专题2__时间序列模型
《时间序列模型识别》课件

外汇汇率预测
外汇汇率预测是时间序列模型的又一重要应用。通过分析历史外汇汇率数据,时 间序列模型可以预测未来的汇率走势,帮助投资者制定外汇交易策略。
常用的时间序列模型同样适用于外汇汇率预测,如ARIMA、SARIMA、VAR、 VARMA等。这些模型能够捕捉外汇汇率的动态变化规律,为投资者提供有价值 的参考信息。
总结词
气候变化趋势分析是全球气候治理的重要基 础,利用时间序列模型可以对气候变化趋势 进行定量评估,为政策制定提供科学依据。
详细述
通过长时间尺度的历史气候数据,建立时间 序列模型,并利用该模型分析气候变化的趋 势。分析结果可以为应对气候变化、制定减 排政策等提供决策支持。
06
时间序列模型在生产领域 的应用
解释性
选择易于解释的模型,有助于 理解时间序列数据的内在规律 。
计算效率
考虑模型的计算效率和可扩展 性,以便在实际应用中快速处
理大量数据。
03
时间序列模型性能评估
预测精度评估
01
均方误差(MSE)
衡量预测值与实际值之间的平均 差异,值越小表示预测精度越高 。
02
平均绝对误差( MAE)
计算预测值与实际值之间的绝对 差值的平均值,值越小表示预测 精度越高。
03
均方根误差( RMSE)
将预测误差的平方和开方,反映 预测值的离散程度,值越小表示 预测精度越高。
模型稳定性评估
模型参数稳定性
评估模型参数在多次运行或不同数据集上的稳定性, 以确保模型的可靠性。
模型结构稳定性
《时间序列模型 》课件

目录
Contents
• 时间序列模型概述 • 时间序列模型的基础 • 时间序列模型的建立 • 时间序列模型的预测 • 时间序列模型的应用 • 时间序列模型的未来发展
01 时间序列模型概述
时间序列的定义
01 时间序列是指按照时间顺序排列的一系列观测值 。
02 时间序列数据可以是数值型、分类型或混合型。 03 时间序列数据可以用于描述和预测时间变化的现
详细描述
通过分析历史经济数据的时间序列特性,时间序列模型能够预 测未来经济走势,为政策制定者和企业决策者提供重要参考。
举例说明
例如,利用ARIMA模型分析国内生产总值(GDP)的时间 序列数据,可以预测未来一段时间的GDP增长趋势。
股票预测
01
总结词
时间序列模型在股票市场中具有实际应用价值。
02 03
SARIMA、VAR等。
识别模型阶数
02
确定模型的参数,如自回归阶数、差分阶数和移动平均阶数。
考虑季节性和趋势性
03
如果时间序列数据存在季节性和趋势性,需要在模型中加以考
虑。
参数估计
01
使用最小二乘法或最大似然法等统计方法估计模型 的参数。
02
考虑使用软件包或编程语言进行计算,如Python的 statsmodels库或R语言的forecast包。
象。
时间序列的特点
时序性
时间序列数据是按照时间顺序排列的,具有 时间上的连续性。
趋势性
时间序列数据通常具有一定的趋势,如递增 、递减或周期性变化。
季节性
一些时间序列数据呈现季节性变化,如年度 、季度或月度的变化规律。
不确定性
时间序列数据受到多种因素的影响,具有不 确定性,难以精确预测。
《时间序列模型》课件

对异常值的敏感性
时间序列模型往往对异常值非常敏感,一个或几个异常值可能会对整个模型的预测结果产生重大影响 。
在处理异常值时,需要谨慎处理,有时可能需要剔除异常值或使用稳健的统计方法来减小它们对模型 的影响。
PART 06
指数平滑模型
总结词
利用指数函数对时间序列数据进行平滑处理,以消除随机波动。
详细描述
指数平滑模型是一种非参数的时间序列模型,它利用指数函数对时间序列数据进行平滑处理,以消除 随机波动的影响。该模型通常用于预测时间序列数据的未来值,特别是对于具有季节性和趋势性的数 据。
GARCH模型
要点一
总结词
用于描述和预测时间序列数据的波动性,特别适用于金融 市场数据的分析。
时间序列的构成要素
时间序列由时间点和对应的观测值组成,包括时间点和观测值两 个要素。
