固体物理王矜奉思考题
《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构

a1 ⋅ n = h1d , a2 ⋅ nh2 d , a3 ⋅ n = h3d ,
假定 h1 , h2 , h3 不是互质的数,则有公约数 p,且 p>1;设 k1 , k2 , k3 为互质的三个数,满足
h1 h2 h3 = = =p k1 k2 k3
则有
a1 ⋅ n = k1 pd , a2 ⋅ nk2 pd , a3 ⋅ n = k3 pd ,
a2 a3 a1
(1)按基矢 a1 , a2 , a3 在空间作重复平移,就可得到它的布喇菲格子,因为此晶体是简单格子,因此 晶体中原子位置可以认为与格点重合。由右图可见,它是体心立方布喇菲格子,属于立方晶系。
−27 3 (2)原胞体积 Ω = a1 • a2 × a3 = 3i • ⎡3 j ×1.5 i + j + k ⎤ = 13.5 × 10 m
3 (i − j + k ) 2 3 (i + j − k ) 2
a3 = a + b − c =
a1 , a2 , a3 对应体心立方结构. a1 , a2 , a3 满足选作基矢的充分条件.可见基矢为, a1 = 3i , a 2 = 3j , a 3 = 1.5(i + j + k ) ,的晶体为体心立方结构.
( 3 )在面心立方的结晶学原胞中,设原子半径为 R ,则原胞的晶体学常数
a = 2 2 R ,则面心立方的致密度为:
4 4 4 ⋅ πR 3 2 ⋅ πR 3 3 α = 33 = = a (2 2 R) 3 2π 6
(4)在六角密积的结晶学原胞中,设原子半径为 R ,则原胞的 晶体学常数 a = 2 R , c = ( 2 6 / 3) a = (4 6 / 3) R ,则六角密积的致 密度为:
固体物理的思考题

1.解理面是面指数低的晶面还是面指数高的晶面,为什么?答:解理面是指面与面之间的相互作用力比较弱,容易解离的面,若面间距比较大,则容易形成解理,晶面指数越大,面间距越小,晶面指数越小,面间距越大,所以是面指数低的晶面容易解离。
2.高指数的晶面族与低指数的晶面族相比,对于同级衍射,那一晶面族衍射光弱?为什么?答:由布拉格衍射公式,其中θ为入射x射线的掠射角,高指数的晶面族晶面间距d比较小,对于同级衍射,d越大,则越小,光的透射能力就越弱,此时形成的衍射光就比较弱。
也可以从另一方面考虑,晶面指数越大,晶面间距越小,原子密度也越小,此时对入射光的反射作用就比较弱,所以高指数晶面组的衍射光弱。
3.对于x射线衍射,可否将入射光改为可见光?答:不可以,主要由于原子的间距在Å的数量级,根据布拉格衍射公式,可知入射光波的波长也应在Å的数量级,然而可见光的波长一般为几百nm所以不可以改为可见光入射,常用的入射光一般为Cu的线1.54Å。
4.在一般的单式格子中是否存在强烈的红外吸收,为什么?答:在离子晶体中的长光学支格波有特别重要的作用,因为不同离子间的相对振动产生电偶极矩,从而可以和电磁波相互作用,长光学波与红外光波的共振,引起对入射波的强烈吸收,但是对于单式格子(简单晶格)而言,由于是只包含单个原子,并不存在光学支格波,所以不会引起对红外光波的强烈吸收。
5.色散曲线中,能否判断哪知格波的模式密度比较大,是光学支格波还是声学支格波?答:在色散曲线中,光学支格波的色散曲线比较平缓,而声学支的色散曲线比较陡峭,模式密度表示在频率ω附近单位频率间隔的格波数,由于光学支格波色散曲线变化平缓,对应小的ω区间就具有了较大的波矢q的变化,所以光学支格波的模式密度比较大。
6.拉曼散射中光子会不会产生倒逆散射?答:拉曼散射是长光学波声子与光子(红外光)的相互作用,长光学波声子的波矢很小,响应的动量小,产生倒逆散射的条件要求波长小,波矢大,散射角大,拉曼散射不满足条件所以不会产生倒逆散射。
固体物理的思考题

1.解理面是面指数低的晶面还是面指数高的晶面,为什么?答:解理面是指面与面之间的相互作用力比较弱,容易解离的面,若面间距比较大,则容易形成解理,晶面指数越大,面间距越小,晶面指数越小,面间距越大,所以是面指数低的晶面容易解离。
2.高指数的晶面族与低指数的晶面族相比,对于同级衍射,那一晶面族衍射光弱?为什么?答:由布拉格衍射公式,其中θ为入射x射线的掠射角,高指数的晶面族晶面间距d比较小,对于同级衍射,d越大,则越小,光的透射能力就越弱,此时形成的衍射光就比较弱。
