人教中点四边形课件

合集下载

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

一组对边平行且相等的四边形是平行四边形吗?
如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵ AB∥CD
∴ ∠1=∠2
又∵ AB=CD,AC=CA
∴ △ABC≌△CDA (SAS)
∴ BC=DA
∴ 四边形ABCD的两组对边分别相等,它是平行四边形.
BQ=_________cm;CQ=_________cm.
15-2t
(3)当t为何值时,四边形PDCQ是平行四边形?
解:(3)∵AD//BC
∴当DP=CQ时,四边形PDCQ是平行四边形.
∴12-t=2t
解得t=4
∴t=4s时,四边形PDCQ是平行四边形.
平行四边形判定定理4:一组对边平行且相等的四边形是平行四边形.
t
12-t
AP=_________cm;DP=_________cm;
BQ=_________cm;CQ=_________cm.
2t
15-2t
(1)用含t的代数式表示:
12-t
t
AP=_________cm;DP=_________cm;
2t
BQ=_________cm;CQ=_________cm.
4.如图,在□ABCD中,E,F分别是边BC,AD上的点,有下列条件:
①AE//CF;②BE=FD;③∠1=∠2;④AE=CF.若要添加其中一个条件,使四边
形AECF一定是平行四边形,则添加的条件可以是( B )
A.①②③④
B.①②③
C.②③④
D.①③④
5.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC// AD;④

苏科版八年级数学下册第九章《中点四边形课件》公开课课件(共14张PPT)

苏科版八年级数学下册第九章《中点四边形课件》公开课课件(共14张PPT)

(3)写出四边形AnBnCnDn的面积;
A
(4)求四边形A5B5C5D5的周长.
A1
D2
D1
D3
C3
A2

C2
B
D
A3
B3
B1
B2
C1
C
图13
D
G
H
C
F
A
E
B
问题2:已知: 平行四边形ABCD中,E、F、G、H分别是
四边中点,试说明四边形EFGH的形状并说明理由
H
A
D
E
G
B
C
F
问题3:如果四边形ABCD是矩形,则四边形 EFGH是什么特殊四边形呢?
A
H
D
答案:菱形 E
B
G C F
问题4:如果四边形 ABCD是菱形,则四边形
EFGH是什么特殊的四边形呢?

问题5:如果四边形 ABCD是正方形,则四边
形EFGH又是什么特殊四边形?
A
H
D
答案:正方形 E
G
B
C
F
已知:在四边形ABCD中, E、F、G、H分别是
四边中点; (1)如果AC=BD,则
四边形EFGH是 菱形。
(2)如果AC⊥BD,则
D G
H
C
四边形EFGH是 矩形 。
F
A
(3)如果AC=BD、 AC⊥BD,
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/242021/7/242021/7/24Jul-2124-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/242021/7/242021/7/24Saturday, July 24, 2021

中点四边形

中点四边形

中点四边形长沙市第七中学黄曙一、基本说明1教学内容所属模块:八年级(下)2年级:初二3所用教材出版单位:人民教育出版社4所属的章节:第十九章第四节第3课时(课题学习)5学时数:45 分钟二、教学设计1、教学目标:(1)进一步复习和巩固特殊四边形的性质与判定。

(2)理解和熟悉中点四边形与原四边形之间的联系(3)掌握由特殊到一般的数学证明方法(4)通过对中点四边形的探讨,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。

2、内容分析:教学重点:复习和巩固特殊四边形的性质与判定。

教学难点:特殊四边形之间的区别与联系3、学情分析:学生在学习了四边形一章的内容后,已掌握了一些特殊四边形的性质与判定的推理与证明的方法,但如何灵活运用所学知识,如何正确的联想到要用的知识点来解决问题,一直是本章学习的难点。

本节课以探讨中点四边形的形状和性质入手,通过图形大量的变化让学生学会观察与分析,抓住实质性的东西,从而使学生加深对特殊四边形的性质与判定的理解和掌握。

4、设计思路:根据本节课的教学内容和学生实际水平,本节课采用多媒体教学,主要借助《几何画板》及幻灯片展示相关图形的变化,让学生在“变化”中感知“不变”,从而获取相关知识,培养学生的观察分析能力。

教学流程为:知识回顾与思考→初步感知→类比推广→逆向思维→拓展深化→归纳总结。

三、教学过程四、教学反思1、由于学生基础较好,虽然内容多,但学生都跟得上,尤其是动态演示过程中学生兴趣很浓,在类比推广和逆向思维阶段参与积极.2. 拓展深化阶段学生先感到疑惑,但随着分析的深入学生豁然开朗,课堂气氛非常活跃.学生思考问题也细致,课后给出了另一些结论.如:①当原四边形为凹四边形时,利用《几何画板》演示仍然发现相应的中点四边形为平行四边形。

