPT)
解:依题意,得AP=2t, BQ=4t.
∵AB∴=12, ∴PB=12-2t,
∴S
=
1 2
PB
BQ
=
1 2
(12
-
2
t)

4t=-
4
t2+
24
t
.
t的取值范围为0≤t≤6.
课堂小结 1.二次函数的概念是什么? 2.辨析二次函数时应注意哪些问题?
作业 1.(必做)课本41页第1、2题
2.(选做)课本42页第12题
形如y=ax²+bx+c(a,b,c为常数,a≠0)
的函数,叫做二次函数.其中x是自变量,a,b,c分 别是函数解析式的二次项系数、一次项系数和常数项.
二次项
常数项
一次项
问题:
?
a,b,c为常数,a≠0
学以致用 判断依据: y=ax²+bx+c(a,b,c为常数,a≠0)
1.下列函数,哪些是二次函数,哪些不是?
分别是函数解析式的二次项系数、一次项系数和
常数项。
二次项
常数项
注意:
(1)a,b,c 为常数,且a ≠ 0,但b、c可以取0
(2)各项均为整式.
(3)自变量的最高次数是2,取值范围是全体实数.
考查角度一 二次函数的识别 下列函数中是二次函数的有 ①⑤ 。
①y= 2x2 2 √
③y x2(1 x2) 1 ×
经过12s汽车行驶了多远?行驶380m需要多少时 间?
知识点2 根据具体问题确定二次函数解析式
例2 用总长为 60 m 的篱笆围成矩形场
地,场地面积 S(m²)与矩形一边长a(m)
之间的关系是什么?是哪种函数关系?

人教版数学九年级上册:22.1.1《二次函数》 PPT课件(共36页)

解:依题意,得AP=2t, BQ=4t.
∵AB∴=12, ∴PB=12-2t,
∴S
=
1 2
PB•
BQ
=
1 2
(12-
2t)•
4t=-
4
t2
+
24
t
.
t的取值范围为0≤t≤6.
课堂小结 1.二次函数的概念是什么? 2.辨析二次函数时应注意哪些问题?
作业 1.(必做)课本41页第1、2题
2.(选做)课本42页第12题
y (a 1)x a 1是二次函数,求常数a的值。
解:依题意,得
a 1 2 a 1 0
解得a=-1.
பைடு நூலகம்
思考:当a为何值时,该函数是正比例函数?
解:依题意,得 解得a=0
a 11 a 1 0
练习:
若 y (m 1)xm22m1 3
(1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
第22章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
一、知识回顾 1、函数的定义是什么?我们学习过哪些函数? 它们的解析式如何表示?
函数的定义:在变化过程中,有两个变量x和y, 当x每确定一个值时,y都有唯一一个值与其对应, 我们称x为自变量,y为x的函数
一次函数:y=kx+b(k≠0)
b=0
正比例函数:y=kx (k≠0)
2、一次函数有哪些主要特征? ①含未知数的代数式为整式; ②自变量 x的系数k≠0 ③自变量 x的次数是1
一次函数的一般形式是___y_=_k_x_+_b_(__k_≠_0)
下列关系式:
(1) y = 2x+1

人教版九年级数学上册二次函数课件(共15张)


1、y =6x2
2、
3、y=20x2+40x+20 上述问题中的函数解析式具有
哪些共同的特征?
化简后具有y=ax²+bx+c 的情势.
(a,b,c是常数, a≠0 )
二次函数概念
我们把形如y=ax²+bx+c
(其中a,b,C是常数,a≠0)的函 数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
(1)写出y关于x的 函数关系式. (2)当x=3时,矩形 的面积为多少?
x
2、已知二次函数 y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值 为 -5, 求这个二次函数 的解析式.
课堂小结
a≠0
y=ax²+bx+c
二次项 系数
一次项 系数
常数项
每个队要与其他 (n-1) 个球队各比赛一场,甲
队对乙队的比赛与乙队对甲队的比赛是同一场比赛,

所以比赛的场次数
.即
.
上式表示比赛的场次数m与球队数n的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题2 某种产品现在的年产量是20 t,计划今后 两年增加产量,如果每年都比上一年的产量增加 x倍,那么两年后这种产品的产量 y 将随计划所 定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20 t,一年后的产量是 20(1+x)t,
再经过一年后的产量是 20(1+x)(1+x) t,即两年 后的产量 y=20(1+x)2 , 即 y=20x2+40x+20 .
上式表示两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值,y都有一个对应值,即y 是x的函数.

