信息处理与编码第3章
第三章汉字编码原理

㈣标调拼音码
• 汉语是有声调的语言,汉语的声调是一 个重要的“音位”,具有重要的辨义功 能。有一种乐器叫做“雷琴”,可以只 用“音高”就能模拟汉语的句子。这个 例子足以说明汉语声调的重性。
• 拼音码为了降低重码率,采用标调的办法,这 样的拼音码,我们称之为“标调拼音码”。 • 汉语的音节是有数的:不加声调只有412个, 加声调则有1300个左右。 • 汉字共有6万个。收在《基本集》中的有67 63个。 • 不加声调平均每个音节约有15个重码,加上 重码分布的不平衡,个别的音节就有几十甚至 上百个; • 如果加上声调,平均每个音节只有不到4个重 码了。
拼音编码的瓶颈
• 同音字繁多,影响输入 • 《新华字典》中,读SHI音的字有72个, • 《汉语词典》中,读YI音的字有164个。
• • • • • • • •
同音词也影响编码输入 Shi-shi的词就有如下的24条: 失实、失时、诗史、失事、 失势、施事、实施、时时、 事事、时事、时势、时世、 时式、史诗、史实、试试、 誓师、事实、适时、事势、 逝世、世事、视事、实时
• 一般的编码方案多采用26个英文字母 作码元, • 也有的在这个基础上再增加10个数目 字,使码元数增加到36个的方案, • 还有的把字母键盘区的其它功能键也利 用上的。 • 这种需要增加码元数的方案多数是形码 方案。
3、确定编码规则
• 理想的规则是“字码意义对应” 、规则简单, 好学易记,没有复杂的条件限制或特例情况。 • 实际上最难做到。 • 比如按形排序,同笔画数的字很多,同笔画的 字当中,起笔相同的也不少,甚至笔顺相同的 也有。究竟谁先谁后,难以给出一个标准。 • 按音排序也有个同音字的先后问题。同音、同 调、同笔画数的汉字再按什么条件排先后,都 是难题。 • 人为地增加许多规定,势必增加用户的学习量。
第3章信道与信道容量32

普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
14
3.2离散单个符号信道及其容量
信道容量
C= max I ( X ; Y )
p ( ai )
= max[ H (Y ) − H (Y | X )]
p ( ai ) p ( ai )
= max H (Y ) − H (Y / X )
第3章信道与信道容量
3.1信道分类和表示参数 3.2离散单个符号信道及其容量
离散无记忆信道:对称、准对称
3.4连续信道及其容量
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
1
3.1信道分类和表示参数
信道分类
用户数量:单用户、多用户 输入端和输出端关系:无反馈、有反馈 信道参数与时间的关系:固参、时变参 噪声种类: 随机差错、突发差错 输入输出特点:离散、连续、半离散半 连续、波形信道
• 信道种类
1 无干扰信道 2 有干扰无记忆信道 3 有干扰有记忆信道
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著 3
信道参数
无干扰(无噪声)信道
1, y = f (x) p ( Y / X) = 0, y ≠ f (x)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
13
3.2离散单个符号信道及其容量
•
输入对称
∑ p(b j / ai ) log p(b j / ai )与i无关
j
H (Y / X ) = −∑ p(ai )∑ p(b j / ai ) log p(b j / ai ) = −∑ p(b j / ai ) log p (b j / ai ) = H (Y / xi )
第数字信号处理讲义--3章_连续时间信号的采样

图3-6采样内插恢复
3.4连续时间信号的离散时间处理
