2009北京市大学生高等数学竞赛竞赛试卷解析
09年全国数学竞赛赛区赛试卷及答案

首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效。
2、密封线左边请勿答题,密封线外不得有姓名及相关标记。
一、 填空题(每小题5分,共20分)(1)计算=--++⎰⎰dxdy yx x yy x D1)1ln()(_____________,其中区域D 由直线x + y = 1与两坐标轴所围三角形区域。
(2) 设f (x ) 是连续函数, 满足⎰--=2022)(3)(dx x f x x f ,则=)(x f _ __ __。
(3)曲面2222-+=y x z 平行平面 2x + 2y − z = 0 的切平面方程是_ __ _。
(4)设函数y = y (x )由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则22dxyd =_________________。
答案:1516,31032-x ,0522=--+z y x ,322)](1[)()](1[y f x y f y f '-''-'--。
二、(5 分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数。
解:原式=)}ln(ex p{lim 20ne e e x e nxx x x +++→ =}ln )ln({lim ex p{20xne e e e nx x x x -+++→ ………………….….…(2 分)其中大括号内的极限是型未定式,由 L ′Hospital 法则,有nxx x x x x x nx x x x e e e ne e e e x n e e e e ++++++=-+++→→ 2020)2(lim }ln )ln({lim e n n n e )21()21(+=+++=于是 原式=e n e )21(+ …….…. . …………………………….………………(5 分)三 、(15 分) 设函数 f (x) 连续, ⎰=1)()(dt xt f x g ,且A xx f x =→)(lim, A 为常数,求)(x g '并讨论)(x g '在x = 0处的连续性。
大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
2009-2014全国大学生数学竞赛试题及答案(最完整版)

。
dx 2
二、(本题满分 5 分)求极限 lim( e x + e2x +
+
e nx
)
e x
,其中
n
是给定的正整数。
x→0
n
∫ 三、(本题满分 15 分)设函数 f (x) 连续, g(x) = 1 f (xt)dt ,且 lim f (x) = A , A 为常
0
x→0 x
数,求 g′(x) 并讨论 g′(x) 在 x = 0 处的连续性。
L
2
五、(本题满分 10 分)已知 y1 = xex + e2x , y2 = xex + e−x , y3 = xe x + e2x − e−x 是某二
阶常系数线性非齐次微分方程的三个解,试求此微分方程。
六、(本题满分 10 分)设抛物线 y = ax2 + bx + 2 ln c 过原点。当 0 ≤ x ≤ 1 时, y ≥ 0 ,又已
六、(本题满分 12 分)设 f (x) 是在 (−∞, +∞) 内的可微函数,且 f ′(x) < mf (x) ,其中
+∞
∑ 0 < m < 1 。任取实数 a0 ,定义 an = ln f (an−1), n = 1, 2, ,证明: (an − an−1) 绝对收敛。 n =1
七、(本题满分 15 分)是否存在区间[0, 2]上的连续可微函数 f (x) ,满足 f (0) = f (2) = 1,
第一届(2009)全国大学生数学竞赛预赛试卷
一、填空题(每小题 5 分,共 20 分)
(x + y) ln(1 + y )
1.计算 ∫∫D
北京市历届高等数学竞赛试卷 第十六届(2005年)甲、乙组试题

第十六届(2005年)北京市大学生数学竞赛本科甲、乙组试题一、填空题(每题4分,满分40分)1.设函数()y y x =满足2(1)xy x y x y e '''+-+=,且(0)1y '=,若2()limx y x xa x →-=,则a =_________.2.已知()()()x e bf x x a x b -=--,在x e =处为无穷间断点,在1x =处为可去间断点,则b =____________.3.设(,)z f x y =满足2z x y x y∂=+∂∂,且2(,0)(0,)f x x f y y ==,,则(,)f x y =_________. 4.已知函数120()3()f x x f x dx =-, 则()f x =__________________________.5.设5()(1)xf x x e -=-,则(10)(1)f=______________________.6.设222:r D x y r +≤,则2221lim cos()_________rx y r D e x y dxdy r +-→+=⎰⎰.7. 已知01()limln[1]4211cos x x f x x →+=--则30()lim __________x f x x→=.8.2sin 2x d dx=⎰⎰____________________________.9. 设ξ为()arctan f x x =在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则 22lim b b ξ→=_______.10. 11269422222++-+++--+=y x y x y x y x z 的最小值为 .二、(6分)设()f x 可导,且32()cos 4sin 6cos ,x f x dx x x x x x C '=--+⎰求()f x .三、(10分)设函数11()112y f x x x ==+++-,作函数图形并填写下表:四、(8分)设()f x 是(,)-∞+∞上的连续非负函数,且40()()sin xf x f x t dt x ⋅-=⎰,求()f x 在区间[0,]π上的平均值。
全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sinn π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。
……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。
…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。
……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。
解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。
历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
首届中国大学生数学竞赛赛区赛试卷解答
专业:线年级:封所在院校: 密身份证号: 姓名:首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.题 号 一 二 三 四 五 六 七 八 总分满 分 20 5 15 15 10 10 15 10 100 得 分注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2、密封线左边请勿答题,密封线外不得有姓名及相关标记.一、 填空题(每小题5分,共20分).(1)计算 dxdy yx x y y x D∫∫−−⎟⎠⎞⎜⎝⎛++11ln )(=_____________,其中区域D 由直线1=+y x 与两坐标轴所围三角形区域.(2)设 ()f x 是连续函数,满足 220()3()2f x x f x dx =−−∫,则()f x =___________________. (3) 曲面2222x z y =+− 平行平面 220x y z +−= 的切平面方程是________________________.(4)设函数 ()y y x =由方程 ()ln 29f y y xee =确定,其中f 具有二阶导数,且 1f ′≠,则22d ydx =____________________.答案:1615 ,21033x −, 2250x y z +−−=,223[1()]()[1()]f y f y x f y ′′′−−−′−.得 分评阅人二、(5分)求极限 20lim()ex x nx x x e e e n→+++ ,其中 n 是给定的正整数.解:原式20lim exp{ln()}x x nxx e e e e x n→+++=20(ln()ln )exp{lim}x x nx x e e e e n x →+++−= ………………….….…(2分) 其中大括号内的极限是型未定式,由 L Hospital ′法则,有 20(ln()ln )lim x x nx x e e e e n x →+++− 20(2)limx x nx x x nxx e e e ne e e e →+++=+++ (12)1(2e n n e n ++++==于是 原式=1()2n e e+ . ……………………………………..…………..…(5分)三、(15分)设函数 ()f x 连续,1()()g x f xt dt =∫,且()limx f x A x→= ,A 为常数,求 ()g x ′并讨论()g x ′ 在0x =处的连续性.解:由题设,知 (0)0f =,(0)0g =. …………….…………...…(2分)令u xt =,得0()()xf u dug x x=∫ (0)x ≠,……………………………………..……(5分)从而 02()()()x xf x f u dug x x−′=∫ (0)x ≠…………………………………….……(8分)由导数定义有20()()(0)limlim22xx x f u du f x Ag x x →→′===∫ ……………………………………….……(11分) 由于 022000()()()()lim ()limlim lim (0)22xxx x x x xf x f u duf u du f x A Ag x A g xx x →→→→−′′==−=−==∫∫, 从而知 ()g x ′ 在 0x =处连续. …………………………………………….……….(15分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:四、(15分)已知平面区域 {(,)|0,0}D x y x y ππ=≤≤≤≤ ,L 为D 的正向边界,试证:(1)sin sin sin sin yx y xLLxedy ye dx xe dy ye dx −−−=−∫∫; (2)sin sin 252yx Lxedy ye dx π−−≥∫ . 证法一:由于区域D 为一正方形,可以直接用对坐标曲线积分的计算法计算.(1) 左边0sin sin sin sin 00()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ , ...…(4分)右边0sin sin sin sin 0()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ ,……..…(8分)所以 sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫. ……………………………(10分) (2) 由于 sin sin 22sin xx ee x −+≥+ , …….…………………….…...(12分)sin sin sin sin 205()2yxx x Lxedy yedx e e dx πππ−−−=+≥∫∫ . ……..…….…(15分)证法二:(1)根据 Green 公式,将曲线积分化为区域D 上的二重积分sin sin sin sin ()y x y x LDxe dy ye dx e e d δ−−−=+∫∫∫ ……………………………...