也可以从另一方面考虑,晶面指数越大,晶面间距越小,原子密度也越小,此时对入射光的反射作用就比较弱,所以高指数晶面组的衍射光弱。
3.对于x射线衍射,可否将入射光改为可见光?答:不可以,主要由于原子的间距在Å的数量级,根据布拉格衍射公式,可知入射光波的波长也应在Å的数量级,然而可见光的波长一般为几百nm所以不可以改为可见光入射,常用的入射光一般为Cu的线1.54Å。
4.在一般的单式格子中是否存在强烈的红外吸收,为什么?答:在离子晶体中的长光学支格波有特别重要的作用,因为不同离子间的相对振动产生电偶极矩,从而可以和电磁波相互作用,长光学波与红外光波的共振,引起对入射波的强烈吸收,但是对于单式格子(简单晶格)而言,由于是只包含单个原子,并不存在光学支格波,所以不会引起对红外光波的强烈吸收。
5.色散曲线中,能否判断哪知格波的模式密度比较大,是光学支格波还是声学支格波?答:在色散曲线中,光学支格波的色散曲线比较平缓,而声学支的色散曲线比较陡峭,模式密度表示在频率ω附近单位频率间隔的格波数,由于光学支格波色散曲线变化平缓,对应小的ω区间就具有了较大的波矢q的变化,所以光学支格波的模式密度比较大。
6.拉曼散射中光子会不会产生倒逆散射?答:拉曼散射是长光学波声子与光子(红外光)的相互作用,长光学波声子的波矢很小,响应的动量小,产生倒逆散射的条件要求波长小,波矢大,散射角大,拉曼散射不满足条件所以不会产生倒逆散射。
《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

由上式知,存在两种独立的格波,声学格波的色散关系为
2 ωA =
⎧ β1 + β 2 ⎪ m
光学格波的色散关系为
2 ωA =
β1 + β 2 ⎧ ⎪
m
3.3 设有一纵波 xn (t ) = A cos (ωt − naq ) ,沿一维单原子链传播,原子间距为 a,最近邻互作用的恢 复力系数为β,试证明:每个原子对时间平均的总能量
A 2β cos qa / m = =0 B 2β / m − 2β / M
由此可知,声学支格波中所有轻原子 m 静止。 而在光学支中,重原子 M 与轻原子 m 的振幅之比为
B 2β cos qa / M = =0 A 2β / M − 2β / m
由此可知,光学支格波中所有重原子 M 静止。 此时原子振动的图像如下图 3.6 所示:
1
第三章
晶体振动和晶体的热学性质
(a)
轻原子 重原子
(b)
图 3.6 (a)声学支格波原子振动图; (b)光学支格波原子振动图
3.2 一维复式格子,原子质量都为 m,原子统一编号,任一原子与两最近邻的间距不同,恢复力常数 不同,分别为 β 1 和 β 2 ,晶格常数为 a,求原子的运动方程和色散关系。 解: (王矜奉 3.2.2)
将(2)式代入(1)式可得出
…………………(2)
2β ⎧ 2β 2 ⎪ ( m − ω ) A − ( m cos qa) B = 0 ⎨ 2β 2β ⎪− ( cos qa) A + ( − ω 2 )B = 0 M ⎩ M
…………………(3)
从 A 、 B 有非零解,方程组(3)的系数行列式等于零的条件出发,可得
利用
1 1 T 2 1 T 1 − cos ( 2ωt − 2ϕ ) sin (ωt − ϕ ) dt = ∫ dt = ∫ T 0 T 0 2 2
《固体物理学》房晓勇-思考题02第二章 晶体的结合和弹性

第二章 晶体的结合和弹性2.1 是否有库仑力无关的晶体结合类型?解答:(参考王矜奉2.1.1,中南大学2.1.1)共价结合中,电子虽然不能脱离电负性大的原子,但靠近的两个电负性大的原子可以各出一个电子,形成电子共享的形式,即这一对电子的主要活动范围处于两个原子之间,通过库仑力,把两个原子连接起来。
离子晶体中,正离子与负离子的吸引力就是库仑力。
金属结合中,原子实依靠原子实与电子云之间的库仑力紧紧地吸引着。
分子结合中,是电偶极矩把原本分离的原子结合成了晶体。
电偶极矩的作用力实际就是库仑力。
氢键结合中,氢先与电负性大的原子形成共价结合后,氢核与负电中心不在重合,迫使它通过库仑力再与另一个电负性大的原子结合。
可见,所有晶体结合类型都与库仑力有关。