随着信号传输和处理手段的数字化发展,越来越有必要将连续信号转化为离散信号处理。
一、C/D转换
C/D转换
时域分析频域分析
二、D/C转换
D/C转换
D/C变换整个是C/D变换的逆过程
三、连续时间信号的离散化处理
即:
例1:数字微分器
带限微分
例2:半抽样间隔延时
设带限于,要求
3.6利用离散时间信号处理改变采样频率
3.6.1脉冲串采样
3.5离散时间信号的连续时间处理
离散时间信号的连续时间处理
从时域角度看:
从频域角度看:
3.6.2离散信号抽取与内插
抽取——从序列中提取每第N个点上样本的过程。
令
2.内插
抽取又称为减抽样,内插又称为增抽样。
减抽样使信号的频带扩展,但提高了数据的传输率。
在采样前加一低通滤波器,以滤除高于2倍采样频率成分,以避免高频成分的干扰。
3.7.2 A/D转换中的量化误差
数字信号不仅在时间上是离散的,而且在取值上也不连续,即数字信号的取值必须为某个规定的最小数量单位的整数倍。
因此,为了将模拟信号转换成数字信号,还必须将采样/保持电路输出的采样值按照某种近似方式归并到相应的离散电平上,也就是将模拟信号在取值上离散化,我们把这个过程称为量化。将量化后的结果(离散电平)用数字代码来表示,称为编码。于单极性模拟信号,一般采用自然二进制编码;对于双极性模拟信号,则通常采用二进制补码。经过编码后得到的代码就是A/D转换器输出的数字量。
第三章多媒体音频信息处理

一、音频信号的分类
音频信号可分为两类:
❖ 语音信号:语音是语言的物质载体,它包含了 丰富的语言内涵,是人类进行信息交流所特有 的形式。
❖ 非语音信号:主要包括音乐和自然界存在的其他 声音形式。非语音信号的特点是不含复杂的语义 和语法信息,其信息量低,识别简单。
二、音频信号的形式
声音可用一条连续的曲线来表示。这条连 续的曲线无论多么复杂,都可分解成一系列正 炫波的线性叠加,称为声波。因声波是在时间 上和幅度上都连续变化的量,因此称之为模拟 量。模拟信号有两个重要参数:频率和幅度。
1996.3 1992.9 1996.3
音频编码标准和算法
编码 类型
波形 编码
参数 编码
混合
算法
PCM
μ(A)
APCM DPCM
ADPCM
SBADPCM
LPC
CELPC VSELP RPECELP
名称 均匀量化
μ(A) 自适应量化 差值量化 自适应差值量化
子带一自适应差值量化
线性预测编码 码激励LPC
①高压缩比,存储空间小。 ②适合网络播放。 ③音质不是很好。 ④专用播放器Realplayer、
超级解霸2001以上的版本等
➢ AIFF格式文件
AIF是音频交换文件格式(Audio Interchange File Format)的英文缩写,是苹果计算机公司开发的一 种声音文件格式。
七、声卡
虽然PC声卡是在20世纪90年代才得以普及,但 它的问世却是在1984年。英国的ADLIB公司是目前公 认的“声卡之父”,虽然他们最初开发的产品只能提供 简单的声音效果,并且无法处理音频信号,但在当时 无疑已经是一个很大的突破。由于技术不够成熟,成 本又非常昂贵,因此这类带有试验品性质的早期ADLIB 音乐卡,因在当时计算机的运算速度还不足以应付大 规模的多媒体处理,所以未能普及。
第3章-2定点数和浮点数PPT课件全文编辑修改

(2)浮点数的规格化
目的:字长固定的情况下提高表示精度的措施: 1 增加尾数位数(但数值范围减小) 2 采用浮点规格化形式
规格化方法:调整阶码使尾数满足下列关系: 尾数为原码表示时,无论正负应满足1/2<|d |<1 即:小数点后的第一位数一定要为1。 正数的尾数应为0.1x….x 负数的尾数应为1.1x….x 尾数用补码表示时,小数最高位应与数符符号位相反。 正数应满足 1/2≦d<1,即 0.1x….x 负数应满足 -1/2 > d≥ -1,即 1.0x….x