(如图1所示)②当四边形转化为图2所示的形状时,只要AB=CD,中点四边形就一定是菱形.③对于直角三角形如图3所示当点B,D,F为各边中点时,所得小矩形的面积也等于该直角三角形面积的一半.图(1) 图(3)附:中点四边形课件(两个课件采用链接交替使用,使用前安装《几何画板》)。

中点四边形课件

中点四边形课件

∴ 四边形CODP是平行四边形
AC,DO =
且AC=BD ∴CO=DO ∴四边形CODP是菱形
4. ②如果题目中的矩形变为菱形(图一),结
论应变为什么? ③如果题目中的矩形变为正方形(图二), 结论又应变为什么?
A O D C D P B A B O C
P
图一
图二
5. ABC绕着点 C顺时针旋转 180得 CED,当ABC是什么形状时 , 四边形 ABED是: 1、菱形? 2、矩形? 3、正方形?
课题: 探究 :中点四边形
三角形 中位线 的性质 定理:三角形的中位线平行于第三边, 且等于第三边的一半. A
∵DE是△ABC的中位线, 1 ∴DE∥BC, DE BC . 2
B D E
C
这个定理提供了证明线段平行以及线段成倍分关系 的根据.
已知:如图,点E、F、G、H分别是四边形 顺次连接任意四边形各边中点 ABCD 各边中点。 所成的四边形是什么形状 ? 求证:四边形EFGH为平行四边形。
A G E H D
证明平行四边形 EGFH 是正方形.
B
F
C
3、如图,以△ABC的三边为边,在BC的同侧 分别作3个等边三角形,即△ABD、△BCE、△ACF。 (1)四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? (3)当△ABC满足什么条件时,四边形ADEF是菱形? (4)当△ABC满足什么条件时,四边形ADEF是正方形? (5)当△ABC满足什么条件时, 平行四边形ADFE不存在;
D
k
E F A
N
M
B
C
4.①如图,矩形ABCD的对角线AC、BD交于点O,
过点D作 DP∥OC,且 DP=OC,连结CP, 试说明:四边形CODP是的形状。

《平行四边形的性质》PPT课件(第1课时)

《平行四边形的性质》PPT课件(第1课时)

(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时

中考数学全程复习方略 微专题四 中点四边形课件

中考数学全程复习方略 微专题四 中点四边形课件

【题组过关】 1.(2019·株洲模拟)如图,点E,F,G,H分别为四边形 ABCD的四边AB,BC,CD,DA的中点,则关于四边形EFGH,下 列说法正确的为 ( C )
A.一定不是平行四边形 B.一定不是中心对称图形 C.可能是轴对称图形 D.当AC=BD时它是矩形
2.(2019·呼和浩特模拟)如图,在四边形ABCD中,对角 线AC⊥BD,垂足为点O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为___1_2___.
谢谢观赏
You made my day!

形 关
若原四边形正对方角形线互相垂直且相等,则中点四
系 边形为___________
【微点警示】 1.中点四边形的证明:中点四边形只与原四边形的对角 线有关,其证明运用了三角形的中位线定理.
2.特殊的中点四边形:
原图形 平行四边形
矩形 菱形 正方形 梯形 等腰梯形
对应的中点四边形 平行四边形 菱形 矩形 正方形 平行四边形 菱形
∴EF∥AC,且EF= 1 AC,同理:HG∥AC,且HG=1 AC,
2
2
∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形.
(2)略
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月21日星期一2022/3/212022/3/212022/3/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/212022/3/212022/3/213/21/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/212022/3/21March 21, 2022

中点四边形课件

学习目标:
1.理解中点四边形的概念; 2.掌握中点四边形的判定、证明及 应用; 学习重难点: 中点四边形的判定、证明及应用;
复习旧知:
三角形中位线:
如图,在△ABC中,D、E分别是AB、AC的
中点. DE就是△ABC的中位线.
几何语言: ∵ D、E分别是AB、AC的中点 D ∴DE为△ABC的中位线, ∴DE∥BC,DE=
G
∵ E、F是AB、BC边中点
∴EF是△ABC中位线 1 ∴EF∥AC且EF= 2 AC ∴EF ∥ HG且EF = HG ∴四边形EFGH为平行四边形。
B
F
C
1 同理:HG ∥ AC且HG = AC 2
结论:任意四边形的中点四边形都为平行 四边形。 (对角线既不相等又不垂直)
平行四边形的中点四边形是什么形 状?
探究三:
已知:如图,点E、F、G、H分别是四边形ABCD各 边的中点,且AC⊥BD,则四边形EFGH是什么形 状呢?为什么?
D
H
A
G
O E
Bቤተ መጻሕፍቲ ባይዱ
C
F
结论:对角线互相垂直 的四边形的中点四边形 为矩形。
想一想:
菱形的中点四边形是什么形状?
A E B F C G H
D
结论:菱形的中点四边形是矩形。
探究四:
“任中平”
“平中平” • 矩形的中点四边形是________________; 菱形 “矩中菱” ________________; • 菱形的中点四边形是 矩形
• 正方形的中点四边形是 ______________; “菱中矩”
正方形
“正中正”
“我”的命运由 对角线 主宰
原四边形的对角线