… (4分) sin sin sin sin ()yx y x LDxedy ye dx e e d δ−−−=+∫∫∫ ………………………………(8分)因为 关于 y x = 对称,所以sin sin sin sin ()()yx y x DDee d e e d δδ−−+=+∫∫∫∫ ,故sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫ . ………………….…… (10分) (2) 由 22022(2)!nttn t e e t n ∞−=+=≥+∑ sin sin sin sin sin sin 25()()2y x y x x xL D Dxe dy ye dx e e d e e d δδπ−−−−=+=+≥∫∫∫∫∫ . …….……….……(15分)得 分评阅人五、(10分)已知 21x xy xe e =+ ,2x x y xe e −=+ ,23x x x y xe e e −=+−是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解:根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知:2x e 与 xe −是相应齐次方程两个线性无关的解,且 xxe 是非齐次的一个特解.因此可以用下述两种解法 ………………………………………………………….…...……(6分)解法一: 故此方程式 2()y y y f x ′′′−−= ………………….……..……..……(8分)将xy xe = 代入上式,得()()()2222x x x x x x x x x x f x xe xe xe e xe e xe xe e xe ′′′=−−=+−−−=− ,因此所求方程为22x xy y y e xe ′′′−−=− . ……………………………………… …(10分)解法二:故 212x x xy xe c e c e −=++ ,是所求方程的通解,……………………(8分) 由2122x x x x y e xe c e c e −′=++− ,21224x x x xy e xe c e c e −′′=+++ ,消去 12,c c 得所求方程为 22x xy y y e xe ′′′−−=−. ……………………………………………………....…(10分)六、(10分)设抛物线 22ln y ax bx c =++过原点,当 01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线 1x =所围图形的面积为 13. 试确定,,,a b c 使此图形绕 x 轴旋转一周而成的旋转体的体积V 最小.解: 因抛物线过原点,故 1c =由题设有 1201()323a b ax bx dx +=+=∫.即 2(1)3b a =− ,………..………….…(2分) 而 122220111()[]523V ax bx dx a ab b ππ=+=++∫ 221114[(1)(1)]5339a a a a π=+−+⋅−. …………………….…………….…(5分)令 2128[(1)]053327dv a a a da π=+−−−=, 得 54a =− ,代入 b 的表达式 得 32b =. 所以0y ≥, ……………..…………(8分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:又因 25242284|[]05327135a d v da ππ=−=−+=> 及实际情况,当53,,142a b c =−== 时,体积最小. ………….……….…(10分)七、(15分)已知 ()n u x 满足1()()n x n nu x u x x e −′=+(n 为正整数), 且(1)n e u n=,求函数项级数1()n n u x ∞=∑之和.解:先解一阶常系数微分方程,求出()n u x 的表达式,然后再求1()n n u x ∞=∑ 的和.由已知条件可知 1()()n xn n u x u x x e −′−= 是关于 ()n u x 的一个一阶常系数线性微分方程,故其通解为1()()()ndx dx n x x n xu x e x e e dx c e c n−−∫∫=+=+∫ , ……………..…..(6分)由条件 (1)n e u n =,得0c =,故()n xn x e u x n=,从而 111()n x n xn n n n x e x u x e n n∞∞∞=====∑∑∑. …………….……..……...…(8分) 1()nn x s x n ∞==∑,其收敛域为 [1,1)−,当 (1,1)x ∈−时,有111()1n n s x x x∞−=′==−∑ ,………………………..…………………….….(10分) 故 01()ln(1)1xs x dt x t==−−−∫ . ………………..…………………(12分) 当1x =−时,11()ln 2n n u x e∞−==−∑. …………………………...…(13分)于是,当 11x −≤<时,有1()ln(1)xn n u x ex ∞==−−∑. ……….…..…(15分)得 分评阅人八、(10分)求1x →− 时,与20n n x ∞=∑等价的无穷大量.解:2221t n t n x dt x x dt ∞+∞+∞=≤≤+∑∫∫, ………………….…………….….….…(3分)221lnt t xx dt edt −+∞+∞=∫∫………………….…….………….....….(7分)=∼……………………….…...(10分)得 分评阅人第二届中国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2010)一(本题共5小题,每小题5分,共25分)、计算下列各题(要求写出重要步骤). (1) 设2(1)(1)(1)nn 2x a a a =+⋅++ ,其中1<|a |,求.n n x ∞→lim 解 将n x 恒等变形221(1)(1)(1)(1)1nn x a a a a a =−+⋅++− 2221(1)(1)(1)1n a a a a=−⋅++− 4421(1)(1)(1)1na a a a =−⋅++− 1211n a a+−=−,由于,可知1<|a |2lim 0nn a →∞=,从而ax n n −=∞→11lim . (2) 求lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211.解 lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211=11lim 1xx x e x −→∞⎡⎤⎛⎞+⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎢⎥⎜⎟⎜⎟⎝⎠⎢⎥⎣⎦⎝⎠=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=22111exp lim ()12x x x x xx ο→∞⎛⎞⎡⎤⎛⎞−+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=21−e .(3) 设,求0s >0sx n n I e x dx +∞−=∫(1,2,n )= .解 因为时,0s >lim 0sx n x e x −→+∞=,所以,100011n sx n sx sx n n n n I x de x e e dx I s s +∞+∞+∞−−−s −⎡⎤=−=−−=⎢⎥⎣⎦∫∫ 由此得到,12011!n n n n n n n n n n I I I I s s s s s−−!+−==⋅===(4) 设函数f ( t )有二阶连续的导数,r =1(,)(g x y f r=,求2222.g g x y ∂∂+∂∂ 解 因为,r x r yx r y r∂∂==∂∂,所以 31()g x f x r r ∂′=−∂,2222265121(().g x x y f f x r r r r ∂−′′′=+∂ 利用对称性,2222431111()()g g f f x y r r r r∂∂′′′+=+∂∂(5) 求直线10:0x y l z −=⎧⎨=⎩与直线221:42x y z l 31−−−==−−的距离.解 直线的对称式方程为1l 1:110x y zl ==. 记两直线的方向向量分别为,,两直线上的定点分别为和,.1(10)l = a P ==,1,12P 2(4,2,1)l =−−(2,1,3)1(0,0,0)P 2(2,1,3)P 12(1,1,6)l l ×=−−.由向量的性质可知,两直线的距离1212()a l l d l l ⋅×====×二(本题共15分)、 设函数在)(x f )(+∞−∞,上具有二阶导数,并且()0,f x ′′>lim ()0x f x α→+∞′=>,lim x ()f x 0β→−∞′=<,且存在一点,使得.0x 0)(0<x f 证明:方程0)(=x f 在恰有两个实根.)(+∞−∞,证1. 由lim ()0x f x α→−∞′=>必有一个充分大的,使得0x a >()0f a ′>.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f a f a x a x a ′>+−>当x →+∞时,()()()f f a x a ′+∞+−→+∞. 故存在,使得a b > ……………… (6分)()()()()0f b f a f a b a ′>+−>同样,由lim ()0x f x β→−∞′=<,必有0c x <,使得()0f c ′<.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f c f c x c x c ′>+−<当x →−∞时,()()()f f c x c ′−∞+−→+∞. 故存在d ,使得c < …………………… (10分)()()()()0f d f c f c d c ′>+−>在0[,]x b 和利用零点定理,0[,]d x 10(,)x x b ∃∈,2(,)0x d x ∈使得 ……………………… (12分) 1()2)0==(f x f x 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.用反证法. 假设方程0)(=x f 在)(+∞−∞,]232x ,x 内有三个实根,不妨设为,且. 对在区间[和[]上分别应用洛尔定理,则各至少存在一点(321x ,x ,x 321x x x <<1ξ)(x f 1x ξ<1,x 2x 1x <)和(2ξ322x ξx <<),使得=)(1ξf'(ξη00=)2ξ<)(2ξf'1η<. 再将在区间[上使用洛尔定理,则至少存在一点,使. 此与条件矛盾. 从而方程)(x 0)(=ηf'f"]2ξ′′1,ξ()0f x >)(=x f 在)+∞,(−∞不能多于两个根. ……………………(15分)证2. 先证方程至少有两个实根.0)(=x f 由lim ()0x f x α→+∞′=>,必有一个充分大的,使得0x a >()0f a ′>.因在)(x f )(+∞−∞,上具有二阶导数,故()f x ′及()f x ′′在)(+∞−∞,均连续. 由拉格朗日中值定理,对于a x > 有()[()()()]f x f a f a x a ′−+−=()()()()]f x f a f a x a ′−−−=()()()()f x a f a x a ξ′′−−−=[()()]()f f a x a ξ′′−− =()()()f a x a ηξ′′−−.其中x ηa ,x ξa <<<<. 注意到()0f η′′>(因为()0f x ′′>),则()()()()()f x f a f a x a x a ′>+−>又因 故存在,使得()0,f a ′>a b > ()()()()0f b f a f a b a ′>+−> …………………(6分)又已知,由连续函数的中间值定理,至少存在一点 使得0)(0<x f )(101b x x x <<0)(1=x f . 