注意: 两操作数的绝对值相乘, 符号位单独处理。 寄存器A.B均设置双符号位,第1符号位始终是部分积符号,决定在右移时第1符号位补0 操作步数由乘数的尾数位数决定,用计数器Cd来计数。即作n次累加和移位。 最后是加符号位,根据Sx⊕Sy决定。
例如将十进制数178.125表示成微机中的单精度浮点数
解:178.125=10110010.001B =1.0110010001x27 指数E=7+127=134=10000110B 127是单精度浮点数应加的指数偏移量,其完整的浮点数形式为 : 0 10000110 011 0010 0010 0000 0000 0000 = 43322000H
3.3.1 定点数一位乘法 1. 定点原码一位乘
规则:在机器中采用A,B,C寄存器来分别存放部分积,被乘数和乘数 (1)在机器内一次加法操作只能求出两数之和,因此每求得一个相加数时,就得与上次部分积相加。 (2)人工计算时,相加数逐次向左偏移一位,由于最后的乘积位数是乘数(或被乘数)的两倍.由于在求本次部分积时,前一次部分积的最低位,不再参与运算,因此可将其右移一位。相加数可直送而不必偏移,于是用N位加法器就可实现两个N位数相乘。 (3)部分积右移时乘数寄存器同时右移一位,这样可以用乘数寄存器的最低位来控制相加数(取被乘数或零),同时乘数寄存器的最高位可接收部分积右移出来的一位,因此,完成乘法运算后,A寄存器中保存乘积的高位部分,乘数寄存器C中保存乘积的低位部分。
信息论与编码知识梳理及课后答案

信息存在于自然界,也存在于人 类社会,其本质是运动和变化。可以说 哪里有事物的运动和变化,哪里就会产 生信息。 信息必须依附于一定的物质形式存 在,这种运载信息的物质,称为信息载
体。
人类交换信息的形式丰富多彩,使 用的信息载体非常广泛。概括起来, 有语言、文字和电磁波。
信息至今无确切定义,但信息有以下 主要特征: 1 信息来源于物质,又不是物质本 身;它从物质的运动中产生出来,又可 以脱离源物质而相对独立地存在。 2 信息来源于精神世界,但又不局 限于精神领域。
电子商务系统中不可缺少的重要环节。
密码编码学是信息安全技术的核心,密码编码学的 主要任务是寻求产生安全性高的有效密码算法和协 议,以满足对消息进行加密或认证的要求。 密码分析学的主要任务是破译密码或伪造认证信息, 实现窃取机密信息或进行诈骗破坏活动。 这两个分支既相互对立又相互依存,正是由于这种 对立统一关系,才推动了密码学自身的发展。 香农在 1949 年发表的《保密通信的信息理论》论 文中,首先用信息论的观点对信息保密问题作了全 面的论述。
香农信息论主要讨论的是语法信 息中的概率信息,本书也以概率信息为 主要研究对象。
§1.3 信息论的起源、发展及研究内容
起源
信息论自诞生到现在不过50多年, 在人类科学史上是相当短暂的。但它的
发展和对学术界及人类社会的影响是相
当广泛和深刻的。信息作为一种资源, 如何开发、利用、共享,是人们普遍关 心的问题。
信息论与编码
贵州大学 彭长根
有关说明:
1、计划学时54,全部为讲课学时,适当组织讨论形式。 2、总成绩由两部分组成,平时成绩占30%,考试成绩 占70%,由作业和考勤组成。
课程概述
信息论与编码_第一章
信息论发展中的悲情人物
• 诺贝尔经济学获得者:
JOHN NASH
于1951年发表《非合作博弈论》
成就著名的“纳什均衡”理论
1958年(30岁)开始痴迷于信息编码技术,出现精神失 常。直到80年代末,方从癫疯中苏醒,继续从事经济学博弈 论研究,1994年获得诺贝尔经济学奖
奥斯卡影片《美丽心灵》
第二节、信息的概念
(17) 发现格码,1989,R.deBuda。格(lattice)码可趋近频带受限高斯信道 容量。Loeligerz在1992年已证明,这是Zp上的欧氏空间群码。
(18)发现Turbo码,迭代自适应译码算法,1993, C. Berrou and A. Glavieux. (19) LDPC码,近来又重新被发现。