时间序列的表示方法
时间序列可以用表格、图形、函数等形式表示,其中函数表示法 最为常见。
时间序列的特点
动态性
时间序列数据随时间变化而变化,具有动态 性。
趋势性
时间序列数据往往呈现出一定的趋势,如递 增、递减或周期性变化等。
随机性
时间序列数据受到多种因素的影响,具有一 定的随机性。
周期性
一些时间序列数据呈现出明显的周期性特征 ,如季节性变化等。
时间序列的分类
根据数据性质分类
时间序列可分为定量数据和定性数据两类。定量数据包括 连续型和离散型,而定性数据则包括有序和无序类型。
根据时间序列趋势分类
时间序列可分为平稳和非平稳两类。平稳时间序列是指其统计特 性不随时间变化而变化,而非平稳时间序列则表现出明显的趋势
时间序列模型

时间序列模型时间序列模型是一种用于预测时间序列数据的统计模型。
这种模型可以帮助我们了解数据中的趋势、季节性和周期性,并基于这些信息做出未来的预测。
时间序列模型的核心思想是将过去的观察结果作为未来预测的基础。
通过对已有数据的分析和建模,我们可以确定模型的参数和时间序列的性质,从而进行准确的预测。
有许多不同的时间序列模型可以使用,其中最常用的是自回归移动平均模型(ARMA)和自回归集成移动平均模型(ARIMA)。
这些模型假设未来的数值是过去的线性组合,并通过对数据进行差分来观察数据的趋势。
另一个流行的时间序列模型是季节性自回归集成移动平均模型(SARIMA),它在ARIMA模型的基础上增加了季节性组分。
这种模型特别适用于季节性数据,可以更好地捕捉季节性的规律。
除了上述模型之外,还有各种其他的时间序列模型,例如指数平滑模型、灰度预测模型和波动性模型等。
这些模型在数据的不同方面和性质上有不同的适用性。
时间序列模型的应用非常广泛,可以用于经济预测、股票价格预测、天气预测等领域。
它可以帮助我们研究和理解时间序列数据中的规律,并根据过去的观测结果做出未来的预测。
然而,时间序列模型也存在一些不足之处。
首先,它假设未来的数值是过去的线性组合,而无法捕捉非线性的规律。
其次,时间序列模型在数据中存在异常值或离群值时表现不佳。
此外,时间序列模型无法处理缺失值,而且对于长期预测的准确性可能会受到影响。
综上所述,时间序列模型是一种重要的统计模型,可以用于预测时间序列数据。
它能够帮助我们了解数据中的趋势、季节性和周期性,并根据这些信息做出未来的预测。
然而,我们在使用时间序列模型时需要注意其假设和限制,并结合实际情况进行分析和解释。
时间序列模型是一种用于分析和预测时间序列数据的统计模型。
它可以帮助我们识别和理解数据中隐含的模式和趋势,并以此为基础进行未来的预测。
时间序列模型广泛应用于各个领域,如经济学、金融学、交通规划、气象预测等。
第2章 时间序列模型(讲稿)

第2章时间序列模型时间序列分析方法由Box-Jenkins (1976) 年提出。
它适用于各种领域的时间序列分析。
时间序列模型不同于经济计量模型的两个特点是:⑴这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。
⑵明确考虑时间序列的非平稳性。
如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。
研究的主要内容1.随机过程、时间序列定义2.时间序列模型的分类3.自相关函数与偏自相关函数4.建模步骤(识别、参数估计、诊断检验)5.案例分析2.1随机过程、时间序列(1)为什么在研究时间序列之前先要介绍随机过程?就是要把时间序列的研究提高到理论高度来认识。
时间序列不是无源之水。
它是由相应随机过程产生的。
只有从随机过程的高度认识了它的一般规律。
对时间序列的研究才会有指导意义。
对时间序列的认识才会更深刻。
(2)过程的类型自然界中事物变化的过程可以分成两类。
一类是确定型过程。
确定型过程即可以用关于时间t的函数描述的过程。
例如,真空中的自由落体运动过程,电容器通过电阻的放电过程,行星的运动过程等。