即方程在0)(=x f )(0+∞,x 上至少有一个根 ………………(7分)1x 同理可证方程在0)x (=f )(0x ,−∞上至少有一个根2x . ………………(12分) 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.(以下同证1).……(15分)三(本题共15分)、设函数()y f x =由参数方程22()x t t y t ψ⎧=+⎨=⎩(t >−1)所确定. 且2234(1)d y dx t =+,其中()t ψ具有二阶导数,曲线)(t y ψ=与21t ∫2u y e d −=+32u e在处相切. 求函数1=t (t )ψ.解 因为()22dy t dx t ψ′=+,()22231(22)()2()(1)()()224(1)22d y t t t t t t dx t t t ψψψψ′′′′′′+−+−=⋅=+++, ………………(3分)由题设2234(1)d y dx t =+,故3(1)()()34(1)4(1)t t t t t ψψ′′′+−=++,从而,即 2(1)()()3(1)t t t t ψψ′′′+−=+1()()3(1).1t t tt ψψ′′′−=++ 设()u t ψ′=,则有13(1)1u u t′−=++t , 11111113(1)(1)3(1)(1)(1)(3).dt dt t t u e t e dt C t t t dt C t t C −−++⎡⎤∫∫⎡⎤=++=++++=+⎢⎥⎣⎦⎣⎦∫∫1+ …………(9分)由曲线)(t y ψ=与22132t u y edu e−=+∫在1=t 处相切知3(1)2e ψ=,2(1)eψ′=. ………………(11分)所以12(1)t ue ψ=′==,知311−=eC . ∫∫++++=+++=++=21213112123))3(3()3)(1()(C t C t C t dt C t C t dt C t t t ψ,由e23)1(=ψ,知,于是22=C 3211()(3)2(1)2t t t t t e e ψ=++−+>−.…(15分)四(本题共15分)、设10,nn n k a S =>=k a ∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤,且(n )时,级数n S →∞→∞1nn na S α+∞=∑发散. 证明 令11(),[,]n n f x x x S S α−−=∈. 将()f x 在区间上用拉格朗日中值定理,1[,n n S S −])存在1(,n n S S ξ−∈11()()()()n n n n f S f S f S S ξ−−′−=−即 ………………(5分) 111(1)n n S S ααααξ−−−−−=−n a (1)当1α>时,11111(1)(1)nnn na a S S S n αααααξ−−−−=−≥−α. 显然11111n n S S αα−−−⎧⎫−⎨⎬⎩⎭的前n 项和有界,从而收敛,所以级数1nn na S α+∞=∑收敛. ……………(8分) (2)当1α=时,因为,单调递增,所以0n a >n S 1111n pn pn p nk nk k n k n kn p n pn S S a S a S S S S +++=+=+p+++−≥==−∑∑因为对任意n ,当n S →+∞p ∈12n n p S S +<,从而112n pk k n ka S +=+≥∑. 所以级数1nnn a S α+∞=∑发散. ………………(12分) 当1α<时,n n n a a S S α≥n. 由1n n n a S +∞=∑发散及比较判别法,1n n na S α+∞=∑发散.………(15分)五(本题共15分)、设l 是过原点,方向为(,(其中)的直线,均匀椭球,)αβγ2221αβγ++=2222221x y z a b c ++≤(其中0 < c < b < a ,密度为1)绕l 旋转.(1) 求其转动惯量;(2) 求其转动惯量关于方向(,的最大值和最小值. ,)αβγ解 (1) 设旋转轴l 的方向向量为,椭球内任意一点P(x,y,z )的径向量为,则点P 到旋转轴l 的距离的平方为(,,)αβγ=l r ()222222222(1)(1)(1)222d x y z xy yz xz αβγαββγα=−⋅=−+−+−−−−r r l γ 由积分区域的对称性可知(222)0xy yz xz dxdydz αββγαγΩ++=∫∫∫,其中222222(,,)1x y z x y z a b c ⎧⎫⎪⎪⎪⎪Ω=++≤⎨⎬⎪⎪⎪⎪⎩⎭………………(2分)而22222223222214115aay z x b c a a ax a bc x dxdydz x dx dydz x bc dx a ππ+≤−Ω−−⎛⎞⎟⎜⎟==⋅−=⎜⎟⎜⎟⎝⎠∫∫∫∫∫∫∫ (或2132222220004sin cos sin 15a bc x dxdydz d d a r abcr dr πππθϕϕθϕΩ=⋅=∫∫∫∫∫∫) 32415ab c y dxdydz πΩ=∫∫∫,32415abc z dxdydz πΩ=∫∫∫……………(5分)由转到惯量的定义()222224(1)(1)(1)15l abc J d dxdydz a b c παβγΩ==−+−+−∫∫∫22c ……………(6分)(2) 考虑目标函数 在约束 下的条件极值. 222222(,,)(1)(1)(1)V a b αβγαβγ=−+−+−2221αβγ++=设拉格朗日函数为222222222(,,,)(1)(1)(1)(1)L a b c αβγλαβγλαβγ=−+−+−+++−…………………(8分)令,,,22()0L a ααλ=−=22()0L b ββλ=−=22()0L c γγλ=−=22210L λαβγ=++−=解得极值点为,, .……(12分) 21(1,0,0,)Q a ±22(0,1,0,)Q b ±23(0,0,1,)Q ±c 比较可知,绕z 轴(短轴)的转动惯量最大,为()22max 415abc J a π=+b ;绕x 轴(长轴)的转动惯量最小,为(22min 415abc J b π=)c +. ………(15分)六(本题共15分)、设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422(C)xydx x dyx yϕ++∫v1的值为常数. (1) 设为正向闭曲线. 证明: L 22(2)x y −+=422()0Lxydx x dyx y ϕ+=+∫v ;(2) 求函数()x ϕ;(3) 设C 是围绕原点的光滑简单正向闭曲线,求422(C)xydx x dyx y ϕ++∫v.解 (1) 设422()Lxydx x dyI x yϕ+=+∫v,闭曲线L 由,1,i L i 2=组成. 设0L 为不经过原点的光滑曲线,使得01L L −∪(其中1L −为1L 的反向曲线)和02L L ∪分别组成围绕原点的分段光滑闭曲线,C i 1,2i =. 由曲线积分的性质和题设条件12214242422()2()2(LL L L L L L)xydx x dy xydx x dy xydx x dyx y x y x y ϕϕ−++=+=+−−++∫∫∫∫∫∫∫v ϕ++12422()0C C xydx x dyI I x y ϕ+=+=−=+∫∫v v……………(5分) (2) 设4242((,),(,)2)xy x P x y Q x y x y x ϕ==++y .令Q P x y ∂∂=∂∂,即 4235422422()()4()22()(2)x x y x x x xy x y x y ϕϕ′+−−=++,解得2()x x ϕ=− ……………………(10分)(3) 设D 为正向闭曲线所围区域,由(1)42:a C x y +=1242422()2aCCxydx x dy xydx x dyx y x y ϕ+−=++∫∫v v…………………(12分) 利用Green 公式和对称性,2422()24aaC C Dxydx x dyxydx x dy x dxdy x y (ϕ+=−=−=+∫∫∫∫v v )0…………………(15分)第三届全国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2011)一、(本题共4小题,每题6分,共24分)计算题1. 220(1)(1ln(1))lim .xx x e x x →+--+解:因为 22(1)(1ln(1))xx e x x+--+=2ln(1)2(1ln(1)),x xe e x x+--+220ln(1)lim ,x e x e x →+= ………………………………………………3分 22ln(1)ln(1)222001lim lim x x xxx x e e e e x x ++-→→--==202ln(1)2lim x x x e x→+- =22220011ln(1)12lim 2lim ,2x x x x x e e e x x→→-+-+==- ………………5分 所以220(1)(1ln(1))lim xx x e x x→+--+=0. ………………………………6分 2. 设2cos cos cos ,222n n a θθθ=⋅⋅⋅ 求lim .n n a →∞解:若0,θ=则lim 1.n n a →∞= ……………………1分若0θ≠,则当n 充分大,使得2||nk >时,2cos cos cos 222n n a θθθ=⋅⋅⋅ =21cos cos cos sin 2222sin 2n n nθθθθθ⋅⋅⋅⋅⋅=21111cos cos cos sin 22222sin 2n n n θθθθθ--⋅⋅⋅⋅⋅ . ………………………4分=222211cos cos cos sin 22222sin 2n n nθθθθθ--⋅⋅⋅⋅⋅ =sin 2sin 2n n θθ这时, lim n n a →∞=lim n →∞sin sin 2sin 2nnθθθθ=. ………………………6分3. 求sgn(1)Dxy dxdy -⎰⎰,其中{(,)|02,02}D x y x y =≤≤≤≤解:设 11{(,)|0,02}2D x y x y =≤≤≤≤ 211{(,)|2,0}2D x y x y x =≤≤≤≤311{(,)|2,2}2D x y x y x =≤≤≤≤. ……………………………2分12212112ln 2D D dxdxdy x ⋃=+=+⎰⎰⎰,332ln 2D dxdy =-⎰⎰. ………………………4分 323sgn(1)24ln 2DD D D xy dxdy dxdy dxdy ⋃-=-=-⎰⎰⎰⎰⎰⎰. ………………………6分4. 求幂级数221212n nn n x ∞-=-∑的和函数,并求级数211212n n n ∞-=-∑的和. 解:令22121()2n nn n S x x ∞-=-=∑,则其的定义区间为(.(x ∀∈, 12122221110021()22222n xxn n n n n n n n x x x xS t dt t dt x --∞∞∞-===⎛⎫-====⎪-⎝⎭∑∑∑⎰⎰. …………………2分 于是,22222()2(2)x x S x x x '+⎛⎫== ⎪--⎝⎭,(x ∈. (4)分 222111212110229n n n n n n n S -∞∞-==--===∑∑. ………………………………6分二、(本题2两问,每问8分,共16分)设0{}n n a ∞=为数列,,a λ为有限数,求证: 1. 如果lim n n a a →∞=,则12limnn a a a a n→∞+++= ;2. 如果存在正整数p ,使得lim()n p n n a a λ+→∞-=,则 limn n a n pλ→∞=.证明:1. 由lim n n a a →∞=,0M ∃>使得||n a M ≤,且10,N ε∀>∃∈ ,当n > N 1 时,||2n a a ε-<. ……………………………………4分因为21N N ∃>,当n > N 2 时,1(||)2N M a n ε+<.