信息定义的总结
• 信息是人与外界交互的内容,是有序程度的度量 和负熵,是用以减少不定性的东西 ,这些都是 Wiener 、 Brillouin 、 Shannon 等人的理解。这些 认识比仅仅把信息看作消息或通信内容要更深刻。 • 在数学上很容易证明, Hartley 的信息概念仅是 Shannon信息概念的一种特殊情形。 • 总起来说,在现有的各种理解中, Shannon 的定 义比较深刻,而且这种定义还导出了相应的算法。
香农信息定义的缺陷(2)
• 只考虑了随机型的不定性,不能解释与其 他型式的不定性(如模糊不定性)有关的 信息问题。 • 这种信息定义只从功能角度上来表述,还 是没有从根本上回答“信息是什么”的问 题。
2、发展
信 息 论 主 要 几 个 方 面 的 进 展
Ⅰ.信源编码与数据压缩 Ⅱ.信道编码与差错控制技术 Ⅲ.多用户信息论与网络通信 Ⅳ.多媒体与信息论 Ⅴ.信息论与密码学和数据安全 Ⅵ.信息论与概率统计 Ⅶ.信息论与经济学 Ⅷ.信息论与计算复杂性 Ⅸ.信息论与系统、控制、信号检测和处理 Ⅹ.量子信息论 Ⅺ.Shannon的其它重要贡献
第3章 音频信息处理技术
即将量化后的数字,按一定的数据格式进行(压缩) 表示,这个过程称作编码。编码的作用。
第3章
音频信息处理技术
经过上述过程就可以得到一个用来表示声音强弱的数据 序列(如下图所示)。这个数据序列就是声音信号的数字化文
件。重新播放这个数字化文件,就可以听到原来的声音信号。
图3-6 声音信号的数字化序列
第3章
产生波形,然后通过声音发生器送往扬声器播放出来。 下面简单介绍Cakewalk的使用(安装Cakewalk,并演示)
第3章
音频信息处理技术
二、MIDI音乐合成
由上可知,计算机要想播放MIDI音乐文件,必须使用
合成器。合成MIDI乐音的方法很多,最主要的是FM合成法
和波表合成法。
1、FM合成法(调频合成法)
注:此“录音机”只能录制1分钟以内的声音,若要录制长度超过1 分钟的声音,就需要选择功能更强大的音频处理软件,如Cool Edit或随 卡赠送的录音软件等。
第3章
音频信息处理技术
用Cool Edit软件录制声音的方法如下:
(1) 将麦克风插入声卡的MIC
(2) 启动“Cool Edit”软件(假定Cool Edit已安装好) (3) 在“Cool Edit”窗口中选择“文件/新建”选项 (4) 单击“ (5) 单击“ ”按钮,开始录音 ”按钮,停止录音
第3章
音频信息处理技术
用Windows中提供的“录音机”录制声音的步骤如下: (1) 将麦克风插入声卡的MIC
(2) 启动“录音机”软件
(3) 在“录音机”窗口中选择“文件/新建”选项 (4) 单击“ (5) 单击“ ”按钮,开始录音 ”按钮,停止录音
(6)选择“文件/另存为”选项,将刚录制的声音存储成 一个数字声音文件。
信息论与编码第二版答案
信息论与编码第二版答案《信息论与编码(第二版)》是Claude Elwood Shannon所撰写的经典著作,该书于1948年首次出版,至今被广泛认可为信息论领域的权威指南。
本书通过数学模型和理论阐述了信息的量化、传输、存储以及编码等相关概念和原理。
深入浅出的阐述方式使得本书具备了普适性和可读性,成为信息论领域学习者和研究者的必备参考。
信息论是研究信息的传输、处理和应用的科学,其最初来源于通信工程领域。
而编码作为信息论的一个重要分支,旨在寻求一种有效的方式将信息转化为符号或信号,以便能够高效地传输和存储。
编码的主要目标是通过减少冗余或利用统计特征来压缩信息,并提高信号传输过程中的容错性。
在信息论中,最重要的概念之一是“信息熵”。
信息熵是信息的不确定性度量,也可以看作是信息的平均编码长度。
当一个事件出现的可能性均匀时,信息熵达到最大值,表示信息的不确定度最高;而当事件的概率趋于一个时,信息熵达到最小值,表示事件的确定性最高。
