matlab微积分基本运算
MATLAB课件第九篇微积分基础

第九章微积分基础1函数的极限(符号解法)一元函数求极限函数 limit格式 limit(F,x,a) %计算符号表达式F=F(x) 当x→a时的极限值。
limit(F,a) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→a时的极限值。
limit(F) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→0时的极限值。
limit(F,x,a,'right')或limit(F,x,a,'left') %计算符号函数F的单侧极限:左极限x →a- 或右极限x→a+。
【例1】>>syms x a t h n;>>L1 = limit((cos(x)-1)/x)>>L2 = limit(1/x^2,x,0,'right')>>L3 = limit(1/x,x,0,'left')>>L4 = limit((log(x+h)-log(x))/h,h,0)>>v = [(1+a/x)^x, exp(-x)];>>L5 = limit(v,x,inf,'left')>>L6 = limit((1+2/n)^(3*n),n,inf)计算结果为:L1 =L2 =infL3 =-infL4 =1/xL5 = [ exp(a), 0] L6 = exp(6)注:在求解之前,应该先声明自变量x,再概念极限表达式fun,假设0x 为∞,那么能够用inf 直接表示。
若是需要求解左右极限问题,还需要给出左右选项。
【例2】 试别离求出tan 函数关于pi/2点处的左右极限。
>> syms t;f=tan(t);L1=limit(f,t,pi/2,'left'), L2=limit(f,t,pi/2,'right') L1 = Inf L2 = -Inf【例3】求以下极限1)312lim20+-→x x x 2)x x x t 3)21(lim +∞→解:编程如下:>>syms x t ;L1 = limit((2*x-1)/(x^2+3)) >>L2 = limit((1+2*t/x)^(3*x),x,inf)回车后可得: L1 = -1/3 L2 = exp(6*t) 多元函数求极限求多元函数的极限能够嵌套利用limit()函数,其挪用格式为:limit(limit(f,x,x0),y,y0)或limit(limit(f,y,y0),x,x0)【例4】求极限:x xy y x )sin(lim 30→→>> syms x y;f=sin(x*y)/x;limit(limit(f,x,0),y,3)ans = 3注:若是x0或y0不是确信的值,而是另一个变量的函数,如)(y g x →,那么上述的极限求取顺序不能互换。
matlab数值微积分

人工智能与机器学习
结合人工智能和机器学习技术,自动选择合适的 数值微积分算法,实现自适应计算。
ABCD
并行计算
利用多核处理器和分布式计算资源,实现数值微 积分的并行计算,加速大规模问题的求解。
云平台集成
将Matlab数值微积分与云平台集成,实现数据 共享、远程计算和动态资源调度。
未来展望
01
更广泛的应用领域
工程领域
Matlab广泛应用于数学、物理、化学、生 物等领域的数值计算和数据分析。
Matlab在机械、电子、控制、航空航天等 工程领域有广泛应用,支持各种工程设计 和仿真。
金融领域
图像处理和计算机视觉
Matlab在金融领域主要用于数据分析、统 计建模、风险评估等方面。
Matlab提供了图像处理工具箱和计算机视 觉工具箱,广泛应用于图像处理和计算机 视觉领域。
quad: 这是一个用于数值积分 的函数,可以计算一维函数的 定积分。与integral函数不同 的是,它使用自适应Simpson 方法进行积分。例如,对于函 数f(x),可以使用以下代码计 算定积分
数值积分函数
```matlab
result = quad(@(x) f(x), a, b);
数值积分函数
互操作性和兼容性。
THANKS
感谢观看
将连续的问题离散化,用 有限个点来近似表示连续 的函数。
逼近
通过选取适当的离散点, 使用数学方法逼近真实的 函数值。
迭代
通过不断迭代逼近真实值, 提高计算的精度。
数值微积分的计算方法
差分法
01
通过差分代替导数,将微分问题转化为差分问题,进而求解。
辛普森法则
02
利用区间中点的函数值和区间端点的函数值来近似计算定积分。
matlab解微积分方程

matlab解微积分方程Matlab是一种功能强大的数值计算软件,可以用于解决各种数学问题,包括微积分方程。
微积分方程是描述自然界中许多现象的数学模型,它们在物理、化学、生物等领域有着广泛的应用。
本文将介绍如何使用Matlab解微积分方程。
我们需要明确什么是微积分方程。
微积分方程是包含未知函数及其导数的方程,通常可以写成形如y''(x) + p(x)y'(x) + q(x)y(x) = f(x)的形式。
其中y(x)是未知函数,p(x)、q(x)和f(x)是已知函数。
解微积分方程的过程可以分为两步:建立方程和求解方程。
建立方程是将实际问题转化为数学模型,而求解方程则是找到满足方程的函数。
在Matlab中,可以使用dsolve函数来求解微积分方程。
dsolve 函数可以根据方程的类型自动选择合适的求解方法,并给出满足方程的函数表达式。
例如,对于一阶线性微分方程dy/dx + p(x)y = q(x),可以使用以下代码求解:syms x y(x)p = input('请输入p(x)的表达式:'); % 输入p(x)的表达式q = input('请输入q(x)的表达式:'); % 输入q(x)的表达式eqn = diff(y,x) + p*y - q == 0; % 建立微分方程sol = dsolve(eqn); % 求解微分方程disp('方程的解为:');disp(sol);在以上代码中,首先使用syms命令定义符号变量x和y(x),然后使用input命令分别输入p(x)和q(x)的表达式。