于是,111(||)()22n a a N M a n N a n n n εεε+++--≤+< ,所以, 12limnn a a a a n→∞+++= . …………………………………………8分2.对于0,1,,1i p =- ,令()(1)i n n p i np i A a a +++=-,易知(){}i n A 为{}n p n a a +-的子列.由lim()n p n n a a λ+→∞-=,知()lim i nn A λ→∞=,从而()()()12lim i i i nn A A A nλ→∞+++= .而()()()12(1)i i i n n p i p i A A A a a ++++++=- .所以,(1)limn p i p in a a nλ+++→∞-=.由lim0p i n a n+→∞=.知(1)limn p in a nλ++→∞=. ………………………………………12分从而(1)(1)limlim (1)(1)n p in p i n n a a nn p i n p i n pλ++++→∞→∞=⋅=++++ ,,,m n p i ∀∈∃∈ ,(01)i p ≤≤-,使得m np i =+,且当m →∞时,n →∞.所以,lim m m a m pλ→∞=. …………………………………………………………16分三、(15分)设函数()f x 在闭区间-[1,1]上具有连续的三阶导数,且10f -=(),11f =(),00f '=().求证:在开区间()-1,1内至少存在一点0x ,使得03f x '''=() 证. 由马克劳林公式,得 311(0)23f x f f x f x η'''''=++2()(0)()!!,η介于0与x 之间,[]1,1x ∈-…3分 在上式中分别取1x =和1x =-, 得111111(0),0123f f f f ηη'''''==++<<()(0)()!!. ………………………5分 221101(0)(0),1023f f f f ηη'''''=-=+--<<()()!!. ………………………7分 两式相减,得 12()6f f ηη''''''+=(). ………………………10分 由于()f x ''在闭区间[1,1]-上连续,因此()f x '''在闭区间[21,ηη]上有最大值M 最小值m ,从而121()())2m f f M ηη''''''≤+≤( …………………………………13分 再由连续函数的介值定理,至少存在一点0x ,ηη∈⊂-21[](1,1),使得0121()32f x f f ηη'''''''''=+=()(()). ………………………15分四、(15分)在平面上, 有一条从点)0,(a 向右的射线,线密度为ρ. 在点),0(h 处(其中h > 0)有一质量为m 的质点. 求射线对该质点的引力.解:在x 轴的x 处取一小段dx , 其质量是dx ρ,到质点的距离为22x h +, 这一小段与质点的引力是22Gm dxdF h xρ=+(其中G 为引力常数). …………………5分 这个引力在水平方向的分量为2232()x Gm xdxdF h x ρ=+. 从而 222/1222/32222/322)()()(2)(a h Gm x h Gm x h x d Gm x h xdx Gm F aa ax +=+-=+=+=⎰⎰+∞∞+-+∞ρρρρ……10分而dF 在竖直方向的分量为2232()y Gm hdxdF h x ρ=+, 故 ⎪⎭⎫⎝⎛-===+=⎰⎰⎰+∞h a h Gm tdt h Gm t h dt h Gm x h hdxGm F hahaay arctan sin 1cos sec sec )(2/arctan2/arctan33222/322ρρρρππ 所求引力向量为(,)x y F F =F . …………………………15分五、(15分)设z = z (x,y ) 是由方程11(,)0F z z x y+-=确定的隐函数,且具有连续的二阶偏导数.求证:220z z xy x y ∂∂+=∂∂ 和 2223322()0z z z x xy x y y x x y y ∂∂∂+++=∂∂∂∂ 解:对方程两边求导,1221()0z z F F x x x ∂∂-+=∂∂,1221()0z z F F y y y∂∂++=∂∂. ……5分 由此解得,22121211,()()z z x y x F F y F F ∂∂-==∂∂++ 所以,220z z xy x y∂∂+=∂∂ …………………………10分 将上式再求导,222222z z z xy x y x x x ∂∂∂+=-∂∂∂∂,222222z z z x y y x y y y ∂∂∂+=-∂∂∂∂ 相加得到,2223322()0z z z x xy x y y x x y y∂∂∂+++=∂∂∂∂ …………………………15分六、(15分)设函数)(x f 连续,c b a ,,为常数,∑是单位球面 1222=++z y x . 记第一型曲面积分⎰⎰∑++=dS cz by ax f I )(. 求证:⎰-++=11222)(2du u c b a f I π解:由∑的面积为π4可见:当 c b a ,,都为零时,等式成立. …………………2分 当它们不全为零时, 可知:原点到平面 0=+++d cz by ax 的距离是222||cb a d ++. …………………………5分设平面222:cb a cz by ax u P u ++++=,其中u 固定. 则 ||u 是原点到平面u P 的距离,从而11≤≤-u . …………………………8分两平面 u P 和du u P +截单位球 ∑ 的截下的部分上, 被积函数取值为()u c b af222++. …………………………10分这部分摊开可以看成一个细长条. 这个细长条的长是212u -π, 宽是21udu -,它的面积是du π2, 故我们得证. …………………………15分第四届全国大学生数学竞赛预赛试题 (非数学类)参考答案及评分标准一、(本题共5小题,每小题各6分,共30分)解答下列各题(要求写出重要步骤).(1) 求极限21lim(!)n n n →∞;(2) 求通过直线232:55430x y z L x y z 0+−+=⎧⎨+−+=⎩的两个相互垂直的平面1π和2π,使其中一个平面过点;(4,3,1)−(3) 已知函数,且(,)ax byz u x y e+=20,ux y∂=∂∂ 确定常数a 和,使函数满足方程 b (,)z z x y =20z z zz x y x y∂∂∂−−+=∂∂∂∂; (4) 设函数连续可微, , 且()u u x =(2)1u =3(2)()Lx y udx x u udy +++∫在右半平面上与路径无关,求; ()u x(5) 求极限 1limx xx +.解(1) 因为 2211ln(!)(!)n nn n e= ……………………………………(1分)而211ln1ln 2ln ln(!)12n n n n ⎛⎞≤+++⎜n ⎝⎠"⎟,且 ln lim 0n nn →∞= ………………………(3分) 所以 1ln1ln 2ln lim012n n n n →∞⎛⎞+++=⎜⎟⎝⎠", 即 21lim ln(!)0n n n →∞=, 故 21lim(!)n n n →∞=1 ……………………………………(2分)(2)过直线L 的平面束为(232)(5543)x y z x y z 0λμ+−+++−+=即 (25)(5)(34)(23)x y z 0λμλμλμλμ+++−+++= ,…………………………(2分) 若平面1π过点(4,代入得,3,1)−0λμ+=,即μλ=−,从而1π的方程为, ……………………………………(2分) 3410x y z +−+=若平面束中的平面2π与1π垂直,则3(25)4(5)1(34)0λμλμλμ⋅++⋅++⋅+=解得3λμ=−,从而平面2π的方程为253x y z 0−−+= ,………………………………(2分) (3)(),y ax by z u e au x x x +∂∂⎡⎤=++⎢⎥∂∂⎣⎦(),ax by zu e bu x y y y +⎡⎤∂∂=++ ………………(2分) ⎢⎥∂∂⎣⎦2(,).ax by z u ue b a abu x y x y x y +⎡⎤∂∂∂=++⎢⎥∂∂∂∂⎣⎦ ……………………………………(2分) 2z z z z x y x y ∂∂∂−−+=∂∂∂∂(1)(1)(1)(,)ax by u ue b a ab a b u x y x y +,⎡⎤∂∂−+−+−−+⎢⎥∂∂⎣⎦若使20,z z zz x y x y∂∂∂−−+=∂∂∂∂ 只有 (1)(1)(1)(,u ub a ab a b u x y x y∂∂−+−+−−+∂∂)=0, 即 1a b ==. ………………(2分) (4)由()()u y x y u x u x )2(][3+∂∂=+∂∂得()u u u x =+'43, 即241u x u du dx =−…… .(2分) 方程通解为 ()()()Cu u C udu u C du eu ex uu+=+=+=∫∫−2ln 2ln 244 . …………………(3分)由得1)2(=u 0=C , 故 3/12⎟⎠⎞⎜⎝⎛=x u . ……………………………………(1分)(5)因为当x >1时,1x x+≤ ………………………………(3分)≤=0()x →→∞, …………………(2分)所以 1x xx +=0。
第十八届北京市大学生数学竞赛本科丙组试题与解答[2]
第十八届北京市大学生数学竞赛本科丙组试题与解答(2007年10月14日 下午2:30--5:00)一、填空题(每题3分,共30分).3.______,111,1.11==-+++-→-m m x xx mx m 解则的等价无穷小是时设当 .)1()1()1(.________)1(,)()2)(1()()2)(1()(.21+-='='+++---=-n n f f n x x x n x x x x f n 解则设 .)]11(1[lim ._____)]11(1[lim ,1)0,1()(.3e nf nf y x f y n n n n =++=++-=∞→∞→解则轴上的截距为处的切线在在点已知曲线).1(),0()1(),0(.______________)0()1(),1(),0(,0)(]1,0[.4f f f f f f f f x f '-'-''>''解从小到大的顺序是则上设在.1.______lim .511-==∑=∞→+e e nk nk n kn 原式解π.4._________d )cos 1(sin .62π2π22-==++⎰-原式解x x x x .12.___________0)(11)sin()(.7-====--x y x x y y xy xy x y 切线方程为解切线方程为的点处的上对应于则在曲线所确定,由方程设函数.32d d ._______d d 01),()(321)1,()1,0(),(8.0022||-====+=+++=+===x x x y xyx y x f y x o y x y x f y x f z 解处的导数所确定的函数在,则由方程,其中的某邻域内可微,且在点设函数ρρ.4π),(._____),(,d d ),(),(,),(.9242222y x a y x f y x f y x y x f x y y x f y x f a y x +==+=⎰⎰≤+解则且为连续函数设.14._______,)1(.102222222=++=++=+'+''++=γβαγβαγβα解则的一个特解方程是二阶常系数线性微分设x x x e y y y e x e y .0)0,0()0,0(),(.)0,0(),(),,(||),()10(=-=ϕϕϕ是处可微的充分必要条件在点试证明函数的一个邻域内连续在点其中设二元函数分二、y x f y x y x y x y x f .)0,0(),(.0),(||lim ,2||||||,),(||)0,0()0,0()0,0(),(.0)0,0(,0)0,0(,0)0,0()(.0)0,0(),0,0()0,(||lim ),0,0()0,(||lim ,)0,(||lim )0,0()0,(lim )0,0(.)0,0(),0,0(,)0,0(),()(22022222222220000点处可微在由定义所以又因为则可知若充分性故有且由于存在则点处可微在设必要性解y x f y x y x y x yx y y x x y x y x yx y x y x y x y f x f f y x f f f xx x x x x x x x x f x f f f f y x f x y x y x x x x x x y x =+-≤+++≤+-+-=+'-'--='='==-===-='''→→→→→-+ϕϕϕϕϕϕϕϕϕ.)