例如,抛一枚公正的硬币,其正反面出现的概率均为0.5,那么信息熵将达到最大值,即1比特。
如果硬币是正面朝上或者反面朝上,那么信息熵将达到最小值,即0比特。
除了信息熵,信息论中还有许多重要的概念,如条件熵、相对熵和互信息等。
其中,条件熵表示给定某些信息后的不确定性,相对熵则用于比较两个概率分布之间的差异,而互信息则度量了两个随机变量之间的相关性。
编码是信息论中的关键技术之一,其目的是将信息通过某种规则进行转换,使其适于传输或存储。
常见的编码方法有哈夫曼编码、香农-费诺编码和算术编码等。
其中,哈夫曼编码常用于无损压缩,通过根据字符频率设计不等长的编码,使得频率高的字符用较短的编码表示,而频率低的字符用较长的编码表示,从而达到压缩的效果。
算术编码则通过将整个信息序列映射为一个实数,从而实现更高的压缩比。
信息论与编码的研究对众多领域都具有重要意义。
在通信领域中,信息论的结果对于提高信道容量和降低误差率具有指导意义。
《数字与编码》公开课教案
《数字与编码》公开课教案第一章:数字与编码概述1.1 数字与编码的概念讲解数字与编码的基本概念,让学生了解数字与编码的关系。
通过举例说明数字与编码在日常生活和学习中的应用。
1.2 数字与编码的意义阐述数字与编码在信息传递、数据存储和信息安全等方面的作用。
引导学生认识到数字与编码在现代社会中的重要性。
第二章:数字基础2.1 数字的基本概念讲解数字的定义、分类和特点,让学生掌握数字的基本知识。
分析不同进制数字(如十进制、二进制、八进制、十六进制等)的表示方法。
2.2 数字的运算介绍数字的基本运算(如加、减、乘、除等)及其规则。
通过举例让学生了解不同进制数字之间的运算方法。
第三章:编码与解码3.1 编码的基本概念讲解编码的定义、目的和作用,让学生了解编码的过程。
分析常见编码方法(如ASCII编码、Uni编码等)及其应用场景。
3.2 解码的基本方法介绍解码的定义、原理和常用方法。
通过实例让学生学会如何将编码后的信息还原为原始信息。
第四章:数字与编码在生活中的应用4.1 数字与编码在日常生活中的应用分析数字与编码在电话号码、身份证号码、银行卡号码等方面的应用。
引导学生认识到数字与编码在生活中的重要性。
4.2 数字与编码在信息安全中的应用讲解数字与编码在加密、解密、身份验证等方面的作用。
引导学生了解数字与编码在保障信息安全方面的关键作用。
第五章:数字与编码的趣味知识5.1 数字与编码的趣味现象介绍一些有趣的数字与编码现象,如水仙花数、回文数等。
通过趣味现象激发学生对数字与编码的兴趣。
5.2 数字与编码的趣味应用讲解数字与编码在趣味编程、游戏等方面的应用。
引导学生发现数字与编码在趣味应用中的乐趣。
第六章:数字与编码在计算机科学中的应用6.1 计算机中的数字与编码讲解计算机系统中数字与编码的基本原理。
介绍计算机中二进制、十六进制等编码方式及其应用。
6.2 计算机网络中的数字与编码阐述数字与编码在计算机网络传输中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
输入 Pe Pe
1 Pe 1
0
输出
x{0,1 }
y{0,1 }
1 Pe 1
1
1
且: X 0 , 1 P( p ( x) p ,p , 0 1
1 , Y 0 , 1 ) q( y ) q ,q ,1 , 0 1
(二) 信道描述
信道可以引用三组变量来描述: 信道输入概率空间: [ X K , p( x)] ; 信道输出概率空间: [Y K , q( y)] 信道概率转移矩阵: P( y x)
出 YK y1 ymk X K x1 xnk 入 p( x) p1 p k 信道 q( y ) q q k n m 1
n 1 ...... n 1 ...... ...... ...... 1 ......