一类是非确定型过程。
非确定型过程即不能用一个(或几个)关于时间t的确定性函数描述的过程。
换句话说,对同一事物的变化过程独立、重复地进行多次观测而得到的结果是不相同的。
例如,对河流水位的测量。
其中每一时刻的水位值都是一个随机变量。
如果以一年的水位纪录作为实验结果,便得到一个水位关于时间的函数x t。
这个水位函数是预先不可确知的。
只有通过测量才能得到。
而在每年中同一时刻的水位纪录是不相同的。
(3)随机过程:由随机变量组成的一个有序序列称为随机过程,随机过程简记为{x t} 或x t。
随机过程也常简称为过程。
(4)随机过程一般分为两类。
连续型。
如果一个随机过程{x t}对任意的t∈T 都是一个连续型随机变量,则称此随机过程为连续型随机过程。
离散型。
如果一个随机过程{x t}对任意的t∈T 都是一个离散型随机变量,则称此随机过程为离散型随机过程。
时间序列模型概述

时间序列模型概述时间序列模型是一种用于预测时间序列数据的统计模型。
时间序列数据是一系列按照时间顺序排列的数据点。
例如,股票价格、气温、销售额都是时间序列数据。
时间序列模型能够分析数据中的趋势、周期性和季节性,提供对未来的预测。
时间序列模型的建立是基于以下几个假设:1. 时序依赖:时间序列数据中的每个数据点都依赖于之前的数据点。
这意味着前一时刻的数据对当前时刻的数据有影响。
2. 稳定性:时间序列数据的统计特性在时间上保持不变。
这意味着数据的平均值和方差不会随时间而变化。
3. 随机性:时间序列数据中的噪声是随机的,即不受任何规律的干扰。
为了建立时间序列模型,我们需要对数据进行预处理和分析。
首先,我们需要对数据进行平稳性检验,确保数据的均值和方差在时间上保持不变。
如果数据不稳定,我们可以采用一些技术,如差分操作,将其转化为稳定的形式。
接下来,我们需要对时间序列数据进行分解,找出其中的趋势、周期性和季节性。
常用的分解方法有加法分解和乘法分解。
加法分解将时间序列数据分解为趋势、季节性和误差项的和,乘法分解将时间序列数据分解为趋势、季节性和误差项的乘积。
在分解的基础上,我们可以选择适合的时间序列模型进行建模和预测。
常见的时间序列模型有:1. 自回归移动平均模型(ARMA):基于时间序列数据的自回归和移动平均过程。
ARMA模型适用于没有趋势和季节性的时间序列数据。
2. 自回归积分移动平均模型(ARIMA):在ARMA模型的基础上,增加了对时间序列数据的差分操作。
ARIMA模型适用于具有趋势但没有季节性的时间序列数据。
3. 季节性自回归积分移动平均模型(SARIMA):在ARIMA 模型的基础上,增加了对时间序列数据的季节性差分操作。
SARIMA模型适用于具有趋势和季节性的时间序列数据。
4. 季节性分解模型(STL):将时间序列数据进行分解,然后对趋势、季节性和残差进行建模。
STL模型适用于具有明显季节性的时间序列数据。
2-平稳时间序列模型

海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
4.2 ARMA(n,n-1)模型
X t 1 X t 1 n X t n 1at 1 n1at n1 at X t 1 X t 1 n X t n at 1at 1 n1at n1
X t j ( j 3,4,) 无关。
(2) at 是一个白噪声序列。 结构: AR(2)模型由三部分构成, 依赖于 X t 1的部分, 依赖于 X t 2 的部分,独立于前两部分的白噪声。AR(2) 模型可以等价地写成
at X t 1 X t 1 2 X t 2 。
2无关; , )
(2) at 为白噪声。
海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
一个关于产科医院的例子 设 at 是第 t 天新住院的病员人数, 假设 at 是白噪声序 列,即某一天住院人数与第二天住院人数无关。再假设 典型的情形是:10%的病人住院 1 天,50%的病人住院 2 天,30%的病人住院 3 天,10%的病人住院 4 天,那 么第四天住院的病人数 X t 将由下式给出