(tan 1d d 1)10(2π222π⎰⎰+=x y y x xI 求积分分三、.4πd 21,d )(tan 1)(tan d )(cot 11d )(tan 11d )(tan 12)(tan 1d 1d 2π02π0222π022π0222π022222π02==∴+=+=+=+=+⋅=⎰⎰⎰⎰⎰⎰⎰u I u u u u u u u yu y y y y x x yI y 交换积分顺序得解.)(0,10,)()10(2的极值,求设分四、x f x x x x x f x ⎩⎨⎧≤+>=.1)0(,)(.0,0)(,0.,0)(,0)(0.,0,10,)1(ln 2)(.0)(,1)(lim ,1lim )(lim 12111112020===>'<=>'><'<<=⎩⎨⎧<>+='=∴===--++------→→→f e e f x x f x e x x f e x x f e x e x x x x x x f x x f x f x x f e x x x x x 极大值极小值是极大值点所以时又当是极小值点所以时,当时,当驻点处连续在解.)0(2)1()1(6)(),1,1(,]1,1[)()10(f f f f x f '---='''-∈-ξξ使得存在实数证明上三次可微在区间设分五、.)0(2)1()1(6)()].()([21)(),,()].()([61)0(2)1()1(,!3)(!2)0()0()0()1(,!3)(!2)0()0()0()1(21212121f f f f f f f f f f f f f f f f f f f f f f '---=''''''+'''='''∈'''+'''+'=--'''-''+'-=-'''+''+'+=ξξξξξξξξξξξ于是使得实数由导数的介值性知存在证 .)1(2)2(;2lim )1(.,)10(121211∑∑∞=→∞∞=+++++++n nnn n nn n na a a nna a a S a试求:且和为收敛设正项级数分六、.)1(2)1(2,2.1)1(22122)1(2)2(;02lim ,112)1(11111211121211121212121212112112112121S a a b n n na a a a b b n n na a a n na a a b a n a n na a a n na a a n na a a n na a a n n na a a S S nna a a nn n S S S S n S S S S nS S S S S S S n na a a n n n n n nn n n nn n n n n n n n n nn n n n n n n n n n n ==+=++++∴+-=+++++++=+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++∑∑∑∞=∞=+∞=++++→∞--- 则记解 .π41)(sin ,2π0)10(222-+≤<<--x x x 时:当证明分七、.01cos cos 1cos 31cos 321cos sin 31cos cos )(,cossin )(.sin cos sin 22cos sin2)(,)(sin )(33434343234313133333322=-≥-+=-+='-=-=+-='-=---------x x x x x x x x x x x x x xx x x x xx x x f x x x f ϕϕ则令设证.π41)(sin ,2π0,π41)2π()(,0)(.0)(,2π0,0)0()(2222-+≤<<∴-=>'><<=∴--x x x f x f x f x x x 时当单调增加且从而于是时故当单调增加且ϕϕϕ.1sin )10(是无理数证明分八、.1sin .,)12(2cos )1(,12,1|cos |).(cos )12(2)1(cos )12(2)1(])!12()1(!71!51!311[)!12()!12().12(cos )!12()1()!12()1(!71!51!311sin .,,1sin 1sin 11是无理数所以矛盾不可能是整数故然而两个整数之差仍是整数是整数知,由的展开式有根据是互素的正整数是有理数,则设证+->≤+-+-+--++-+--=->-+-+--++-+-==--n n n n n n n n n q p n q n n n q p x q p qpn nnn nn ξξξξξ第十八届北京市大学生数学竞赛本科甲、乙组试题解答(2007年10月14日 下午2:30--5:00)注意:本考卷共九题. 甲组九题全做, 乙组只做前七题一、 填空题(每小题2分,共20分).3.______,111,1.11==-+++-→-m m x x x mx m 解则的等价无穷小是时设当 .)1()1()1(.________)1(,)()2)(1()()2)(1()(.21+-='='+++---=-n n f f n x x x n x x x x f n 解则设 .)]11(1[lim ._____)]11(1[lim ,1)0,1()(.3e nf nf y x f y nn n n =++=++-=∞→∞→解则轴上的截距为处的切线在在点已知曲线.1.______lim .411-==∑=∞→+e e nk nkn kn 原式解π.4._________d )cos 1(sin .52π2π22-==++⎰-原式解x x xx .0232___.__________为处的切平面 (0,1) 在点 ),( 则曲面其中),(321)1,(且 ,微的某邻)1,0( 在点),(设函数6.22=--+=+=+++=+=z y x y x f z y x o y x y x f y x f z 切平面方程为解方程,域内可ρρ.1旋转转曲面方程._____________为轴旋转的旋转曲面方程绕111101线.7222=-+-=-=-z y x z z y x 解直.0.____d )cos(d 1||||.822==+-=++⎰原式解的正向一周,则为封闭曲线设Ly y x x y x y x x L .322.______|)div (}1,2,2{)2,1,1(div ,2.922223==∂∂-=--=原式解的方向导数方向处沿在点则其散度设向量场M M z y x z y x z y x A ll A k j i A .14._______,)1(.102222222=++=++=+'+''++=γβαγβαγβα解则的一个特解方程是二阶常系数线性微分设x x x e y y y e x e y.0)0,0()0,0(),(.)0,0(),(),,(||),()10(=-=ϕϕϕ件是点处可微的充分必要条在试证明函数的一个邻域内连续在点其中设二元函数分、二y x f y x y x y x y x f .)0,0(),(.0),(||lim ,2||||||,),(||)0,0()0,0()0,0(),(.0)0,0(,0)0,0(,0)0,0()(.0)0,0(),0,0()0,(||lim ),0,0()0,(||lim ,)0,(||lim )0,0()0,(lim )0,0(.)0,0(),0,0(,)0,0(),()(220022222222220000点处可微在由定义所以又因为则可知若充分性故有且由于存在则点处可微在设必要性证y x f y x y x y x yx y y x x y x y x y x y x y x y x y f x f f y x f f f xx x x x x xx x x f x f f f f y x f y x y x y x x x x x x y x =+-≤+++≤+-+-=+'-'--='='==-===-='''→→→→→→-+ϕϕϕϕϕϕϕϕϕ.)0(2)1()1(6)(),1,1(,]1,1[)()10(f f f f x f '---='''-∈-ξξ使得存在实数证明上三次可微在区间设分三、.)0(2)1()1(6)()].()([21)(),,()].()([61)0(2)1()1(,!3)(!2)0()0()0()1(,!3)(!2)0()0()0()1(21212121f f f f f f f f f f f f f f f f f f f f f f '---=''''''+'''='''∈'''+'''+'=--'''-''+'-=-'''+''+'+=ξξξξξξξξξξξ于是使得实数由导数的介值性知存在证.d ,),(,1),(,),(,),(),(),(,1:),(),,()10(22⎰⎰∙≡≡⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+=≤+Dy y x v y x u D y v x v y u x u y x y x u y x v y x y x D y x v y x u σg fj i g j i f 求的边界上有且在又上有一阶连续偏导数在闭区域设函数分四、.,1:π,d )cos sin sin (d d d d d )()(d ,)()(22π202正向解=+-=+-=+=+=⎪⎪⎭⎫⎝⎛∂∂-∂∂=∴∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⎰⎰⎰⎰⎰⎰⎰∙∙y x L yy x y y uv x uv y uv x uv y uv x uv y v u y u v x v u x u v y v x v u y u x u v L L D Dθθθθσσg f g f .),1(14)1()1(:,d d d d d d )10(222222取外侧其中计算分五、≥=+-+-∑++⎰⎰∑y z y x y x z x z y z y x π.325π2π319π,319d )sin 32sin sin 41sin cos 41(d 4d sin )2sin sin sin cos 2(d d 2d )(2d )(2π,2d d .,14)1(:,,1:π022π0102π0π0220000=+=∴=++=++=+=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式则原式左侧设解ϕϕϕθϕθθϕϕθϕθϕθrr r r v y x v z y x x z z x D y VVDπ.325π2π311π38,24)1(:π,611d )2(2πd d d d ,1,24)1(:π,34d )2(πd d d d π.2d )(2,d )(2π,2d d .,14)1(:,,1:2222221222202202200=++=∴-≤+-=-⋅⋅==≥-≤+-=-==+++=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式故原式则原式左侧设另解y y z x D y y y y x z x y v y y x x zy D x x x x z y xx v x v z y x v z y x x z z x D y y D Vx D V V VDyx.)1(2)2(;2lim )1(.,)10(121211∑∑∞=→∞∞=+++++++n nnn n nn n na a a nna a a S a试求:且和为收敛设正项级数分六、.1)1(22122)1(2)2(;02lim ,112)1(1121212121212112112112121++→∞---+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++n n n n n n n n n n n n n n n n n n n a n a n na a a n na a a n na a a n na a a n n na a a S S nna a a nn n S S S S n S S S S nS S S S S S S n na a a 解.)1(2)1(2,21111121112121S a a b n n na a a a b b n n na a a n na a a b n n n n n nn n n nn n ==+=++++∴+-=+++++++=∑∑∑∞=∞=+∞=++ 则记.,./,/,,./,.)10(22220需的时间求飞机从着陆到停止所千克机的质量为设飞米秒千克为在垂直方向的比例系数米秒千克平方向的比例系数为在水正比的阻力与速度的平方成且飞机运动时所受空气为飞机与地面的摩擦系数秒米水平速度为速度在着陆时刻已失去垂直陆飞机在机场开始滑行着分七、m k k v y x ⋅⋅μ).