接下来,使用diff 命令计算y'(x),然后将其代入微分方程中得到eqn。
最后,使用dsolve命令求解方程,并将结果存储在sol中,最后将结果打印出来。
对于更高阶的微积分方程,可以使用符号变量来表示未知函数及其导数的各阶,并按照相应的形式建立方程。
第三章-matlab求解微积分

第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’left') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
利用matlab进行微积分的计算

Matlab的微积分符号运算都可以对数组进行。
函数的积分 积分符号运算的基本语句 int(F); %求函数表达式F的不定积分 int(F,v); %求函数表达式F关于变量v的不定积分 int(F,a,b); %求函数表达式F在区间[a,b]上的定积分 int(F,v,a,b); %求函数表达式F在区间[a,b]上的关于变量v的 定积分
elapsed time is 17.471170 seconds. s=
53362913282294785045591045624042980409652472280384260097101349248456268889497101757 50609790198503569140908873155046809837844217211788500946430234432656602250210027842 563285208140554494121044251014267277029477471270891796396777961045322469242686646888 828158207198489710511079687324931915552939701750893156451997608573447301418328401172 44122806490743077037366831700558002936592350885893602352858528081607595747378366554 13175508131522517/712886527466509305316638415571427292066835886188589304045200199115 432408758111149947644415191387158691171781701957525651298026406762100925146587100430 513107268626814320019660997486274593718834370501543445252373974529896314567498212823 69562328237940110688092623177088619795407912477545580493264757378299233527517967352 48042463638051137034331214781746850878453485678021888075373249921995672056932029099 390891687487672697950931603520000
如何用matlab计算定积分

用matlab 计算积分4.1积分的有关理论定积分:积分是微分的无限和,函数)(x f 在区间],[b a 上的积分定义为∑∫=→∆∆==ni iix baxf dx x f I i 1)max()(lim)(ξ其中.,,2,1),,(,,1110n i x x x x x b x x x a i i i i i i n =∈−=∆=<<<=−−ξ从几何意义上说,对于],[b a 上非负函数)(x f ,记分值I 是曲线)(x f y =与直线b x a x ==,及x 轴所围的曲边梯形的面积。
有界连续(或几何处处连续)函数的积分总是存在的。
微积分基本定理(Newton-Leibniz 公式):)(x f 在],[b a 上连续,且],[),()('b a x x f x F ∈=,则有)()()(a F b F dx x f ba−=∫这个公式表明导数与积分是一对互逆运算,它也提供了求积分的解析方法:为了求)(x f 的定积分,需要找到一个函数)(x F ,使)(x F 的导数正好是)(x f ,我们称)(x F 是)(x f 的原函数或不定积分。
不定积分的求法有学多数学技巧,常用的有换元积分和分部积分法。
从理论上讲,可积函数的原函数总是存在的,但很多被积函数的原函数不能用初等函数表示,也就是说这些积分不能用解析方法求解,需用数值积分法解决。
在应用问题中,常常是利用微分进行分析,而问题最终归结为微分的和(即积分)。
一些更复杂的问题是含微分的方程,不能直接积分求解。
多元函数的积分称为多重积分。
二重积分的定义为∑∑∫∫∆∆=→∆+∆ijji jiy x Gy x f dxdy y x f i i ),(lim),(0)max(22ηξ当),(y x f 非负时,积分值表示曲顶柱体的体积。
二重积分的计算主要是转换为两次单积分来解决,无论是解析方法还是数值方法,如何实现这种转换,是解决问题的关键。
MATLAB的微积分基本运算

MATLAB的微积分基本运算第六章 MATLAB 的微积分基本运算学习⽬标:1、熟悉符号对象和表达式的创建;2、熟悉计算结果的类型与精度控制和转换3、掌握MATLAB 中符号微积分运算:极限、导数、积分的命令及格式。