即通过把 X t 中依赖于 X t 1和 X t 2 的部分消除之后,使得 具有二阶动态性的序列转化为独立的序列。
海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
2.2 AR(n)模型
X t 1 X t 1 2 X t 2 n X t n at X t 1 X t 1 2 X t 2 n X t n at at X t 1 X t 1 2 X t 2 n X t n
X t at 0.9at 1 0.4at 2 0.1at 3 。
时间序列模型概述

时间序列模型概述时间序列模型是一种用于对时间序列数据进行建模和预测的统计模型。
时间序列数据是指按照时间顺序记录的一系列观测值,比如股票价格、气温、销售量等。
时间序列模型的目标是通过分析过去的观测值来预测未来的观测值。
这种模型通常基于以下两个假设:1. 时间序列的未来值是过去值的函数;2. 时间序列的未来值受到随机误差的影响。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。
ARMA模型是将时间序列的过去值和滞后误差作为解释变量,使用线性回归方法来预测未来值。
它是基于两个基本组件:自回归(AR)和移动平均(MA)。
AR部分建模了时间序列的过去值与当前值之间的关系,MA部分建模了观测误差的相关性。
ARIMA模型是在ARMA模型的基础上引入了差分操作,用于处理非平稳时间序列。
差分操作可以将非平稳时间序列转化为平稳时间序列,从而使得模型更可靠。
SARIMA模型是ARIMA模型的扩展,用于处理季节性时间序列。
它在ARIMA模型的基础上引入了季节差分,以及季节AR和MA项,以更好地拟合和预测季节性变化。
指数平滑模型是一类基于加权平均的模型,根据时间序列数据的特点赋予不同权重,进行预测。
常见的指数平滑模型包括简单指数平滑(SES)、双指数平滑和三指数平滑。
时间序列模型需要通过对历史数据的拟合来估计模型参数,并通过模型参数进行未来观测值的预测。
评估时间序列模型通常使用误差度量指标,比如均方误差(MSE)和平均绝对误差(MAE)。
时间序列模型在很多领域都有广泛的应用,比如经济学、金融学、气象学、销售预测等。
它可以帮助我们理解时间序列数据的动态特征,提供未来预测和决策支持。
然而,在实际应用中,时间序列模型也面临一些挑战,比如数据缺失、异常值和非线性关系等。
因此,选择适合的时间序列模型需要综合考虑数据的特性和模型的假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p是p阶自回归模型的系数, t是相应的扰动项,
并且是均值为0,方差为常数的白噪声序列,它是因变
量真实值和以解释变量及以前预测误差为基础的预测值 之差。 下面将讨论如何利用AR(p) 模型修正扰动项的序列 相关,以及用什么方法来估计消除扰动项后方程的未知
参数。
27
1.修正一阶序列相关
最简单且最常用的序列相关模型是一阶自回归AR(1)
关,p为预先定义好的整数;备选假设是:存在p阶
自相关。检验统计量由如下辅助回归计算。
17
1)估计回归方程,并求出残差et
ˆ ˆ ˆ ˆ et yt 0 1 x1t 2 x2t k xkt (2.1.8)
2) 检验统计量可以基于如下回归得到
et X t 1et 1 p et p vt
6
的解释变量,资本对产出的影响就被归入随机误差项。
EViews提供了以下几种检测序列相关的方法。 1.D.W.统计量检验 Durbin-Watson 统计量(简称D.W.统计量)用于 检验一阶序列相关,还可估算回归模型邻近残差的线 性联系。对于扰动项ut建立一阶自回归方程:
ut ut 1 t
(2.1.6)
D.W.统计量检验的原假设: = 0,备选假设是 0。
7
D.W .