(二)强对称信道 (续):
它具备三个特征: 1> 矩阵中的每一行都是第一行的重排列;矩阵中的每一列都是第一 列的重排列。 2> 错误分布是均匀的,为 n 1 3> 信道输入与输出消息(符号)数相等,即m=n。 显然,对称性基本条件是1>,而2>、3>是加强条件。 下面,我们放松对信道的约束,仅满足条件1>,就构成一般性对称信 道。 1 1 3 例: 6 1
§3-3 无干扰离散信道(略) §3-4 有干扰时单个消息(符号)信道及其容量
这里,仍类似于信源,从最基本、最简单的单个消息(符号)开始, 再逐步将其推广至消息序列信道以及多用户信道。
(一) 离散单消息信道与信道容量
输入 P [ X , p( x)]
输出 [Y , q( y)]
下面,我们首先将互信息表达成概率的函数:
(一) 信道分类 (续)
离散 无记忆 信号类型 连续 半离散 有记忆 半连续 无干扰:干扰少到可忽 略; 无源热噪声 2〉信号与干扰类型 线性叠加干扰 有源散弹噪声 脉冲噪声 干扰类型 有干扰 交调 乘性干扰 衰落 码间干扰
i j
qj Pji
pi Pji log
i j
pP
i i
ji
Pji
I ( pi ; Pji )
两种表达式中,这里选用 I ( X ;Y ) I ( pi ; Pji ) 。 0 一般当信道给定以后,p ji P( ji 已知)
0 I ( X ;Y ) I ( pi ; Pji ) I ( pi ; Pji ) I ( pi )
第三章 信道与信道容量
§3-1 引言
1〉什么是信道? 信道是传送信息的载体——信号所通过的通道。 信息是抽象的,信道则是具体的。比如:二人对话,二人间的空气 就是信道;打电话,电话线就是信道;看电视,听收音机,收、发间 的空间就是信道。 2〉信道的作用 在信息系统中信道主要用于传输与存储信息,而在通信系统中则主 要用于传输。 3〉研究信道的目的 在通信系统中研究信道,主要是为了描述、度量、分析不同类 型信道,计算其容量,即极限传输能力,并分析其特性。
§3-2 信道的分类与描述
(一) 信道分类
信道可以从不同角度加以分类,但归纳起来可以分为: 从工程物理背景——传输媒介类型; 从数学描述方式——信号与干扰描述方式; 从信道本身的参数类型——恒参与变参; 从用户类型——单用户与多用户; 等方面加以分类:
明线 对称平衡电缆(市内) 固体介质 电缆 小同轴(长途) 中同轴(长途) (一) 信道分类 (续) 长波 中波 短波 超短波 移动 1 传输媒介类型 空气介质 视距接力 微波 对流层 散射 电离层 卫星 光波 波导 混合介质 光缆
(一) 离散单消息信道与信道容量 (续)
I ( X ;Y ) H ( X ) H ( X Y ) p rij log i q j Qij log Qij i j i j
q Q
j j
ij
Qijห้องสมุดไป่ตู้
I (q j ; Qij )
I ( X ; Y ) H (Y ) H (Y X ) rij log
P( y1 x1 ) P( y1 x k ) n P P( y mk x1 ) P( y mk xnk )
(二) 信道描述 (续)
当K=1时,退化为单个消息(符号)信道;进一步当n=m=2时, 退化为二进制单个消息信道。若它满足对称性,即构成最常用 的二进制单消息对称信道BSC:
(一) 信道分类 (续)
恒参信道(时不变信道 ) 3 〉信道参量类型 变参信道(时变信道)
二用户信道(点对点通 信) 4〉用户类型 多用户信道(通信网)
(一) 信道分类 (续)
信道划分是人为的,比如:
信源 编码 A 媒介 B 译码 信宿
干扰 c1 c2 c3 c4
其中:c1为连续信道,调制信道; c2为离散信道,编码信道; c3为半离散、半连续信道; c4为半连续、半离散信道。
(一) 离散单消息信道与信道容量 (续)
C max I ( X ; Y ) max I ( pi )
pi pi
(二)强对称信道:
其中:
1 n 1 P(/) n 1 1 ...... ...... n 1 n 1