第⼀节极限⼀、极限概念演⽰:数列极限是指当n ⽆限增⼤时,n u 与某常数⽆限接近或n u 趋向于某⼀定值,就图形⽽⾔,其点列以某⼀平⾏y 轴的直线为渐近线。
函数极限也是如此。
例1:观察数列?+1n n ,当∞→n 时的变化趋势。
输⼊程序:>> n=1:100;xn=n./(n+1); >> for i=1:100;plot(n(i),xn(i),'r') % plot 是⼆维图形作图命令。
hold onend % for ……..end 语句是循环语句,循环体内的语句被执⾏100次由图可看出,随n 的增⼤,点列与直线y=1⽆限接近,所以11lim=+∞→n nn 例2:观察函数 xx f 1sin)(=,当0→x 时的变化趋势。
输⼊程序:>> x=-1:0.01:1;y=sin(1./x);plot(x,y)从图可看到,当0→x 时,x1sin 在-1和1之间⽆限次振荡,极限不存在。
例3:观察函数 xxx f )11()(+=,当∞→x 时的变化趋势输⼊程序:>> x=-1:10:1000;y=(1+1./x).^x;plot(x,y)从图可看到,当∞→x 时,函数值与某常数⽆限接近,这个常数就是e 。
⼆、极限计算:如果符号表达式F中只有⼀个变量x,x可以省略,当a=0时0也可以省略。
例:阅读理解下列程序>> syms x n>> limit(x^2*exp(x))ans =>> limit(exp(-1/x),x,0,'left')ans =inf>> limit((1+2/n)^(3*n),n,inf)ans =exp(6)三、符号对象与表达式的建⽴微积分运算的对象为函数,MATLAB称为符号表达式, MATLAB进⾏微积分运算⾸先要建⽴符号表达式,然后才可以利⽤MATLAB符号数学⼯具箱提供的函数进⾏运算。
用matlab计算微积分

是int,其调用格式为: int(f,x) int函数求函数f对变量x的不定积分。
例4 求不定积分
x x dx
2 4
解: 原 式 x 1 x 2 dx
1 1 x 2 d (1 x 2 ) 2
3 1 2 . .(1 x 2 ) 2 2 3 3 1 (1 x 2 ) 2 c 3
在MATLAB中,求定积分的函数是int,
例 6 求积分
1 0
1
2
3 2x x 1
dx, dx,
3 2x x
2
syms x; int(1/(3+2*x+x^2),x,0,1) int(1/(3+2*x+x^2),x,-inf,inf)
2x 1 例7求定积分 cost (2 x 2 3 x 1)2 dx
因式分解
因式分解
factor(f)
syms x; f=x^6+1; factor(f)
factor 也可用于正整数的分解
s=factor(100) factor(sym('12345678901234567890'))
大整数的分解要转化成符号常量
函数展开
函数展开
expand(f)
多项式展开
>> syms x; f=(x+1)^6; >> expand(f)
三角函数展开
>> syms x y; f=sin(x+y); >> expand(f)
合并同类项
合并同类项
collect(f,v): 按指定变量 v 进行合并 collect(f): 按默认变量进行合并
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
(3) MATLAB 解欠定方程AX=B 的方法欠定方程从理论上说是有无穷多个解的,如果利用求“伪逆”法和“左除”法来求解,只能得到其中一个解。
基本方法:1)采用求伪逆运算解方程x=pinv(A)*B2)采用左除运算解方程x=A\B例3 求方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x的一个特解解:在Matlab 编辑器中建立M 文件:fanex2.mA=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8];B=[1 4 0]';X=A\BX =-0.53330.6000(4) MATLAB 求线性齐次方程组的通解在Matlab 中,函数null 用来求解零空间,即满足AX=0的解空间,实际上是求出解空间的一组基(基础解系)。
基本格式:1)格式:z = null(A)说明: z 的列向量为方程组的正交规范基,满足I Z Z =⨯'2)格式:z = null(A ,’r ’)说明: z 的列向量是方程AX=0的有理基.例4 求解方程组的通解:⎪⎩⎪⎨⎧=---=--+=+++0340222022432143214321x x x x x x x x x x x x解:在Matlab 编辑器中建立M 文件:fanexmA=[1 2 2 1;2 1 -2 -2;1 -1 -4 -3];format rat %指定有理式格式输出B=null(A,'r') %求解空间的有理基运行后显示结果如下:B =2 5/3-2 -4/31 00 1写出通解:syms k1 k2X=k1*B(:,1)+k2*B(:,2) %写出方程组的通解pretty(X) %让通解表达式更加精美运行后结果如下:X =[ 2*k1+5/3*k2][ -2*k1-4/3*k2][ k1][ k2]% 下面是其简化形式[2k1 + 5/3k2 ][ ][-2k1 - 4/3k2][ ][ k1 ][ ][ k2 ](4)MATLAB 求非齐次线性方程组的通解非齐次线性方程组需要先判断方程组是否有解,若有解,再去求通解。
因此,步骤为:第一步:判断AX=b 是否有解,若有解则进行第二步第二步:求AX=b 的一个特解第三步:求AX=0的通解第四步:AX=b 的通解= AX=0的通解+AX=b 的一个特解。