(ut ut 1 ) 2 ˆ ˆ
t 2
T
ut2 ˆ
t 1
T
ˆ 2(1 )
如果序列不相关,D.W.值在2附近。 如果存在正序列相关,D.W.值将小于2。 如果存在负序列相关,D.W.值将在2~4之间。
20
此检验拒绝 直至2阶的无序 列相关的假设。 Q-统计和LM检 验都表明:残差
是序列相关的,
因此方程在被用 于假设检验和预 测之前应该重新 定义。 数据
21
例2.3: 关于残差序列相关的LM检验(2)
考虑美国的一个投资方程。美国的GNP和国内私人 总投资INV是单位为10亿美元的名义值,价格指数P为 GNP的平减指数(1972=100),利息率R为半年期商业票
产生如下情况:
14
15
虚线之间的区域是自相关中正负两倍于估计 标准差所夹成的。如果自相关值在这个区域内, 则在显著水平为5%的情形下与零没有显著区别。 本例1~3阶的自相关系数都超出了虚线,说 明存在3阶序列相关。各阶滞后的Q-统计量的P 值都小于5%,说明在5%的显著性水平下,拒
绝原假设,残差序列存在序列相关。
据利息。回归方程所采用的变量都是实际GNP和实际投
资;它们是通过将名义变量除以价格指数得到的,分别用 小写字母gnp,inv表示。实际利息率的近似值r则是通过 贴现率R减去价格指数变化率p得到的。样本区间:1963 年~1984年,应用最小二乘法得到的估计方程如下:
数据
22
ˆ ln( inv t ) 0.016rt 1 0.734 ln( gnpt ) ut
项ut 关于任何一条古典回归假设的违背,都将导致回归方
程的估计结果不再具有上述的良好性质。因此,必须建立 相关的理论,解决扰动项不满足古典回归假设所带来的模 型估计问题。
2
§2.1.1
序列相关及其产生的后果
对于线性回归模型
yt 0 1 x1t 2 x2t k xkt ut
18
在给定的显著性水平下,如果这两个统计量小于设
定显著性水平下的临界值,说明序列在设定的显著性水 平下不存在序列相关;反之,如果这两个统计量大于设 定显著性水平下的临界值,则说明序列存在序列相关性。
在软件中的操作方法:
选择View/Residual Tests/Serial correlation LM Test, 一般地对高阶的,含有ARMA误差项的情况执行BreushGodfrey LM。在滞后定义对话框,输入要检验序列的最 高阶数。
有效。
3.仅仅检验是否存在一阶序列相关。
其他两种检验序列相关方法:Q-统计量和Breush-
Godfrey LM检验克服了上述不足,应用于大多数场合。
9
2 . 相关图和Q -统计量
我们还可以应用所估计回归方程残差序列的自
相关和偏自相关系数式,以及Ljung-Box Q - 统计
量来检验序列相关。Q - 统计量的表达式为:
独立的,而是存在某种相关性,则认为出现了序列相关 性(serial correlation)。由于通常假设随机扰动项都服 从均值为0,同方差的正态分布,则序列相关性也可以 表示为:
E (ut , ut s ) 0
特别的,如果仅存在
s 0 , t 1 , 2 , , T
(2.1.4)
E (ut , ut 1 ) 0
(2.1.9)
这是对原始回归因子Xt 和直到p阶的滞后残差的回归。 LM检验通常给出两个统计量:F统计量和T×R2统计量。
F统计量是对式(2.1.9)所有滞后残差联合显著性的一
种检验。T×R2统计量是LM检验统计量,是观测值个数 T乘以回归方程(2.1.9)的R2。一般情况下,T×R2统计
2 量服从渐进的 ( p)分布。
检验中,通常会计算出不同滞后阶数的Q - 统计量、
自相关系数和偏自相关系数。如果,各阶Q - 统计 量都没有超过由设定的显著性水平决定的临界值, 则接受原假设,即不存在序列相关,并且此时,各 阶的自相关和偏自相关系数都接近于0。
11