2.2 如何理解库仑力是原子结合的动力?解答:(参考王矜奉2.1.2,中南大学2.1.2)晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.2.3 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?解答:(参考王矜奉2.1.4,中南大学2.1.4)邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.2.4 晶体的结合能、内能、以及原子间的相互作用势能有何区别?解答:(参考王矜奉2.1.3,中南大学2.1.3)自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K 时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能.2.5 试述范德瓦耳斯力的起源和特点。
固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
《固体物理学》房晓勇主编教材-习题解答参考02第二章 晶体的结合和弹性

2
)
12
+
( 4 / 3)
6
6
(
6 1 +0 +0
2 2 2
)
12
+
( 4 / 3)
2
6
(
12 12 + 12 + 02
)
12
+ = =
( 4 / 3)
(
24
(3 / 2)
2
+ (1/ 2 ) + (1/ 2 )
2
)
12
( 4 / 3)
6
(
8 12 + 12 + 12
)
12
+
( 4 / 3)
mi
1
2 2 n12 + n2 + n3
) (
=
mi
2 2 n12 + n2 + n3
)
12
雷纳德-琼斯参数
A6 = ∑ A6,i = ∑
i =1 i =1 N N
N
N
( (
mi
2 2 + n3 n12 + n2
)
A12 = ∑ A12,i = ∑
i =1 i =1
mi
2 2 + n3 n12 + n2
mn mn −U 0 = U 0 2 9V0 9V0
(2)惰性分子晶体原子之间的相互作用势可以下式描述
σ ⎤ ⎡σ u (r ) = 4ε ⎢( )12 − 2( )6 ⎥ r ⎦ ⎣ r
……(7)
A2 ⎛B⎞ 此时 m=12,n=6,式中 σ = ⎜ ⎟ , ε ≡ ,称为雷纳德-琼斯参数。 4B ⎝ A⎠
《固体物理学》习题第四章晶体结构中的缺陷

第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k Ts n Neμ-=其中s μ是形成一个空位所需要的能量。
证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为 !()!!s s s N P N n n =-由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n ∆===-----晶体的自由能变化为[]ln ()ln()ln s s s s B s s s s F n T S n k T N N N n N n n n μμ=-∆=-----要使晶体的自由能最小B()ln 0ss s sT n F u k T n N n ⎡⎤⎛⎫∂∆=+= ⎪⎢⎥∂-⎣⎦⎝⎭整理得s B k T ssn e N n μ-=-在实际晶体中,由于,s n N <<s ssn n N N n ≈-,得到 sB k Ts n Neμ-=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。
已知,铜的熔点是1360K 。
解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为sB k Ts n Ne μ-= 11B k T n Neμ-=得19231.21.61051.381013002.2510s B k Ts n NeNeN μ--⨯⨯---⨯⨯===⨯191231.2410161.381013001 3.2110B k Tn NeNeN μ--⨯⨯---⨯⨯===⨯4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。
试估算室温下放射性钠在正常钠中的扩散系数,以及373K 时的扩散系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理王矜奉思考题
1.什么是晶体?晶体有哪些基本特性?