课题学习;中点四边形课件


04
中点四边形的推广与拓展
中点多边形的概念与性质
总结词
中点四边形的基本概念和性质
详细描述
中点四边形是指通过连接任意四边形的对角线,将四边形划分为四个三角形,其中每条 对角线上的中点连线的交点所构成的四边形。中点四边形具有一些基本的性质,如它的
四边长度相等,四个内角均为直角等。
中点多边形的构造方法
性质
总结词
中点四边形具有一些特殊的性质,如面积性质、周长性质等。
详细描述
中点四边形具有一些特殊的性质。首先,它的面积等于原平行四边形的面积的一 半。其次,它的周长等于原平行四边形的两条对角线的长度之和。此外,中点四 边形的对角线还具有一些特殊的性质,如长度性质等。
分类
总ห้องสมุดไป่ตู้词
中点四边形可以根据原平行四边形的不同类型进行分类。
中点四边形在现代数学中的应用
几何学中的中点四边形
01
在几何学中,中点四边形被广泛应用于图形变换、对称性等领
域。
代数与解析几何中的中点四边形
02
通过代数和解析几何的方法,中点四边形在解决某些数学问题
上展现出独特的优势。
计算机图形学中的中点四边形
03
在计算机图形学中,中点四边形被用于生成平滑的曲线和曲面
THANKS
感谢观看
在计算机图形学中的应用
计算机图形学是研究计算机生成和操作图形的科学,而中点四边形在其中也有着 广泛的应用。例如,在绘制几何图形时,可以利用中点四边形的性质和定理,提 高绘图的精度和效率。
在计算机动画和游戏设计中,中点四边形也有着重要的应用。通过中点四边形的 性质和定理,可以实现图形的平滑变换和动态更新,从而提高动画和游戏的真实 感和流畅度。

正方形的性质与判定-ppt课件

∵AF=5,∴在 Rt△ABF 中,BF= AF2-AB2=
52-42=3.∵点 F 为 BC 的中点,∴BC=2BF=6.
∴在 Rt△BCE 中,CE= BC2+BE2= 62+22=2 10.
感悟新知
(2)若AF=CE,求证:四边形ABCD 是正方形.
知3-练
证明:在 Rt△ABF 中,AF2=AB2+BF2,
∴四边形ACED 是正方形(正方形的定义).
感悟新知
知3-练
3-1. 如图, 在矩形ABCD 中,点E,F 分别是AB,BC 的
中点,连接AF,CE.
感悟新知
知3-练
(1)若AE=2,AF=5,求CE 的长;
解:∵四边形 ABCD 是矩形,∴∠B=90°.
∵点 E 为 AB 的中点,AE=2,∴AB=4,BE=2.
数学表达式
∵在ABCD 中,AB=BC(或
AB=AD 或BC=CD 或
AD=CD),且∠ A=90°(或
∠ B=90°或∠ C=90°或
∠ D=90°),∴ ABCD 是
正方形
感悟新知
知1-讲
2. 图解
感悟新知
知1-讲
3. 四边形、平行四边形、菱形、矩形、正方形间的关系
感悟新知
知1-讲
特别提醒
2
四边形A2 024B2 024C2 024D2 024 的面
3
积为______ .
22 022
课堂小结
正方形的性质与判定
性质



正方形的面积公式
一组邻边相等
特殊的矩形
对角线互相垂直
一个角是直角
判定
特殊的菱形
对角线相等
∴四边形 ABCD 是正方形.