(arctan )()arctan(10).arctan(1)arctan(1).arctan(1,,0.)arctan(1,d d .0d d ,0)d d (d d .0,,.0)d d (d d ).(,,000002222222222秒时,当得代入初始条件积分得分离变量得即于是有根据题意知记由牛顿第二定律,有摩擦力垂直方向的阻力水平方向的阻力解v gm k k g k k mv BAABt v v BA ABv B AABt v BA ABC v v t C t v BAAB t BAv vB Av t vB t s A ts A g B mk k A g t s m k k t s R m g W v k R v k R y x y x yx y x y y x y x μμ-μμ-===-=∴===+-=-=+=++=++>μ=μ-==μ+μ-+-μ===以下两题乙组考生不做.1sin )10(是无理数证明分八、.1sin .,)12(2cos )1(,12,1|cos |).(cos )12(2)1(cos )12(2)1(])!12()1(!71!51!311[)!12()!12().12(cos )!12()1()!12()1(!71!51!311sin .,,1sin 1sin 11是无理数所以矛盾不可能是整数故然而两个整数之差仍是整数是整数知,由的展开式有根据是互素的正整数是有理数,则设证+->≤+-+-+--++-+--=->-+-+--++-+-==--n n n n n n n n n q p n q n n n q p x q p qpn n nn nn ξξξξξ.)sin(tan )tan(sin ,)2π,0()10(论的大小,并证明你的结与试比较函数内在区间分九、x x).sin(tan )tan(sin ,)2π,0,.0)(,)2π,2π[arctan .1tan )tan(sin 1.1sin 4π,4ππ4π4π12π)2π(arctan tan 1)2π(arctan tan )2πsin(arctan .1sin )2πsin(arctan ,)2π,2π[arctan .0)(,0)0(,0)()2πarctan ,0(.cos )(sin cos )cos(tan ,cos 3sin 2tan cos,3sin 2tan .02sin 4tan 3cos 2sec )(3sin 2tan )(.3sin 2tan cos )]cos(sin 2)[cos(tan 31)(sin cos )cos(tan 2π0.2πsin 0,2πtan 02πarctan 0.cos )(sin cos )(sin cos )cos(tan cos sec )cos(tan cos )(sin sec )(则),sin(tan )tan(sin )( 设 解2223222232222322x x x x f x x x x x x f f x f x x x x x xx x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x f x x x f >∈>∈∴<<<<>+=+=+=<<∈>=>'∈<<+>+>-=-+='-+=+≤+≤<<<<<<-=-='-=时(当综上可得时当于是故由于时当所以又时,于是当即所以于是,设)上的凸性有,由余弦函数在(时,当ϕϕ。
历届全国大学生数学竞赛真题及答案非数学类
高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。
因此。
3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。
4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。
前三届全国大学生高等数学竞赛真题及答案大纲非数学类
中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲;一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才;“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生;二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题;中国大学生数学竞赛非数学专业类竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性含左连续与右连续、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理.二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达L ’Hospital 法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线水平、铅直和斜渐近线、函数图形的描绘.8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨Newton-Leibniz 公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利Bernoulli 方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '='' ),(y y f y '=''. 4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉Euler 方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算直角坐标、极坐标、三重积分的计算直角坐标、柱面坐标、球面坐标.2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林Green公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯Gauss公式、斯托克斯Stokes公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨Leibniz判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间指开区间、收敛域与和函数.6.幂级数在其收敛区间内的基本性质和函数的连续性、逐项求导和逐项积分、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶Fourier系数与傅里叶级数、狄利克雷Dirichlei定理、函数在-l,l上的傅里叶级数、函数在0,l上的正弦级数和余弦级数前三届高数竞赛预赛试题非数学类参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;2009年第一届全国大学生数学竞赛预赛试卷一、填空题每小题5分,共20分1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A ;因此3103)(2-=x x f ; 3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x ;4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得因)(29ln y f y xe e =,故y y y f x '=''+)(1,即))(1(1y f x y '-=',因此二、5分求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此三、15分设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→xx f x x f f x x x因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、15分已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:1⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;22sin sin 25d d π⎰≥--Ly y x ye y xe .证 :因被积函数的偏导数连续在D 上连续,故由格林公式知 1y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 2因 故 由 知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、10分已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、10分设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、15分已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则 即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、10分求-→1x 时, 与∑∞=02n n x 等价的无穷大量.解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减;因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t ====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时, 与∑∞=02n n x 等价的无穷大量是x-121π;2010年 第二届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题; 一、25分,每小题5分1设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞2求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭;3设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰;4设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂;5求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离; 解:122(1)(1)(1)nn x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++- =222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--2 22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t eeee +-+---+→→→===30000112021011()()[|](1)!!sx n n sx n sx sx nn sx n n n