答案:晶体是由原子、分子或离子按照一定规律周期性排列而成的固体。
晶体具有以下基本特性:
(1)自限性:晶体在形成过程中会自动调整结构,使其达到最小能量状态。
(2)各向异性:晶体在不同方向上具有不同的物理性质,如机械性质和光学性质等。
(3)均匀性:晶体内部原子或分子的分布是均匀的,不存在宏观上的不均匀性。
(4)对称性:晶体具有多种对称性,如平移、旋转、反演等,这些对称性可以通过晶体的几何形状表现出来。
2.简述晶体中常见的三种晶格结构,并指出其特点。
答案:晶体中常见的三种晶格结构包括:
(1)简单立方晶格:每个晶格点被一个原子占据,每个原子与八个原子相连接,形成一个立方体结构。
这种晶格结构在现实中较少见。
(2)面心立方晶格:每个晶格点被一个原子占据,每个原子与12个原子相连接,形成了一个面心立方结构。
这种晶格结构在许多金属和合金中都很常见,如铜、铝等。
(3)体心立方晶格:每个晶格点被一个原子占据,每个原子与八个原子相连接,形成一个体心立方结构。
这种晶格结构在许多金属和合金中也很常见,如钠、钾等。
特点:简单立方晶格的对称性最高,面心立方晶格的对称性次之,体心立方晶格的对称性最低。
3.什么是晶格振动?为什么晶格振动是固体物理中的重要概念?
答案:晶格振动是指固体中原子或分子的振动状态,这种振动状态对固体的热学、电学和光学性质都有重要影响。
晶格振动是固体物理中的一个重要概念,因为它决定了固体的许多物理性质,如热容、热传导、电导率等。
通过研究晶格振动,可以深入了解固体的微观结构和相互作用机制,从而更好地理解和控制材料的物理性质。
4.什么是能带理论?能带理论在固体物理中有哪些应用?
答案:能带理论是指将固体中的电子能量状态按照能量的高低分成若干个能带,这些能带之间存在间隙的理论。
在能带理论中,每个能带代表一组电子的状态,这些电子具有相似的能量和波函数。
能带理论在固体物理中有以下应用:
(1)解释金属和绝缘体的性质:根据能带理论,金属的价带与导带重叠,因此金属是导体;而绝缘体的价带与导带之间存在较大的间隙,因此电子难以跃迁到导带形成电流。
(2)解释半导体的性质:半导体的价带与导带之间存在较小的间隙,因此电子可以跃迁到导带形成电流,同时也可以在价带中形成空穴。
能带理论可以解释半导体的光电导、热电效应等现象。
(3)计算电子的分布和状态密度:能带理论可以计算出各个能级上的电子分布和状态密度,从而解释实验上观测到的各种谱线结构。
5.什么是金属的费米面?费米面在金属导电性方面有何作用?