人教版数学九年级上册22.1.1 二次函数课件(共21张PPT)


二次 函数
注意:a,b,c 分别是函数解析式的二次项系数、一次项系数和 常数项.(自变量的最高次数是2;二次项系数a≠0)
特殊形式
y=ax2 (a ≠0);y=ax2+bx(a ≠0); y=ax2+c(a ≠0,a,b,c是常数).
方法总结 判断二次函数的方法
1.自变量的最高次数是2次; 2.二次项系数a≠0;
即y = 12x2-2x+9.
例3 在情境2中,若某年级共有4个班参加篮球比赛,那么总共要比 多少场?
解:∵比赛的场次数为m = 1 n(n - 1), 2
即m = 1 n2 - 1 n. 22
∴代入n=4,得m =6 ∴总共要比6场
随堂练习
1.下列函数关系中,是二次函数的为( D ) A.在弹性限度内, 弹簧的长度y与所挂物体的质量x之间的关系.B.距离一定时,火车 行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之 间的关系D.圆的面积S与半径之间的关系
围成中间有一道篱笆的矩形花圃,设花圃的一边长 AB 是 x ( 单位:m ),
面积是 S ( 单位:m2 ). BC 是(45 - 3x)cm 0<45 - 3x≤20 (1) 求 S 与 x 的函数关系式及x的取值范围; -45<- 3x ≤ -25
S =AB ·BC
≤ x < 15
解:(1) S = x(45 - 3x) = -3x2 + 45x ( ≤ x < 15 ).
解:比赛的场次数为m = 1 n(n - 1), 2
即m = 1 n2 - 1 n. 22
情境3 悦悦通过调查发现,由于学生参加校运动会的积极性非常高,所以 今年学校增加了每个项目的参赛人数。已知今年有300名同学参赛,今年比 去年的参赛人数增加了t倍,若按照这样的增长速度,预计两年后的参赛人 数f与t之间有怎样的关系?

二次函数(1)PPT课件(人教版)

九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.

15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 m n n 1 2
1 2 1 m n n 2 2
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20 1 x
例题探究
例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m 2(x>y). (1)如果用 18 m 的建筑材料来修建绿地的边缘 (即周长),求 S 与 x 的函数关系,并求出 x 的取值范 围. (2)根据小区的规划要求, 所修建的绿地面积必 须是 18 m 2,在满足(1)的条件下,矩形的长和宽各 为多少 m ?
例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m 2(x>y). (2)根据小区的规划要求, 所修建的绿地面积必 须是 18 m 2,在满足(1)的条件下,矩形的长和宽各 为多少 m ?
解:(2) 2 当矩形面积 S矩形 = 18 时,即- x + 9x = 18, 解得 x1 = 3,x2 = 6. 当 x = 3 时,y = 9 - 3 = 6,但 y>x ,不合题意,舍去. 当 x = 6 时,y = 9 - 6 = 3. 所以当绿地面积为 18 m 2 时,矩形的长为 6 m ,宽为 3 m.
22.1.1
二次函数
目标重点
学习目标: 通过对实际问题的分析,体会二次函数的意义. 学习重点: 理解二次函数的定义.
探究新知
观察图片,这些曲线能否用函数关系式来表示? 它们的形状是怎样的表面积 y 与 x 之 间有什么关系?
y 6 x2
n 个球队参加比赛,每两队之间进行一场比赛. 比赛的场次数 m 与球队数 n 有什么关系?
课堂小结
(1)一个函数是否为二次函数的关键是什么? (2)实际问题中列二次函数解析式需要考虑什么?
课后作业
教科书习题 22.1 第 1,2 题.
例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m 2(x>y). (1)如果用 18 m 的建筑材料来修建绿地的边缘 (即周长),求 S 与 x 的函数关系,并求出 x 的取值范 围.
解:(1)由题意,得 2 x 2 y 18,y 9 x . ∵ x>y>0, 9 ∴ x 的取值范围是 <x<9, 2 ∴ S矩形 = xy = x (9 - x)= -x2+9x.
巩固练习
练习1 函数 y= ( m-2) x 2 + mx - 3(m 为常数).
(1)当 m ______ ≠ 2 时,这个函数为二次函数; (2)当 m ______ = 2 时,这个函数为一次函数.
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是_________ S = 4πr 2 ; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ________________ (n - 1 ) . m =n
2
y 20 x2 40 x 20
探究追问
这三个函数关系式有什么共同点?
y 6x
2
1 2 1 m n n 2 2
y 20 x2 40 x 20
探究归纳
二次函数的定义:一般地,形如 y ax2 bx c (a ,b ,c 是常数,a≠0) 的函数,叫做二次函数.其中, x 是自变量,a, b,c 分别是函数解析式的二次项系数、一次项 系数和常数项.
相关文档
最新文档