n n I e x dx x de x e e dx s s n n n n n n e x dx I I I s s s s s∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰ 二、15分设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <;证明:方程()0f x =在(,)-∞+∞恰有两个实根;解: 二阶导数为正,则一阶导数单增,fx 先减后增,因为fx 有小于0的值,所以只需在两边找两大于0的值; 将fx 二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成;三、15分设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ; 解:这儿少了一个条件22d ydx=由()y t ψ=与22132t u y e du e-=+⎰在1t =出相切得 3(1)2e ψ=,'2(1)eψ= 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=;;; 上式可以得到一个微分方程,求解即可; 四、15分设10,,nn n k k a S a =>=∑证明:1当1α>时,级数1nn na S α+∞=∑收敛; 2当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散; 解:1n a >0, n s 单调递增 当1n n a ∞=∑收敛时,1n n n a a s s αα<,而1n a s α收敛,所以nn a s α收敛; 当1n n a ∞=∑发散时,lim n n s →∞=∞所以,11111211n n n s s n s s n n n a a a dx dx s s xs x ααααα-∞∞==<+=+∑∑⎰⎰而1111111111lim 11ns n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--⎰,收敛于k;所以,1nn na s α∞=∑收敛; 2lim n n s →∞=∞所以1n n a ∞=∑发散,所以存在1k ,使得112k n n a a =≥∑于是,111122212k k k n n n n nk a a a s s s α≥≥≥∑∑∑依此类推,可得存在121...k k <<<使得112i i k n k n a s α+≥∑成立,所以112Nk n na N s α≥⋅∑ 当n →∞时,N →∞,所以1nn na s α∞=∑发散 五、15分设l 是过原点、方向为(,,)αβγ,其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c++≤,其中0,c b a <<<密度为1绕l 旋转; 1求其转动惯量;2求其转动惯量关于方向(,,)αβγ的最大值和最小值; 解:1椭球上一点Px,y,z 到直线的距离 由轮换对称性, 2a b c >>∴当1γ=时,22max 4()15I abc a b π=+ 当1α=时,22min 4()15I abc b c π=+ 六、15分设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx yϕ++⎰的值为常数; 1设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰2求函数()x ϕ;3设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰;解:(1) L 不绕原点,在L 上取两点A,B,将L 分为两段1L ,2L ,再从A,B 作一曲线3L ,使之包围原点; 则有 (2) 令42422(),xy x P Q x y x y ϕ==++ 由1知0Q P x y∂∂-=∂∂,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ϕ=-(3) 取'L 为424x y ξ+=,方向为顺时针2011年 第三届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;一. 计算下列各题本题共3小题,每小题各5分,共15分1.求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;解:用两个重要极限:2.求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; 解:用欧拉公式令111...12n x n n n n=++++++ 其中,()1o 表示n →∞时的无穷小量,3已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx ; 解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.本题10分求方程()()2410x y dx x y dy +-++-=的通解;解:设24,1P x y Q x y =+-=+-,则0Pdx Qdy +=1,P Q y x ∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x∂∂=∴∂∂该曲线积分与路径无关 三.本题15分设函数fx 在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=;证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得由极限的存在性得()()()'''1230lim 22330h k fh k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②再次使用洛比达法则得123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*111110031230010314900011A ⎛⎫⎛⎫⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意, 且1233,3,1k k k ==-=;四.本题17分设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值;解:设Γ上任一点(),,M x y z ,令()222222,,1x y z F x y z a b c=++-,则'''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:222,,,x y z t a b c ⎛⎫=∴ ⎪⎝⎭1∑在点M 处的切平面为∏:原点到平面∏的距离为d =,令()222444,,,x y z G x y z a b c =++则1d =现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c++=,222z x y =+下的条件极值,令()()22222222212444222,,1x y z x y z H x y z x y z a b c a b c λλ⎛⎫=+++++-++- ⎪⎝⎭则由拉格朗日乘数法得:'1242'1242'1242222222222222022202220100x y z xx H x a a y y H y b b z z H z c c x y z ab c x y z λλλλλλ⎧=++=⎪⎪⎪=++=⎪⎪⎪=+-=⎨⎪⎪++-=⎪⎪⎪+-=⎪⎩, 解得2222220x b c y z b c =⎧⎪⎨==⎪+⎩或222222a c x z a c y ⎧==⎪+⎨⎪=⎩, 对应此时的()()442222,,b c G x y z b c b c +=+或()()442222,,a c G x y z a c a c +=+此时的1d =2d =又因为0ab c >>>,则12d d <所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:2d =1d =五.本题16分已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分0z ≥取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦;计算:1(),,SzdS x y z ρ⎰⎰;2()3S z x y z dS λμν++⎰⎰解:1由题意得:椭球面S 的方程为()222310x y z z ++=≥令22231,Fx y z =++-则'''2,6,2x y z F x F y F z ===,切平面∏的法向量为(),3,n x y z =,∏的方程为()()()30x X x y Y y z Z z -+-+-=,原点到切平面∏的距离()222,,x y z ρ==将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥2方法一:λμν===六.本题12分设fx 是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛; 证明:()()112ln ln nn n n a a f a f a ----=-由拉格朗日中值定理得:ξ∃介于12,n n a a --之间,使得()()()'112n n n n f a a a a f ξξ---∴-=-,又()()f mf ξξ<、得()()'f m f ξξ<∴级数1101n n m a a ∞-=-∑收敛,∴级数11nn n aa ∞-=-∑收敛,即()11nn n aa ∞-=-∑绝对收敛;七.本题15分是否存在区间[]0,2上的连续可微函数fx,满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、请说明理由;解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得: 1ξ∃介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:2ξ∃介于x,2之间,使得()()()()'222f x f f x ξ=+-即()()[]()()()[]''121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,显然,()()200,0f x f x dx ≥≥⎰()()()()()1221211111133x dx x dx f x dx x dx x dx ≤-+-≤≤++-=⎰⎰⎰⎰⎰()21f x dx ∴≥⎰,又由题意得()()221,1f x dx f x dx ≤∴=⎰⎰即()21f x dx =⎰,()[][]1,0,11,1,2x x f x x x ⎧-∈⎪∴=⎨-∈⎪⎩ ()'1f ∴不存在,又因为fx 是在区间[]0,2上的连续可微函数,即()'1f 存在,矛盾,故,原假设不成立,所以,不存在满足题意的函数fx;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本科非数学类) 本科非数学类)
1 k x sin , x ≠ 0 处可导, 在 x = 0 处可导 则正整数 x 1. 若函数 f ( x) = 0, x = 0 则 k 的最小值为 的最小值为( ). 由导数定义: 解 由导数定义 1 k x sin x = lim x k −1 sin 1 ′(0) = lim f x →0 x →0 x x 此极限存在的条件是 k > 1, 故应取 k = 2. 2. 设由 y 轴、y = x 2 , y = a (0 < a < 1) 所围平面图形 及由曲线 所围平面图形,
1 x + 1, − 1 ≤ x < − 2 1 1 2 的偶式展开, 解 由题意是对 f 的偶式展开 即令 F ( x) = x , − ≤ x ≤ 2 2 1 1 − x, < x ≤1 均以2为周期 为周期, 故 F (x) 及 s (x) 均以 为周期, 2
r dr =
3r0
.