反之,如果,在某一滞后阶数p,Q - 统计量超过设 定的显著性水平的临界值,则拒绝原假设,说明残差序 列存在p阶自相关。由于Q-统计量的P值要根据自由度p来 估算,因此,一个较大的样本容量是保证Q- 统计量有效 的重要因素。
ut 1 ut 1 2 ut 2 p ut p t
(2.1.11)
26
其中:ut 是无条件误差项,它是回归方程(2.1.10)的 误差项,参数0,1,
2,
,
k是回归模型的系数。式
2 ,
(2.1.11)是误差项ut的 p阶自回归模型,参数 1,
在EViews软件中的操作方法:
在方程工具栏选择View/Residual Tests/correlogramQ-statistics 。EViews将显示残差的自相关和偏自相关函 数以及对应于高阶序列相关的Ljung-Box Q统计量。如果 残差不存在序列相关,在各阶滞后的自相关和偏自相关
值都接近于零。所有的Q-统计量不显著,并且有大的P值。
25
§2.1.3 扰动项存在序列相关的
线性回归方程的估计与修正
线性回归模型扰动项序列相关的存在,会导致模型 估计结果的失真。因此,必须对扰动项序列的结构给予 正确的描述,以期消除序列相关对模型估计结果带来的 不利影响。 通常可以用AR(p) 模型来描述一个平稳序列的自相
关的结构,定义如下:
yt 0 1 x1t 2 x2t k xkt ut (2.1.10)
19
例2.2: 关于残差序列相关的LM检验(1)
上一例子中相关图在滞后值3时出现峰值。Q统计
量在各阶滞后值中都具有显著性,它显示的是残差中 的显著序列相关。 进行序列相关的LM检验,选择View/Residual Tests/Serial Correlation LM Test,输入p =2产生如下 结果:
t 1 , 2 , , T
(2.1.5)
称为一阶序列相关,这是一种最为常见的序列相关问题。
4
如果回归方程的扰动项存在序列相关,那么应用 最小二乘法得到的参数估计量的方差将被高估或者低 可以将序列相关可能引起的后果归纳为:
估。因此,检验参数显著性水平的t统计量将不再可信。
① 在线性估计中OLS估计量不再是有效的;
专题2 时间序列模型
关于标准回归技术及其预测和检验我们已经在
以前的学习中讨论过了,本章着重于时间序列模型
的估计和定义,这些分析均是基于单方程回归方法,
在后面我们还会讨论时间序列的向量自回归模型。
这一部分属于动态计量经济学的范畴。通常是 运用时间序列的过去值、当期值及滞后扰动项的加 权和建立模型,来“解释”时间序列的变化规律。
从残差图2.1可以看到残差序列的变化有相似的波动。所
以,再采取上面介绍的其他检验序列相关的方法检验残差序 列的自相关性。
24
下面采用 LM 统计量进行检验(p=2),得到结果如下:
LM统计量显示,在5%的显著性水平拒绝原假设,回归
方程的残差序列存在序列相关性。因此,回归方程的估计结
果不再有效,必须采取相应的方式修正残差的自相关性。当 然,对于这个例子,我们也可以用Q-统计量进行检验,而且 效果更为直观,更有利于实际建模,但是这涉及到序列自相 关和偏自相关系数的理论。
12
例2.1:利用相关图检验残差序列的相关性
下面是这些检验程序应用的例子,考虑用普通最小二乘估计 的简单消费函数的结果:
数据
13
浏览这些结果:系数在统计上是很显著的,并 且拟合得很好。但是,如果误差项是序列相关的,
那么估计OLS标准误差将是无效的,并且估计系数
由于在方程右端有滞后因变量会发生偏倚和不一致。 在这种情况下D-W统计量作为序列相关的检验是不 合适的,因为在方程右端存在着一个滞后因变量。 选择View/Residual test/Correlogram-Q-statistice会
16
3 . 序列相关LM检验
与D.W.统计量仅检验扰动项是否存在一阶自相 关不同,Breush-Godfrey LM检验(Lagrange multiplier,即拉格朗日乘数检验)也可应用于检验 回归方程的残差序列是否存在高阶自相关,而且在 方程中存在滞后因变量的情况下,LM检验仍然有 效。