例5 求解方程组⎪⎩⎪⎨⎧=-++=-+-=-+-32222353132432143214321x x x x x x x x x x x x解:在Matlab 编辑器中建立M 文件:fanex5.mA=[1 -2 3 -1;3 -1 5 -3;2 1 2 -2];b=[1 2 3]';B=[A b];n=4;R_A=rank(A)R_B=rank(B)format ratif R_A==R_B&R_A==n %判断有唯一解X=A\belseif R_A==R_B&R_A<n %判断有无穷解X=A\b %求特解C=null(A,'r') %求AX=0的基础解系else X='equition no solve' %判断无解end运行后结果显示:R_A =2R_B =3X =equition no solve说明该方程组无解例6 求解方程组的通解:⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x解法一:在Matlab 编辑器中建立M 文件:fanex6.mA=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8];b=[1 4 0]';B=[A b];n=4;R_A=rank(A)R_B=rank(B)format ratif R_A==R_B&R_A==nX=A\belseif R_A==R_B&R_A<nX=A\bC=null(A,'r')else X='Equation has no solves'end运行后结果显示为:R_A =2R_B =2X =-8/153/5C =3/2 -3/43/2 7/41 00 1所以原方程组的通解为X=k 1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛012/32/3+k 2⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-5/315/800 解法二:在Matlab 编辑器中建立M 文件:LX07212.mA=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8];b=[1 4 0]';B=[A b];C=rref(B) %求增广矩阵的行最简形,可得最简同解方程组。
运行后结果显示为:C =1 0 -3/2 3/4 5/40 1 -3/2 -7/4 -1/40 0 0 0 0对应齐次方程组的基础解系为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=012/32/31ξ, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=104/74/32ξ 非齐次方程组的特解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=004/14/5*η 所以,原方程组的通解为:X=k 11ξ+k 22ξ+*η2.代数方程组求解在MMlab 中解方程组的命令有linsolve 和solve ,其中命令linsolve 专门用于求解线性方程组,而命令solve 可适用于所有的代数方程(组)。
下面分别加以介绍。
(1) 求解线性方程组linsolvelinsolve 命令对解形如AX=B 的线性方程组运用自如。
但在对矩阵A 的运算中有如下限制:A 必须至少是行满秩的。
Linsolve 具体使用格式为:X=linsolve(A,B)功能:得到线性方程组AX=B 的特解X 。
例7 求线性方程组⎪⎩⎪⎨⎧=+-=++=+-20141861234834483321321321x x x x x x x x x AX=b 的解。
命令如下:>>A=[3,-8,4;3,48,3;6,-18,14];>>b=[4;12;20];>>X=linsolve(A,b) %调用linsolve 函数求特解运行后结果显示为:X =[ -156/167][ 30/167][ 344/167]>>A\b %用另一种方法求特解运行后结果显示为:ans =-0.93410.17962.0599例8 求解方程组的特解:⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x命令如下:>>A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8];>>b=[1 4 0]';>>X=linsolve(A,b)运行后结果显示为:Warning: System is rank deficient. Solution is not unique.> In E:\MATLAB6p5\toolbox\symbolic\@sym\mldivide.m at line 38In E:\MATLAB6p5\toolbox\symbolic\linsolve.m at line 8X =[ 5/4][ -1/4][ 0][ 0](2) 一般符号表达式表示的代数方程求解在MATLAB 中,求解用符号表达式表示的代数方程可由函数solve 实现,其调用格式为:1) 格式:x=solve(S)功能:求解符号表达式S 的代数方程,求解变量为默认变量v=findsym(S),将结果赋给x 。
其中S 为包含方程(一个)等式的字符串(可以是函数名,或者是描述方程的字符串,关于方程组的输入在前面章节中有讨论);2) 格式:x=solve(S,v)功能:求解符号表达式S 的代数方程,求解变量为v, 将结果赋给x 。
3) 格式:[x1,x2, …,xn]=solve(S1,S 2,…,Sn)功能:求解符号表达式S1, S 2,…, Sn 组成的代数方程组,对n 个默认变量求解,将结果赋给[x1,x2, …,xn]。