人教版八年级下中点四边形课件张


A H D
E
B F C G D H
A
B F
平行四边形
G
C
平行四边形
菱形
G
C
小组合作探究:
平行四边形 任意四边形的中点四边形都是________; 平行四边形 平行四边形的中点四边形是__________; 菱形 矩形的中点四边形是________________; 菱形的中点四边形是________________; 矩形 正方形的中点四边形是______________; 正方形 梯形的中点四边形是________________; 平行四边形 平行四边形 直角梯形的中点四边形是____________; 菱形 等腰梯形的中点四边形是____________。
E G
B
F
C
练习4:
点O是△ABC所在平面内 是 所在平面内 一动点,连结OB、OC,并把 一动点,连结 、 , AB、OB 、 OC、CA的中点 、 的中点D、 、 、 的中点 E、F、G顺次连结起来,设 顺次连结起来, 、 、 顺次连结起来 DEFG能够成四边形。 能够成四边形。 能够成四边形 (1)如图,当点 在△ABC内 )如图,当点O在 内 求证:四边形DEFG是平行 时,求证:四边形 是平行 四边形; 四边形; 移到△ 外时, (2)当点 移到△ABC外时, )当点O移到 外时 上小题的结论是否仍成立? 上小题的结论是否仍成立?
A B H D C B G C F A E究:
平行四边形 任意四边形的中点四边形都是________; 平行四边形 平行四边形的中点四边形是__________; 菱形 矩形的中点四边形是________________; 菱形的中点四边形是________________; 正方形的中点四边形是______________; 梯形的中点四边形是________________; 直角梯形的中点四边形是____________; 等腰梯形的中点四边形是____________。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形 矩形的中点四边形是________________ ;
菱形的中点四边形是________________;
正方形的中点四边形是______________;
梯形的中点四边形是________________;
直角梯形的中点四边形是____________;
等腰梯形的中点四边形是____________。
1、求证:顺次连接等腰梯形的各 边中点所成的四边形是______。
2、中点四边形的面积与原四边形 的面积之比为多少?
密切关系; (2)只要原四边形的两条对角线 相等 ,就能 使中点四边形是菱形; (3)只要原四边形的两条对角线 互相垂直 , 就能使中点四边形是矩形; (4)要使中点四边形是正方形,原四边形要符 合的条件是 相等且互相垂直 。
我思,我进步7
想一想,做一做
驶向胜 利的彼 岸
1.请你设计一个中点四边形为正方形, 但原四边形又不是正方形的四边形,并说 出方法。 A
结合刚才的证明过程,小组讨论并思考: (1)中点四边形的形状与原四边形的什么有 着密切的关系? (2)要使中点四边形是菱形,原四边形一定 要是矩形吗? B (3)要使中点四边形是矩形,原四边形一定 G E 要是菱形吗? A
E H D A G B C
F C
D F
G
结论:
(1)中点四边形的形状与原四边形的对角线 有
B
A C D
顺次连接 任意四边形 各边中点 平行四边形 也是平行四边形吗? 所成的四边形是平行四边形。 E 有没有更特殊? 矩形呢? A
A B H F
那:
2 我思考,我进步
D
D
C
B
G
C
小组合作探究:
平行四边形 任意四边形的中点四边形都是 ________;
平行四边形 ; 平行四边形的中点四边形是__________
平行四边形 ; 平行四边形的中点四边形是__________
菱形 矩形的中点四边形是________________ ;
菱形的中点四边形是________________ ; 矩形
正方形的中点四边形是______________ ; 正方形
平行四边形 梯形的中点四边形是________________ ; 平行四边形 ; 直角梯形的中点四边形是____________ 菱形 等腰梯形的中点四边形是____________ 。
课题:
探究中点四边形
授课教师:刘清水 宁化第六中学八年级(1)班
知识回顾
1
四边形之间的关系
矩形 平行四边形
正方形
菱形 四边形
等腰梯形
梯形 直角梯形
知识回顾
2
三角形 中位线 的性质 定理:三角形的中位线平行于第三边, 且等于第三边的一半. A
∵DE是△ABC的中位线,
1 ∴DE∥BC, DE BC . 2
答案举例 D G C F
H
E B
想一想,做一做
2、如图:点E、F、G、H分别是线段AB、 BC、CD、AD的中点,则四边形EFGH是 什么图形?并说明理由。
D H
A
E
G
B
F
C
这一节课你学到了什么?
1、中点四边形的定义; 2、中点四边形的形状与原四边形 的对角线的关系。
独立 作业
驶向胜利 的彼岸
B
D E
C
这个定理提供了证明线段平行以及线段成倍分关系 的根据.
1 我思考,我进步
、F、G、H分别是四边形 E 已知 如图 点 : , 顺次连接任意四边形各边中点 ABCD各边中点。 所成的四边形是什么形? 求证:四边形EFGH为平行四边形。 请同学们画一画、看一看、 证明:连接AC E 猜一猜并证一证 A
其它各种四边形的中点四边形边是何种四 边形呢?先观察并猜一猜,再证明.
A H D A H G E B F C E B F A H G A D G B D A F C H D
E
B
E
F
G C
菱形
矩形
E B F
正方形
E
A
H
B F
D
平行四边形
G
C D
平行四边形
C
D
菱形
G
C
小组合作探究:
平行四边形 任意四边形的中点四边形都是 ________;
H
B
∵ E、F是AB、BC边中点
1 ∴EF∥AC且EF= 2 AC
F
D
G
C
1 同理:HG ∥ AC且HG = AC 2
∴EF ∥ HG且EF = HG
∴四边形EFGH为平行四边形。 (一组对边平行且相等的四边形是平行四边形)
中点四边形的定义 顺次连接四边形各边中点所得的 四边形叫做中点四边形。
相关文档
最新文档