答案:金属的费米面是指将金属中所有电子按照能量从低到高排列后,处于最低能量状态的电子所形成的表面。
费米面在金属导电性方面具有重要作用,因为只有费米面以上的电子才能参与导电过程。
金属的导电能力与费米面附近的电子密度有关,电子密度越高,金属的导电能力越强。
因此,通过改变金属的化学成分或外界条件(如温度、压力等),可以调控金属的费米面结构,从而改变其导电性能。
6.简述固体中的元激发及其分类。
答案:固体中的元激发是指固体中的粒子在获得外界能量后从平衡态出发到达新的平衡态所经历的过程中的一种状态。
元激发可以分为以下几种类型:
(1)声子:声子是晶体中原子或分子的振动状态对应的量子化状态,它是晶体中热容和热传导的主要载体之一。
声子具有非零的动量和能量,可以与其他粒子发生相互作用。
(2)光子:光子是电磁场中的量子化状态,它具有能量和动量,可以在真空中传播或在物质中传播。
光子与物质的相互作用可以引起光电效应、光热效应等光现象。
(3)激子:激子是固体中电子-空穴
7.对形成的束缚态,它具有类似于氢原子的能级结构。
激子在半导体中具有重要的应用,如光电器件和太阳能电池等。
(4)等离子体:等离子体是固体中自由电子和离子组成的集体激发态,它可以表现为导电性。
在高温或强电场等条件下,固体中的电子可以被激发到导带中,形成自由电子和带正电的离子,这种状态被称为等离子体。
8.什么是超导电性?超导电性的微观机制是什么?
答案:超导电性是指金属或合金在低温下电阻变为零的现象。
当金属或合金处于超导状态时,电子在晶格中运动时不受到散射,因此电阻为零。
超导电性的微观机制是电子之间的相互作用,这种相互作用导致电子在晶格中形成一个“库珀对”的束缚态。
库珀对可以在晶格中自由运动,并且在低温下形成了所谓的“超导相干态”,这种状态下的电子具有高度的相干性,因此电阻为零。
9.什么是晶体中的缺陷?晶体中的缺陷对材料的物理性质有何影响?
答案:晶体中的缺陷是指晶体结构中与理想晶体结构不相符合的部分。
晶体中的缺陷可以分为点缺陷、线缺陷和面缺陷等类型。
点缺陷是指晶体中一个或几个原子位置出现空位或错位,这种缺陷可以影响晶体的热容、热传导等性质。
线缺陷是指晶体中出现的裂纹或位错等线性结构,这种缺陷可以影响晶体的机械性质和强度等。
面缺陷是指晶体表面或界面上的不完整性,这种缺陷可以影响晶体的光学、电学等性质。
晶体中的缺陷可以显著影响材料的物理性质,如机械性能、热学性能、电学性能和光学性能等。
因此,研究和控制晶体中的缺陷对于材料科学和工程领域具有重要的意义。
10.什么是热容?热容与温度有何关系?
答案:热容是指物质在等温过程中吸收或放出的热量与温度变化的比值。
对于一定的物质,其热容与温度有关,温度越高,热容越大。
对于晶体而言,其热容可以分为晶格热容和电子热容两部分。
晶格热容是指晶体中原子或分子的振动所吸收或释放的热量,它与温度的三次方成正比。
电子热容是指晶体中电子吸收或释放的热量,它与温度的平方成正比。
在高温下,晶格热容起主要作用;在低温下,电子热容起主要作用。
11.简述固体中的热传导机制。
答案:固体中的热传导机制主要包括以下几种:
(1)晶格振动传导:固体中的原子或分子的振动状态可以传递热量。
当晶格振动时,相邻原子或分子的相互作用会导致能量的传递,形成热流。
(2)电子传导:金属中的自由电子可以传递热量。
当电子在金属中运动时,它们会与晶格发生相互作用并传递能量,形成热流。
(3)声子传导:在某些非金属材料中,声子是主要的热传导机制。
声子在固体中传播时可以传递能量,形成热流。
以上三种机制在固体中的热传导中都起着重要的作用。
在实际应用中,了解和控制固体中的热传导机制对于优化材料的热性能和开发新型的热管理技术具有重要意义。