).
解 由于 y′′( x) = y′y β −1[4 β − ( β + 1) y ] = 0, 考虑到 y ′ ≠ 0, y = 3 可解得: 可解得:β = 3. 5. 设 f ( x) =
1+ x , 则 y (10) (0) = ( ). 1− x 1 1 − 1+ x 2 − (1 − x) 即得: = = 2(1 − x) 2 − (1 − x) 2 即得: 解 由 f ( x) = 1− x 1− x 1 1 1 1 1 1 f (10) (0) = 2( − )( − − 1) ⋅⋅⋅ (− − 9) − ( − 1) ⋅⋅⋅ ( − 9) 2 2 2 2 2 2 2 ×19!! 17!! 39 × 17!! = + 10 = . 10 10 2 2 2
4 4 4
x →0
6. ∫
1
dx =
由题设及导数定义, 解 由题设及导数定义 对 x → 0, f ( x)
f (x ) 由罗比塔法则: 由罗比塔法则: x
2
x, 于是
∫ (∫
x2
0 x
f (t )dt f (t )dt )
2
=
0
x ,
f (t )dt f (t )dt )
2
2
∫
x
0
f (t )dt
(1 + x ) 1 + x 1 1 =∫ dx = ∫ dx 解 原式 5 5 1 (1 + x 4 ) 4 x 5 (1 + 4 ) 4 x 1 d (1 + 4 ) x 1 1 −1 x = (1 + ) 4 + C = =− ∫ + C. 5 4 4 4 4 x 1 1+ x (1 + 4 ) 4 x 7. 设 f (x) 连续可导 且 f (0) = 0, f ′(0) = 1. 则 lim 连续可导,
f ( x, y , z ) = xyz , ax + by + cz = 2 S ,
则有 由
L ( x, y , z ) = xyz + λ ( ax + by + cz − 2 S ).
Lx = yz + λ a = 0 L = zx + λb = 0 2S 2S 2S y x= , y= , z= . 解得唯一驻点 3a 3b 3c Lz = xy + λ c = 0 ax + by + cz = 2 S
m=
2
∫∫∫
x + y 2 + z 2 ≤R2
2π R π 1 dv = ∫ dθ ∫ r 2 dr ∫ 0 0 0 PP0
π
0
sin ϕ dϕ
2π = r0
∫
R
0
r r 2 + r02 − 2rr0 cos ϕ
dr =
r 2 + r02 − 2rr0 cos ϕ 4π R 2 4π R 3
r0
∫
0
三、设 an = ∫04 tan xdx, n ≥ 1, 1.证明以此为通项的数列收敛; 证明以此为通项的数列收敛; 证明以此为通项的数列收敛 1 1 1 < an < . 证明 2.证明 an + an−2 = n − 1 , n > 2; 3.证明 2(n + 1) 证明 2(n − 1)
n
π
解 1. 对 0 < x <
(x)在[0,1]上二阶可导 上二阶可导, 二、设 f (x)在[0,1]上二阶可导, 且 f (1) = f (0) = f ′(1) = f ′(0) = 0. 试证存在 ξ ∈ (0,1), 使得 f ′′(ξ ) = f (ξ ).
F 解 由题设造函数: ( x) = [ f ( x) + f ′( x)]e− x (or F ( x) = [ f ( x) − f ′( x)]e x ) 由题设造函数: 可证 F (x)在[0,1]上满足罗尔定理 从而即得所证. 在 上满足罗尔定理. 从而即得所证. 上满足罗尔定理
y = x 2 , y = a, x = 1 所围平面图形均绕 y 轴旋转 所得旋转体的体 轴旋转,
一、填空题
积相等. 积相等 则a = (
).
由定积分的体积公式, 解 由定积分的体积公式 题设的两体积分别为
1 1 2 1 v1 = ∫ π ydy = π a ,v2 = π (1 − a) − ∫ π ydy = π (a2 − 2a +1), 0 a 2 2
2an > an + an+2 =
1 , n +1
,
联立即得所证. 联立即得所证.
向三边作垂线, 四、从已知三角形内部的点 P 向三边作垂线 求使此三条垂线 之位置. 长的乘积为最大的点 P 之位置 由于三边长度和三角形面积为常数, 解 由于三边长度和三角形面积为常数 所以本题是几何应用的 条件极值问题. 条件极值问题 设三边长分别为 a, b, c, 从 P点所作垂线的长分别 点所作垂线的长分别 而三角形面积为S, 为 x, y, z, 而三角形面积为 ,若令
x2 2
∫ lim (∫
x →0
2
0 x
= lim
x →0
2 xf ( x 2 ) 2 f ( x) ∫
x 0
0
2 x3 = lim 3 = 2. f (t )dt x→0 x
x2 y 2 z 2 2 2 2 8. 设 :x + y + z ≤ 1, 则 ∫∫∫ ( a 2 + b 2 + c 2 )dv = Ω
由对称性, 解 由对称性 所给积分
x2 y 2 z 2 1 1 1 1 ( 2 + 2 + 2 )dv = ( 2 + 2 + 2 ) ∫∫∫ ( x 2 + y 2 + z 2 )dxdydz ∫∫∫ a b c 3 a b c Ω Ω
π 1 1 1 1 1 2π 4 1 1 1 4 = ( 2 + 2 + 2 ) ∫ dθ ∫ dϕ ∫ r sin ϕ dr = ( 2 + 2 + 2 )π . 0 0 3 a b c 0 15 a b c
=∫
π 4 0
π
tan n−1 x tan n−2 x (tan 2 x + 1) dx = n −1
π 4 0
=
1 , n > 2. n −1
3. 由上 所证递减性及 中结论, 由上1所证递减性及 中结论, 所证递减性及2中结论
.
2an < an + an−2
同理有
1 1 ∴ an < . = , 2(n − 1) n −1
∞ x ∞ (− x) n (− x) n ∞ (− x ) n =− +∑ +∑ −∑ 2 2 (n − 2)! 2 n! 2 ( n + 1)!
∞ x (− x) n−2 ∞ (− x)n 1 ∞ (− x)n+1 = − + x2 ∑ +∑ + ∑ 2 n! x 2 (n + 1)! 2 ( n − 2)! 2 x 1 −x x2 2 −x −x = − + x e + (e − 1 + x ) + ( e − 1 + x − ) 2 x 2!
由问题的实际意义, 垂线长的乘积 f 确有最大值. 故当点 P 到三 由问题的实际意义 确有最大值 边的长度分别为
2S 2S 2S , , 三垂线长的乘积最大. 时, 三垂线长的乘积最大 3a 3b 3c
五、求
(−1) n n3 n ∑ (n + 1)! x 0
∞
的收敛区间及和函数. 的收敛区间及和中任意点 P 处的体密度 ρ =
P0 为定点 且到球心的距离 r0 > R. 求该物体的质量 求该物体的质量. 为定点,
1 , 其中 PP0
这是三重积分的物理应用. 以球心为原点建立空间坐标系, 解 这是三重积分的物理应用 以球心为原点建立空间坐标系 使 点 P0 位于 (0,0, r0 ) 处. 用球坐标系及余弦定理 球内任意点 P ( r ,ϕ ,θ ) 用球坐标系及余弦定理, 2 2 到 P0 的距离是 PP0 = r + r0 − 2rr0 cos ϕ . 故所求质量
π
π
4
,
由 0 < tan x < 1知: tan n x
π
, ∴ 0 < tan n+1 x < tan n x.
π
从而 0 < an+1 = ∫04 tan n+1 xdx < ∫04 tan n xdx = an , 即以 an = ∫04 tan n xdx 为 通项的数列单调递减有下界, 故所证数列收敛. 通项的数列单调递减有下界 故所证数列收敛 2.显然 an + an−2 = ∫04 (tan n x + tan n−2 x)dx 显然